Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Sci Rep ; 12(1): 3860, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1799576

ABSTRACT

Non-structural protein 15 (Nsp15) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) forms a homo hexamer and functions as an endoribonuclease. Here, we propose that Nsp15 activity may be inhibited by preventing its hexamerization through drug binding. We first explored the stable conformation of the Nsp15 monomer as the global free energy minimum conformation in the free energy landscape using a combination of parallel cascade selection molecular dynamics (PaCS-MD) and the Markov state model (MSM), and found that the Nsp15 monomer forms a more open conformation with larger druggable pockets on the surface. Targeting the pockets with high druggability scores, we conducted ligand docking and identified compounds that tightly bind to the Nsp15 monomer. The top poses with Nsp15 were subjected to binding free energy calculations by dissociation PaCS-MD and MSM (dPaCS-MD/MSM), indicating the stability of the complexes. One of the identified pockets, which is distinctively bound by inosine analogues, may be an alternative binding site to stabilize viral RNA binding and/or an alternative catalytic site. We constructed a stable RNA structure model bound to both UTP and alternative binding sites, providing a reasonable proposed model of the Nsp15/RNA complex.


Subject(s)
Endoribonucleases/metabolism , RNA, Viral/chemistry , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Endoribonucleases/antagonists & inhibitors , Humans , Markov Chains , Molecular Docking Simulation , Molecular Dynamics Simulation , Nucleic Acid Conformation , Protein Multimerization , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Static Electricity , Viral Nonstructural Proteins/antagonists & inhibitors
2.
Nat Commun ; 13(1): 1722, 2022 03 31.
Article in English | MEDLINE | ID: covidwho-1773975

ABSTRACT

The rapidly growing popularity of RNA structure probing methods is leading to increasingly large amounts of available RNA structure information. This demands the development of efficient tools for the identification of RNAs sharing regions of structural similarity by direct comparison of their reactivity profiles, hence enabling the discovery of conserved structural features. We here introduce SHAPEwarp, a largely sequence-agnostic SHAPE-guided algorithm for the identification of structurally-similar regions in RNA molecules. Analysis of Dengue, Zika and coronavirus genomes recapitulates known regulatory RNA structures and identifies novel highly-conserved structural elements. This work represents a preliminary step towards the model-free search and identification of shared and conserved RNA structural features within transcriptomes.


Subject(s)
Zika Virus Infection , Zika Virus , Algorithms , Humans , Nucleic Acid Conformation , RNA/chemistry , RNA/genetics , RNA, Guide , Sequence Analysis, RNA/methods , Zika Virus/genetics
3.
Nat Commun ; 13(1): 1128, 2022 03 02.
Article in English | MEDLINE | ID: covidwho-1721520

ABSTRACT

SARS-CoV-2 is a betacoronavirus with a single-stranded, positive-sense, 30-kilobase RNA genome responsible for the ongoing COVID-19 pandemic. Although population average structure models of the genome were recently reported, there is little experimental data on native structural ensembles, and most structures lack functional characterization. Here we report secondary structure heterogeneity of the entire SARS-CoV-2 genome in two lines of infected cells at single nucleotide resolution. Our results reveal alternative RNA conformations across the genome and at the critical frameshifting stimulation element (FSE) that are drastically different from prevailing population average models. Importantly, we find that this structural ensemble promotes frameshifting rates much higher than the canonical minimal FSE and similar to ribosome profiling studies. Our results highlight the value of studying RNA in its full length and cellular context. The genomic structures detailed here lay groundwork for coronavirus RNA biology and will guide the design of SARS-CoV-2 RNA-based therapeutics.


Subject(s)
COVID-19/virology , RNA, Viral/chemistry , SARS-CoV-2/genetics , Frameshifting, Ribosomal , Genome, Viral , Humans , Nucleic Acid Conformation , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism
4.
J Vis Exp ; (180)2022 Feb 12.
Article in English | MEDLINE | ID: covidwho-1715854

ABSTRACT

RNA adopts diverse structural folds, which are essential for its functions and thereby can impact diverse processes in the cell. In addition, the structure and function of an RNA can be modulated by various trans-acting factors, such as proteins, metabolites or other RNAs. Frameshifting RNA molecules, for instance, are regulatory RNAs located in coding regions, which direct translating ribosomes into an alternative open reading frame, and thereby act as gene switches. They may also adopt different folds after binding to proteins or other trans-factors. To dissect the role of RNA-binding proteins in translation and how they modulate RNA structure and stability, it is crucial to study the interplay and mechanical features of these RNA-protein complexes simultaneously. This work illustrates how to employ single-molecule-fluorescence-coupled optical tweezers to explore the conformational and thermodynamic landscape of RNA-protein complexes at a high resolution. As an example, the interaction of the SARS-CoV-2 programmed ribosomal frameshifting element with the trans-acting factor short isoform of zinc-finger antiviral protein is elaborated. In addition, fluorescence-labeled ribosomes were monitored using the confocal unit, which would ultimately enable the study of translation elongation. The fluorescence coupled OT assay can be widely applied to explore diverse RNA-protein complexes or trans-acting factors regulating translation and could facilitate studies of RNA-based gene regulation.


Subject(s)
COVID-19 , Optical Tweezers , Humans , Nucleic Acid Conformation , Protein Biosynthesis , RNA, Messenger/genetics , SARS-CoV-2
5.
PLoS One ; 17(2): e0264025, 2022.
Article in English | MEDLINE | ID: covidwho-1714775

ABSTRACT

Experimental breakthroughs have provided unprecedented insights into the genes involved in cancer. The identification of such cancer driver genes is a major step in gaining a fuller understanding of oncogenesis and provides novel lists of potential therapeutic targets. A key area that requires additional study is the posttranscriptional control mechanisms at work in cancer driver genes. This is important not only for basic insights into the biology of cancer, but also to advance new therapeutic modalities that target RNA-an emerging field with great promise toward the treatment of various cancers. In the current study we performed an in silico analysis on the transcripts associated with 800 cancer driver genes (10,390 unique transcripts) that identified 179,190 secondary structural motifs with evidence of evolutionarily ordered structures with unusual thermodynamic stability. Narrowing to one transcript per gene, 35,426 predicted structures were subjected to phylogenetic comparisons of sequence and structural conservation. This identified 7,001 RNA secondary structures embedded in transcripts with evidence of covariation between paired sites, supporting structure models and suggesting functional significance. A select set of seven structures were tested in vitro for their ability to regulate gene expression; all were found to have significant effects. These results indicate potentially widespread roles for RNA structure in posttranscriptional control of human cancer driver genes.


Subject(s)
Evolution, Molecular , Neoplasms , Nucleic Acid Conformation , Phylogeny , RNA Processing, Post-Transcriptional , RNA Stability , RNA, Neoplasm , Humans , Neoplasms/genetics , Neoplasms/metabolism , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism
6.
Nat Commun ; 13(1): 988, 2022 02 21.
Article in English | MEDLINE | ID: covidwho-1713165

ABSTRACT

Translating ribosomes unwind mRNA secondary structures by three basepairs each elongation cycle. Despite the ribosome helicase, certain mRNA stem-loops stimulate programmed ribosomal frameshift by inhibiting translation elongation. Here, using mutagenesis, biochemical and single-molecule experiments, we examine whether high stability of three basepairs, which are unwound by the translating ribosome, is critical for inducing ribosome pauses. We find that encountering frameshift-inducing mRNA stem-loops from the E. coli dnaX mRNA and the gag-pol transcript of Human Immunodeficiency Virus (HIV) hinders A-site tRNA binding and slows down ribosome translocation by 15-20 folds. By contrast, unwinding of first three basepairs adjacent to the mRNA entry channel slows down the translating ribosome by only 2-3 folds. Rather than high thermodynamic stability, specific length and structure enable regulatory mRNA stem-loops to stall translation by forming inhibitory interactions with the ribosome. Our data provide the basis for rationalizing transcriptome-wide studies of translation and searching for novel regulatory mRNA stem-loops.


Subject(s)
Frameshifting, Ribosomal , RNA, Messenger/chemistry , Bacterial Proteins/genetics , DNA Polymerase III/genetics , Escherichia coli/genetics , Fluorescence Resonance Energy Transfer , HIV/genetics , Nucleic Acid Conformation , RNA, Bacterial/chemistry , RNA, Bacterial/metabolism , RNA, Messenger/metabolism , RNA, Transfer/metabolism , RNA, Viral/chemistry , RNA, Viral/metabolism , Single Molecule Imaging , Thermodynamics
7.
Int J Mol Sci ; 23(5)2022 Feb 23.
Article in English | MEDLINE | ID: covidwho-1700574

ABSTRACT

Influenza A virus (IAV) is a member of the single-stranded RNA (ssRNA) family of viruses. The most recent global pandemic caused by the SARS-CoV-2 virus has shown the major threat that RNA viruses can pose to humanity. In comparison, influenza has an even higher pandemic potential as a result of its high rate of mutations within its relatively short (<13 kbp) genome, as well as its capability to undergo genetic reassortment. In light of this threat, and the fact that RNA structure is connected to a broad range of known biological functions, deeper investigation of viral RNA (vRNA) structures is of high interest. Here, for the first time, we propose a secondary structure for segment 8 vRNA (vRNA8) of A/California/04/2009 (H1N1) formed in the presence of cellular and viral components. This structure shows similarities with prior in vitro experiments. Additionally, we determined the location of several well-defined, conserved structural motifs of vRNA8 within IAV strains with possible functionality. These RNA motifs appear to fold independently of regional nucleoprotein (NP)-binding affinity, but a low or uneven distribution of NP in each motif region is noted. This research also highlights several accessible sites for oligonucleotide tools and small molecules in vRNA8 in a cellular environment that might be a target for influenza A virus inhibition on the RNA level.


Subject(s)
Gene Expression Regulation, Viral , Genome, Viral/genetics , Influenza A Virus, H1N1 Subtype/genetics , Nucleic Acid Conformation , RNA, Viral/chemistry , Animals , Base Sequence , Dogs , Humans , Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Models, Molecular , Nucleotide Motifs/genetics , RNA Folding , RNA, Viral/genetics , Viral Proteins/genetics , Viral Proteins/metabolism
8.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: covidwho-1684239

ABSTRACT

High-fidelity replication of the large RNA genome of coronaviruses (CoVs) is mediated by a 3'-to-5' exoribonuclease (ExoN) in nonstructural protein 14 (nsp14), which excises nucleotides including antiviral drugs misincorporated by the low-fidelity viral RNA-dependent RNA polymerase (RdRp) and has also been implicated in viral RNA recombination and resistance to innate immunity. Here, we determined a 1.6-Å resolution crystal structure of severe acute respiratory syndrome CoV 2 (SARS-CoV-2) ExoN in complex with its essential cofactor, nsp10. The structure shows a highly basic and concave surface flanking the active site, comprising several Lys residues of nsp14 and the N-terminal amino group of nsp10. Modeling suggests that this basic patch binds to the template strand of double-stranded RNA substrates to position the 3' end of the nascent strand in the ExoN active site, which is corroborated by mutational and computational analyses. We also show that the ExoN activity can rescue a stalled RNA primer poisoned with sofosbuvir and allow RdRp to continue its extension in the presence of the chain-terminating drug, biochemically recapitulating proofreading in SARS-CoV-2 replication. Molecular dynamics simulations further show remarkable flexibility of multidomain nsp14 and suggest that nsp10 stabilizes ExoN for substrate RNA binding to support its exonuclease activity. Our high-resolution structure of the SARS-CoV-2 ExoN-nsp10 complex serves as a platform for future development of anticoronaviral drugs or strategies to attenuate the viral virulence.


Subject(s)
Exoribonucleases/chemistry , Molecular Dynamics Simulation , Nucleic Acid Conformation , Protein Domains , RNA, Viral/chemistry , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/chemistry , Binding Sites/genetics , COVID-19/virology , Catalytic Domain , Crystallography, X-Ray , Exoribonucleases/genetics , Exoribonucleases/metabolism , Humans , Lysine/chemistry , Lysine/genetics , Lysine/metabolism , Mutation, Missense , Protein Binding , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/physiology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
9.
Viruses ; 14(2)2022 01 18.
Article in English | MEDLINE | ID: covidwho-1649476

ABSTRACT

Recurrent outbreaks of novel zoonotic coronavirus (CoV) diseases in recent years have highlighted the importance of developing therapeutics with broad-spectrum activity against CoVs. Because all CoVs use -1 programmed ribosomal frameshifting (-1 PRF) to control expression of key viral proteins, the frameshift signal in viral mRNA that stimulates -1 PRF provides a promising potential target for such therapeutics. To test the viability of this strategy, we explored whether small-molecule inhibitors of -1 PRF in SARS-CoV-2 also inhibited -1 PRF in a range of bat CoVs-the most likely source of future zoonoses. Six inhibitors identified in new and previous screens against SARS-CoV-2 were evaluated against the frameshift signals from a panel of representative bat CoVs as well as MERS-CoV. Some drugs had strong activity against subsets of these CoV-derived frameshift signals, while having limited to no effect on -1 PRF caused by frameshift signals from other viruses used as negative controls. Notably, the serine protease inhibitor nafamostat suppressed -1 PRF significantly for multiple CoV-derived frameshift signals. These results suggest it is possible to find small-molecule ligands that inhibit -1 PRF specifically in a broad spectrum of CoVs, establishing frameshift signals as a viable target for developing pan-coronaviral therapeutics.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Coronavirus/genetics , Frameshift Mutation , Frameshifting, Ribosomal/drug effects , Viral Proteins/antagonists & inhibitors , Animals , Antiviral Agents/therapeutic use , Chiroptera/virology , Coronavirus/classification , Coronavirus Infections/drug therapy , Nucleic Acid Conformation , RNA, Messenger/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Viral Proteins/genetics , Virus Replication/drug effects
10.
Cell Chem Biol ; 29(2): 215-225.e5, 2022 02 17.
Article in English | MEDLINE | ID: covidwho-1664751

ABSTRACT

Coagulation cofactors profoundly regulate hemostasis and are appealing targets for anticoagulants. However, targeting such proteins has been challenging because they lack an active site. To address this, we isolate an RNA aptamer termed T18.3 that binds to both factor V (FV) and FVa with nanomolar affinity and demonstrates clinically relevant anticoagulant activity in both plasma and whole blood. The aptamer also shows synergy with low molecular weight heparin and delivers potent anticoagulation in plasma collected from patients with coronavirus disease 2019 (COVID-19). Moreover, the aptamer's anticoagulant activity can be rapidly and efficiently reversed using protamine sulfate, which potentially allows fine-tuning of aptamer's activity post-administration. We further show that the aptamer achieves its anticoagulant activity by abrogating FV/FVa interactions with phospholipid membranes. Our success in generating an anticoagulant aptamer targeting FV/Va demonstrates the feasibility of using cofactor-binding aptamers as therapeutic protein inhibitors and reveals an unconventional working mechanism of an aptamer by interrupting protein-membrane interactions.


Subject(s)
Anticoagulants/pharmacology , Aptamers, Nucleotide/pharmacology , Blood Coagulation/drug effects , Factor V/antagonists & inhibitors , Factor Va/antagonists & inhibitors , Amino Acid Sequence , Anticoagulants/chemistry , Anticoagulants/metabolism , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Base Pairing , Binding Sites , COVID-19/blood , COVID-19/drug therapy , Cell Membrane/chemistry , Cell Membrane/metabolism , Factor V/chemistry , Factor V/genetics , Factor V/metabolism , Factor Va/chemistry , Factor Va/genetics , Factor Va/metabolism , Heparin, Low-Molecular-Weight/chemistry , Heparin, Low-Molecular-Weight/metabolism , Humans , Immune Sera/chemistry , Immune Sera/metabolism , Models, Molecular , Nucleic Acid Conformation , Protamines , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , SELEX Aptamer Technique , Substrate Specificity
11.
Chem Commun (Camb) ; 58(13): 2176-2179, 2022 Feb 10.
Article in English | MEDLINE | ID: covidwho-1642026

ABSTRACT

2'-5'-Oligoadenylate synthetase 1 (OAS1) is one of the key enzymes driving the innate immune system response to SARS-CoV-2 infection whose activity has been related to COVID-19 severity. OAS1 is a sensor of endogenous RNA that triggers the 2'-5'-oligoadenylate/RNase L pathway. Upon SARS-CoV-2 infection, OAS1 is responsible for the recognition of viral RNA and has been shown to possess a particularly high sensitivity for the 5'-untranslated (5'-UTR) RNA region, which is organized in a double-strand stem loop motif (SL1). Here we report the structure of the SL1/OAS1 complex also rationalizing the high affinity for OAS1.


Subject(s)
2',5'-Oligoadenylate Synthetase/metabolism , Immunity, Innate , RNA, Viral/metabolism , SARS-CoV-2/genetics , 5' Untranslated Regions , Base Sequence , Binding Sites , COVID-19/pathology , COVID-19/virology , Humans , Molecular Dynamics Simulation , Nucleic Acid Conformation , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/isolation & purification
12.
Nucleic Acids Res ; 50(1): 333-349, 2022 01 11.
Article in English | MEDLINE | ID: covidwho-1591186

ABSTRACT

A promising approach to tackle the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) could be small interfering (si)RNAs. So far it is unclear, which viral replication steps can be efficiently inhibited with siRNAs. Here, we report that siRNAs can target genomic RNA (gRNA) of SARS-CoV-2 after cell entry, and thereby terminate replication before start of transcription and prevent virus-induced cell death. Coronaviruses replicate via negative sense RNA intermediates using a unique discontinuous transcription process. As a result, each viral RNA contains identical sequences at the 5' and 3' end. Surprisingly, siRNAs were not active against intermediate negative sense transcripts. Targeting common sequences shared by all viral transcripts allowed simultaneous suppression of gRNA and subgenomic (sg)RNAs by a single siRNA. The most effective suppression of viral replication and spread, however, was achieved by siRNAs that targeted open reading frame 1 (ORF1) which only exists in gRNA. In contrast, siRNAs that targeted the common regions of transcripts were outcompeted by the highly abundant sgRNAs leading to an impaired antiviral efficacy. Verifying the translational relevance of these findings, we show that a chemically modified siRNA that targets a highly conserved region of ORF1, inhibited SARS-CoV-2 replication ex vivo in explants of the human lung. Our work encourages the development of siRNA-based therapies for COVID-19 and suggests that early therapy start, or prophylactic application, together with specifically targeting gRNA, might be key for high antiviral efficacy.


Subject(s)
COVID-19/virology , Lung/virology , RNA, Small Interfering , RNA, Viral , SARS-CoV-2/genetics , Virus Replication , 3' Untranslated Regions , Animals , Antiviral Agents/pharmacology , COVID-19/drug therapy , Cell Survival , Databases, Genetic , HEK293 Cells , Humans , Nucleic Acid Conformation , Oligonucleotides , Open Reading Frames , RNA, Small Interfering/metabolism
13.
Nucleic Acids Res ; 50(2): 1017-1032, 2022 01 25.
Article in English | MEDLINE | ID: covidwho-1574599

ABSTRACT

The ongoing COVID-19 pandemic highlights the necessity for a more fundamental understanding of the coronavirus life cycle. The causative agent of the disease, SARS-CoV-2, is being studied extensively from a structural standpoint in order to gain insight into key molecular mechanisms required for its survival. Contained within the untranslated regions of the SARS-CoV-2 genome are various conserved stem-loop elements that are believed to function in RNA replication, viral protein translation, and discontinuous transcription. While the majority of these regions are variable in sequence, a 41-nucleotide s2m element within the genome 3' untranslated region is highly conserved among coronaviruses and three other viral families. In this study, we demonstrate that the SARS-CoV-2 s2m element dimerizes by forming an intermediate homodimeric kissing complex structure that is subsequently converted to a thermodynamically stable duplex conformation. This process is aided by the viral nucleocapsid protein, potentially indicating a role in mediating genome dimerization. Furthermore, we demonstrate that the s2m element interacts with multiple copies of host cellular microRNA (miRNA) 1307-3p. Taken together, our results highlight the potential significance of the dimer structures formed by the s2m element in key biological processes and implicate the motif as a possible therapeutic drug target for COVID-19 and other coronavirus-related diseases.


Subject(s)
3' Untranslated Regions/genetics , COVID-19/genetics , MicroRNAs/genetics , Nucleotide Motifs/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , Base Sequence , Binding Sites/genetics , COVID-19/metabolism , COVID-19/virology , Conserved Sequence/genetics , Dimerization , Genome, Viral/genetics , Host-Pathogen Interactions/genetics , Humans , MicroRNAs/metabolism , Nucleic Acid Conformation , Proton Magnetic Resonance Spectroscopy/methods , RNA, Viral/chemistry , RNA, Viral/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/physiology
14.
Rev Esp Quimioter ; 35(2): 204-212, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1574365

ABSTRACT

SARS-CoV-2 is an enveloped positive-sense single-stranded RNA coronavirus that causes COVID-19, of which the current outbreak has resulted in a high number of cases and fatalities throughout the world, even vaccine doses are being administered. The aim of this work was to scan the SARS-CoV-2 genome in search for therapeutic targets. We found a sequence in the 5'UTR (NC\_045512:74-130), consisting of a typical heptamer next to a structured region that may cause ribosomal frameshifting. The potential biological value of this region is relevant through its low similarity with other viruses, including coronaviruses related to SARS-CoV, and its high sequence conservation within multiple SARS-CoV-2 isolates. We have predicted the secondary structure of the region by means of different bioinformatic tools. We have suggested a most probable secondary structure to proceed with a 3D reconstruction of the structured segment. Finally, we carried out virtual docking on the 3D structure to look for a binding site and then for drug ligands from a database of lead compounds. Several molecules that could be probably administered as oral drugs show promising binding affinity within the structured region, and so it could be possible interfere its potential regulatory role.


Subject(s)
5' Untranslated Regions , SARS-CoV-2 , Antiviral Agents/chemistry , Binding Sites , COVID-19 , Computational Biology , Frameshifting, Ribosomal , Humans , Molecular Docking Simulation , Nucleic Acid Conformation , RNA, Viral , SARS-CoV-2/drug effects
15.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Article in English | MEDLINE | ID: covidwho-1565770

ABSTRACT

The constant emergence of COVID-19 variants reduces the effectiveness of existing vaccines and test kits. Therefore, it is critical to identify conserved structures in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes as potential targets for variant-proof diagnostics and therapeutics. However, the algorithms to predict these conserved structures, which simultaneously fold and align multiple RNA homologs, scale at best cubically with sequence length and are thus infeasible for coronaviruses, which possess the longest genomes (∼30,000 nt) among RNA viruses. As a result, existing efforts on modeling SARS-CoV-2 structures resort to single-sequence folding as well as local folding methods with short window sizes, which inevitably neglect long-range interactions that are crucial in RNA functions. Here we present LinearTurboFold, an efficient algorithm for folding RNA homologs that scales linearly with sequence length, enabling unprecedented global structural analysis on SARS-CoV-2. Surprisingly, on a group of SARS-CoV-2 and SARS-related genomes, LinearTurboFold's purely in silico prediction not only is close to experimentally guided models for local structures, but also goes far beyond them by capturing the end-to-end pairs between 5' and 3' untranslated regions (UTRs) (∼29,800 nt apart) that match perfectly with a purely experimental work. Furthermore, LinearTurboFold identifies undiscovered conserved structures and conserved accessible regions as potential targets for designing efficient and mutation-insensitive small-molecule drugs, antisense oligonucleotides, small interfering RNAs (siRNAs), CRISPR-Cas13 guide RNAs, and RT-PCR primers. LinearTurboFold is a general technique that can also be applied to other RNA viruses and full-length genome studies and will be a useful tool in fighting the current and future pandemics.


Subject(s)
Algorithms , RNA, Viral/chemistry , SARS-CoV-2/chemistry , Betacoronavirus/chemistry , Betacoronavirus/genetics , Conserved Sequence , Genome, Viral , Mutation , Nucleic Acid Conformation , RNA Folding , RNA, Viral/genetics , SARS-CoV-2/genetics , Sequence Alignment
16.
Nat Commun ; 12(1): 7193, 2021 12 10.
Article in English | MEDLINE | ID: covidwho-1565717

ABSTRACT

Programmed ribosomal frameshifting (PRF) is a fundamental gene expression event in many viruses, including SARS-CoV-2. It allows production of essential viral, structural and replicative enzymes that are encoded in an alternative reading frame. Despite the importance of PRF for the viral life cycle, it is still largely unknown how and to what extent cellular factors alter mechanical properties of frameshift elements and thereby impact virulence. This prompted us to comprehensively dissect the interplay between the SARS-CoV-2 frameshift element and the host proteome. We reveal that the short isoform of the zinc-finger antiviral protein (ZAP-S) is a direct regulator of PRF in SARS-CoV-2 infected cells. ZAP-S overexpression strongly impairs frameshifting and inhibits viral replication. Using in vitro ensemble and single-molecule techniques, we further demonstrate that ZAP-S directly interacts with the SARS-CoV-2 RNA and interferes with the folding of the frameshift RNA element. Together, these data identify ZAP-S as a host-encoded inhibitor of SARS-CoV-2 frameshifting and expand our understanding of RNA-based gene regulation.


Subject(s)
Frameshifting, Ribosomal , RNA-Binding Proteins/metabolism , Repressor Proteins/metabolism , SARS-CoV-2/genetics , COVID-19 , HEK293 Cells , Host-Pathogen Interactions , Humans , Nucleic Acid Conformation , Protein Isoforms , Proteome , RNA, Viral/genetics , SARS-CoV-2/physiology , Virus Replication
17.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Article in English | MEDLINE | ID: covidwho-1559358

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has created an urgent need for new technologies to treat COVID-19. Here we report a 2'-fluoro protected RNA aptamer that binds with high affinity to the receptor binding domain (RBD) of SARS-CoV-2 spike protein, thereby preventing its interaction with the host receptor ACE2. A trimerized version of the RNA aptamer matching the three RBDs in each spike complex enhances binding affinity down to the low picomolar range. Binding mode and specificity for the aptamer-spike interaction is supported by biolayer interferometry, single-molecule fluorescence microscopy, and flow-induced dispersion analysis in vitro. Cell culture experiments using virus-like particles and live SARS-CoV-2 show that the aptamer and, to a larger extent, the trimeric aptamer can efficiently block viral infection at low concentration. Finally, the aptamer maintains its high binding affinity to spike from other circulating SARS-CoV-2 strains, suggesting that it could find widespread use for the detection and treatment of SARS-CoV-2 and emerging variants.


Subject(s)
Aptamers, Nucleotide/pharmacology , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Humans , Mutation , Neutralization Tests , Nucleic Acid Conformation , Protein Binding/drug effects , Protein Interaction Domains and Motifs , SARS-CoV-2/physiology , SELEX Aptamer Technique , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
18.
Nucleic Acids Res ; 49(21): 12502-12516, 2021 12 02.
Article in English | MEDLINE | ID: covidwho-1546005

ABSTRACT

Circular RNAs (circRNAs) are noncoding RNAs that exist in all eukaryotes investigated and are derived from back-splicing of certain pre-mRNA exons. Here, we report the application of artificial circRNAs designed to act as antisense-RNAs. We systematically tested a series of antisense-circRNAs targeted to the SARS-CoV-2 genome RNA, in particular its structurally conserved 5'-untranslated region. Functional assays with both reporter transfections as well as with SARS-CoV-2 infections revealed that specific segments of the SARS-CoV-2 5'-untranslated region can be efficiently accessed by specific antisense-circRNAs, resulting in up to 90% reduction of virus proliferation in cell culture, and with a durability of at least 48 h. Presenting the antisense sequence within a circRNA clearly proved more efficient than in the corresponding linear configuration and is superior to modified antisense oligonucleotides. The activity of the antisense-circRNA is surprisingly robust towards point mutations in the target sequence. This strategy opens up novel applications for designer circRNAs and promising therapeutic strategies in molecular medicine.


Subject(s)
Genome, Viral/genetics , RNA, Antisense/genetics , RNA, Circular/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , Virus Replication/genetics , 5' Untranslated Regions/genetics , Animals , Antiviral Agents/metabolism , Base Sequence , COVID-19/prevention & control , COVID-19/virology , Cell Proliferation/genetics , Chlorocebus aethiops , Drug Design , HeLa Cells , Host-Pathogen Interactions/genetics , Humans , Nucleic Acid Conformation , RNA, Viral/chemistry , RNA-Seq/methods , SARS-CoV-2/physiology , Vero Cells
19.
RNA ; 28(2): 239-249, 2022 02.
Article in English | MEDLINE | ID: covidwho-1542151

ABSTRACT

SARS-CoV-2 produces two long viral protein precursors from one open reading frame using a highly conserved RNA pseudoknot that enhances programmed -1 ribosomal frameshifting. The 1.3 Å-resolution X-ray structure of the pseudoknot reveals three coaxially stacked helices buttressed by idiosyncratic base triples from loop residues. This structure represents a frameshift-stimulating state that must be deformed by the ribosome and exhibits base-triple-adjacent pockets that could be targeted by future small-molecule therapeutics.


Subject(s)
Frameshifting, Ribosomal , Nucleic Acid Conformation , RNA, Viral/chemistry , SARS-CoV-2/genetics , Codon, Terminator , Crystallography, X-Ray , Models, Molecular , Mutation , RNA, Viral/genetics
20.
Viruses ; 13(11)2021 10 22.
Article in English | MEDLINE | ID: covidwho-1538535

ABSTRACT

Our understanding of RNA structure has lagged behind that of proteins and most other biological polymers, largely because of its ability to adopt multiple, and often very different, functional conformations within a single molecule. Flexibility and multifunctionality appear to be its hallmarks. Conventional biochemical and biophysical techniques all have limitations in solving RNA structure and to address this in recent years we have seen the emergence of a wide diversity of techniques applied to RNA structural analysis and an accompanying appreciation of its ubiquity and versatility. Viral RNA is a particularly productive area to study in that this economy of function within a single molecule admirably suits the minimalist lifestyle of viruses. Here, we review the major techniques that are being used to elucidate RNA conformational flexibility and exemplify how the structure and function are, as in all biology, tightly linked.


Subject(s)
RNA Viruses/chemistry , RNA, Viral/chemistry , Nucleic Acid Conformation , RNA Viruses/genetics , RNA Viruses/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL