ABSTRACT
Available COVID-19 vaccine only provide protection for a limited time due in part to the rapid emergence of viral variants with spike protein mutations, necessitating the generation of new vaccines to combat SARS-CoV-2. Two serologically distinct replication-defective chimpanzee-origin adenovirus (Ad) vectors (AdC) called AdC6 and AdC7 expressing early SARS-CoV-2 isolate spike (S) or nucleocapsid (N) proteins, the latter expressed as a fusion protein within herpes simplex virus glycoprotein D (gD), were tested individually or as a mixture in a hamster COVID-19 SARS-CoV-2 challenge model. The S protein expressing AdC (AdC-S) vectors induced antibodies including those with neutralizing activity that in part cross-reacted with viral variants. Hamsters vaccinated with the AdC-S vectors were protected against serious disease and showed accelerated recovery upon SARS-CoV-2 challenge. Protection was enhanced if AdC-S vectors were given together with the AdC vaccines that expressed the gD N fusion protein (AdC-gDN). In contrast hamsters that just received the AdC-gDN vaccines showed only marginal lessening of symptoms compared to control animals. These results indicate that immune response to the N protein that is less variable than the S protein may potentiate and prolong protection achieved by the currently used S protein based genetic COVID-19 vaccines.
Subject(s)
COVID-19 , Animals , Cricetinae , Humans , COVID-19/prevention & control , SARS-CoV-2/genetics , COVID-19 Vaccines/genetics , Pan troglodytes , Adenoviridae/genetics , Nucleocapsid , Immunization , Antibodies, Viral , Antibodies, NeutralizingABSTRACT
The Nucleocapsid (N) protein is highlighted as the main target for COVID-19 diagnosis by antigen detection due to its abundance in circulation early during infection. However, the effects of the described mutations in the N protein epitopes and the efficacy of antigen testing across SARS-CoV-2 variants remain controversial and poorly understood. Here, we used immunoinformatics to identify five epitopes in the SARS-CoV-2 N protein (N(34-48), N(89-104), N(185-197), N(277-287), and N(378-390)) and validate their reactivity against samples from COVID-19 convalescent patients. All identified epitopes are fully conserved in the main SARS-CoV-2 variants and highly conserved with SARS-CoV. Moreover, the epitopes N(185-197) and N(277-287) are highly conserved with MERS-CoV, while the epitopes N(34-48), N(89-104), N(277-287), and N(378-390) are lowly conserved with common cold coronaviruses (229E, NL63, OC43, HKU1). These data are in accordance with the observed conservation of amino acids recognized by the antibodies 7R98, 7N0R, and 7CR5, which are conserved in the SARS-CoV-2 variants, SARS-CoV and MERS-CoV but lowly conserved in common cold coronaviruses. Therefore, we support the antigen tests as a scalable solution for the population-level diagnosis of SARS-CoV-2, but we highlight the need to verify the cross-reactivity of these tests against the common cold coronaviruses.
Subject(s)
COVID-19 , Common Cold , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2/genetics , Epitopes, B-Lymphocyte/genetics , COVID-19 Testing , COVID-19/diagnosis , Nucleocapsid , Spike Glycoprotein, Coronavirus/geneticsABSTRACT
Introduction: There remains a need to better identify patients at highest risk for developing severe Coronavirus Disease 2019 (COVID-19) as additional waves of the pandemic continue to impact hospital systems. We sought to characterize the association of receptor for advanced glycation end products (RAGE), SARS-CoV-2 nucleocapsid viral antigen, and a panel of thromboinflammatory biomarkers with development of severe disease in patients presenting to the emergency department with symptomatic COVID-19. Methods: Blood samples were collected on arrival from 77 patients with symptomatic COVID-19, and plasma levels of thromboinflammatory biomarkers were measured. Results: Differences in biomarkers between those who did and did not develop severe disease or death 7 days after presentation were analyzed. After adjustment for multiple comparisons, RAGE, SARS-CoV-2 nucleocapsid viral antigen, interleukin (IL)-6, IL-10 and tumor necrosis factor receptor (TNFR)-1 were significantly elevated in the group who developed severe disease (all p<0.05). In a multivariable regression model, RAGE and SARS-CoV-2 nucleocapsid viral antigen remained significant risk factors for development of severe disease (both p<0.05), and each had sensitivity and specificity >80% on cut-point analysis. Discussion: Elevated RAGE and SARS-CoV-2 nucleocapsid viral antigen on emergency department presentation are strongly associated with development of severe disease at 7 days. These findings are of clinical relevance for patient prognostication and triage as hospital systems continue to be overwhelmed. Further studies are warranted to determine the feasibility and utility of point-of care measurements of these biomarkers in the emergency department setting to improve patient prognostication and triage.
Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Receptor for Advanced Glycation End Products , Nucleocapsid , Antigens , Biomarkers , Antigens, ViralABSTRACT
BACKGROUND: The nucleocapsid protein of SARS-CoV-2 participates in viral replication, transcription, and assembly. Antibodies against this protein have been proposed for the epidemiological analysis of the seroprevalence of COVID-19 associated with natural infection by SARS-CoV-2. Health workers were one of the most exposed populations, and some had an asymptomatic form of the disease, so detecting IgG antibodies and subclasses against the N protein can help to reclassify their epidemiological status and obtain information about the effector mechanisms associated with viral elimination. METHODS: In this study, we analyzed 253 serum samples collected in 2021 and derived from health workers, and evaluated the presence of total IgG and subclasses against the N protein of SARS-CoV-2 by indirect ELISA. RESULTS: From the analyzed samples, 42.69% were positive to anti-N IgG antibodies. A correlation between COVID-19 asymptomatic infection and IgG antibodies was observed (p = 0.006). The detected subclasses were: IgG1 (82.4%), IgG2 (75.9%), IgG3 (42.6%), and IgG4 (72.6%). CONCLUSIONS: This work provides evidence about the high seroprevalence of total IgG and subclasses of anti-N and their relations with the asymptomatic infection of SARS-CoV-2 and related symptoms.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Seroepidemiologic Studies , Asymptomatic Infections , Nucleocapsid , Immunoglobulin G , Antibodies, ViralABSTRACT
Chemiluminescence was used to test the susceptibility of the SARS-CoV-2 N and S proteins to oxidation by reactive oxygen species (ROS) at pH 7.4 and pH 8.5. The Fenton's system generates various ROS (H2O2, OH, -OH, OOH). All proteins were found to significantly suppress oxidation (the viral proteins exhibited 25-60% effect compared to albumin). In the second system, H2O2 was used both as a strong oxidant and as a ROS. A similar effect was observed (30-70%); N protein approached the effect of albumin at physiological pH (â¼45%). In the O2.--generation system, albumin was most effective in the suppression of generated radicals (75%, pH 7.4). The viral proteins were more susceptible to oxidation (inhibition effect no more than 20%, compared to albumin). The standard antioxidant assay confirmed the strong antioxidant capacity of both viral proteins (1.5-1.7 fold higher than albumin). These results demonstrate the effective and significant inhibition of ROS-induced oxidation by the proteins. Obviously, the viral proteins could not be involved in the oxidative stress reactions during the course of the infection. They even suppress the metabolites involved in its progression. These results can be explained by their structure. Probably, an evolutionary self-defense mechanism of the virus has been developed.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Reactive Oxygen Species/metabolism , Antioxidants , Hydrogen Peroxide/metabolism , Spike Glycoprotein, Coronavirus , Nucleocapsid/metabolism , Inflammation , Albumins , Antibodies, ViralABSTRACT
Objective: To establish a rapid and specific quantitative real-time PCR (qPCR) method for the detection of SARS-CoV-2 subgenomic nucleocapsid RNA (SgN) in patients with COVID-19 or environmental samples. Methods: The qPCR assay was established by designing specific primers and TaqMan probe based on the SARS-CoV-2 genomic sequence in Global Initiative of Sharing All Influenza Data (GISAID) database. The reaction conditions were optimized by using different annealing temperature, different primers and probe concentrations and the standard curve was established. Further, the specificity, sensitivity and repeatability were also assessed. The established SgN and genomic RNA (gRNA) qPCR assays were both applied to detect 21 environmental samples and 351 clinical samples containing 48 recovered patients. In the specimens with both positive gRNA and positive SgN, 25 specimens were inoculated on cells. Results: The primers and probes of SgN had good specificity for SARS-CoV-2. The minimum detection limit of the preliminarily established qPCR detection method for SgN was 1.5×102 copies/ml, with a coefficient of variation less than 1%. The positive rate of gRNA in 372 samples was 97.04% (361/372). The positive rates of SgN in positive environmental samples and positive clinical samples were 36.84% (7/19) and 49.42% (169/342), respectively. The positive rate and copy number of SgN in Wild strain were lower than those of SARS-CoV-2 Delta strain. Among the 25 SgN positive samples, 12 samples within 5 days of sampling time were all isolated with virus; 13 samples sampled for more than 12 days had no cytopathic effect. Conclusion: A qPCR method for the detection of SARS-CoV-2 SgN has been successfully established. The sensitivity, specificity and repeatability of this method are good.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Subgenomic RNA , Real-Time Polymerase Chain Reaction/methods , RNA, Viral/genetics , Sensitivity and Specificity , Nucleocapsid/chemistry , COVID-19 TestingABSTRACT
The nucleocapsid (N-)protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a key role in viral assembly and scaffolding of the viral RNA. It promotes liquid-liquid phase separation (LLPS), forming dense droplets that support the assembly of ribonucleoprotein particles with as-of-yet unknown macromolecular architecture. Combining biophysical experiments, molecular dynamics simulations, and analysis of the mutational landscape, we describe a heretofore unknown oligomerization site that contributes to LLPS, is required for the assembly of higher-order protein-nucleic acid complexes, and is coupled to large-scale conformational changes of N-protein upon nucleic acid binding. The self-association interface is located in a leucine-rich sequence of the intrinsically disordered linker between N-protein folded domains and formed by transient helices assembling into trimeric coiled-coils. Critical residues stabilizing hydrophobic and electrostatic interactions between adjacent helices are highly protected against mutations in viable SARS-CoV-2 genomes, and the oligomerization motif is conserved across related coronaviruses, thus presenting a target for antiviral therapeutics.
Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins , Humans , SARS-CoV-2/genetics , Nucleocapsid/metabolism , RNA, Viral/geneticsABSTRACT
Lateral flow antigen tests have been widely used in the Covid-19 pandemic, allowing faster diagnostic test results and preventing further viral spread through isolation of infected individuals. Accomplishment of this screening must be performed with tests that show satisfactory sensitivity in order to successfully detect the target protein and avoid false negatives. The aim of this study was to create a lateral flow test that could detect SARS-CoV-2 nucleocapsid protein in low concentrations that were comparable to the limits of detection claimed by existing tests from the market. To do so, several adjustments were necessary during research and development of the prototypes until they were consistent with these criteria. The proposed alternatives of increasing the test line antibody concentration and addition of an intermembrane between the conjugate pad and the nitrocellulose membrane were able to increase the sensitivity four-fold and generate a new rapid test prototype called "lateral flow intermembrane immunoassay test" (LFIIT). This prototype showed an adequate limit of detection (2.0 ng mL-1) while maintaining affordability and simplicity in manufacturing processes.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Pandemics , Sensitivity and Specificity , Nucleocapsid , Antigens , Immunoassay/methods , GossypiumABSTRACT
Single-stranded RNA viruses (ssRNAv) are characterized by their biological diversity and great adaptability to different hosts; traits which make them a major threat to human health due to their potential to cause zoonotic outbreaks. A detailed understanding of the mechanisms involved in viral proliferation is essential to address the challenges posed by these pathogens. Key to these processes are ribonucleoproteins (RNPs), the genome-containing RNA-protein complexes whose function is to carry out viral transcription and replication. Structural determination of RNPs can provide crucial information on the molecular mechanisms of these processes, paving the way for the development of new, more effective strategies to control and prevent the spread of ssRNAv diseases. In this scenario, cryogenic electron microscopy (cryoEM), relying on the technical and methodological revolution it has undergone in recent years, can provide invaluable help in elucidating how these macromolecular complexes are organized, packaged within the virion, or the functional implications of these structures. In this review, we summarize some of the most prominent achievements by cryoEM in the study of RNP and nucleocapsid structures in lipid-enveloped ssRNAv.
Subject(s)
Influenza A virus , RNA, Viral , Humans , RNA, Viral/genetics , Cryoelectron Microscopy , Ribonucleoproteins/genetics , Viral Proteins/genetics , Nucleocapsid/metabolism , Influenza A virus/geneticsABSTRACT
Introduction: SARS-CoV-2 nucleocapsid (N) protein plays a key role in multiple stages of the viral life cycle such as viral replication and assembly. This protein is more conserved than the Spike protein of the virus and can induce both humoral and cell-mediated immune responses, thereby becoming a target for clinical diagnosis and vaccine development. However, the immunogenic characteristics of this protein during natural infection are still not completely understood. Methods: Patient-derived monoclonal antibodies (mAbs) against SARS-CoV-2 N protein were generated from memory B cells in the PBMCs using the antigen-specific B cell approach. For epitope mapping of the isolated hmAbs, a panel of series-truncated N proteins were used , which covered the N-terminal domain (NTD, aa 46-174 ) and C-terminal domain (CTD, aa 245-364 ), as well as the flanking regions of NTD and CTD. NTD- or CTD-specific Abs in the plasma from COVID-19 patients were also tested by ELISA method. Cross-binding of hmAbs or plasma Abs in COVID-19 patients to other human ß-CoV N proteins was determined using the capture ELISA. Results: We isolated five N-specific monoclonal antibodies (mAbs) from memory B cells in the peripheral blood of two convalescent COVID-19 patients. Epitope mapping revealed that three of the patient-derived mAbs (N3, N5 and N31) targeted the C-terminal domain (CTD), whereas two of the mAbs (N83 and 3B7) targeted the N-terminal domain (NTD) of SARS-CoV-2 N protein. All five patient-derived mAbs were cross-reactive to the N protein of SARS-CoV but showed little to no cross-reactivity to the N proteins of other human beta coronaviruses (ß-CoVs). We also tested 52 plasma samples collected from convalescent COVID-19 patients for Abs against the N proteins of human ß-CoVs and found that 78.8% of plasma samples showed detectable Abs against the N proteins of SARS-CoV-2 and SARS-CoV. No plasma sample had cross-reactive Abs to the N protein of MERS-CoV. Cross-reactive Abs to the N proteins of OC43 and HKU1 were detected in 36.5% (19/52) and 19.2% (10/52) of plasma samples, respectively. Discussion: These results suggest that natural SARS-CoV-2 infection elicits cross-reactive Abs to the N protein of SARS-CoV and that the five patient-derived mAbs to SARS-CoV-2 N protein NTD and CTD cross-react with their counterparts of SARS-CoV, but not other human ß-CoVs. Thus, these five patient-derived mAbs can potentially be used for developing the next generation of COVID-19 At-Home Test kits for rapid and specific screening of SARS-CoV-2 infection.
Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2 , Antibodies, Monoclonal , NucleocapsidABSTRACT
BACKGROUND AND OBJECTIVES: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause a wide range of neurologic complications; however, its neuropenetrance during the acute phase of the illness is unknown. METHODS: Extracellular vesicles were isolated from brain biopsy tissue from a patient undergoing epilepsy surgery using ultracentrifugation and analyzed by Western blot and qPCR for the presence of virus protein and RNA, respectively. Biopsy tissue was assessed by immunohistochemistry for the presence of microvascular damage and compared with 3 other non-COVID surgical epilepsy brain tissues. RESULTS: We demonstrate the presence of viral nucleocapsid protein in extracellular vesicles and microvascular disease in the brain of a patient undergoing epilepsy surgery shortly after SARS-CoV-2 infection. Endothelial cell activation was indicated by increased levels of platelet endothelial cell adhesion molecule-1 and was associated with fibrinogen leakage and immune cell infiltration in the biopsy tissue as compared with control non-COVID surgical epilepsy brain tissues. DISCUSSION: Despite the lack of evidence of viral replication within the brain, the presence of the nucleocapsid protein was associated with disease-specific endothelial cell activation, fibrinogen leakage, and immune cell infiltration.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Coronavirus Nucleocapsid Proteins/metabolism , Nucleocapsid/metabolism , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Brain/metabolismABSTRACT
In the wake of the COVID-19 pandemic, millions of confirmed cases and deaths have been reported around the world. COVID-19 spread can be slowed and eventually stopped by a rapid test to diagnose positive cases of the disease on the spot. It is still important to test for COVID-19 quickly regardless of the availability of the vaccine. Using the binding-induced folding principle, we developed an electrochemical test for detecting SARS-CoV-2 with no RNA extraction or nucleic acid amplification. The test showed high sensitivity with a limit of detection of 2.5 copies/µL. An electrode mounted with a capture probe and a portable potentiostat are used to conduct the test. To target the N-gene of SARS-CoV-2, a highly specific oligo-capturing probe was used. Based on the binding-induced "folding" principle, the sensor detects binding between the oligo and RNA. When the target is absent, the capture probe tends to form a hairpin as a secondary structure, retaining the redox reporter close to the surface. This can be seen as a large anodic and cathodic peak current. When the target RNA is present, the hairpin structure will open to hybridize with its complementary sequence, causing the redox reporter to pull away from the electrode. Consequently, the anodic/cathodic peak currents are reduced, indicating the presence of the SARS-CoV-2 genetic material. Validation of the test performance was performed using 122 COVID-19 clinical samples (55 positives and 67 negatives) and benchmarked to the gold standard reverse transcription-polymerase chain reaction (RT-PCR) test. As a result of our test, the accuracy, sensitivity, and specificity have been measured at 98.4%, 98.2%, and 98.5%, respectively.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Pandemics , Sensitivity and Specificity , Nucleocapsid , DNA , RNA , OligonucleotidesABSTRACT
The genomes of sarbecoviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), incorporate mutations with short sequence exchanges based on unknown processes. Currently, the presence of such short-sequence exchanges among the genomes of different SARS-CoV-2 lineages remains uncertain. In the present study, multiple SARS-CoV-2 genome sequences from different clades or sublineages were collected from an international mass sequence database and compared to identify the presence of short sequence exchanges. Initial screening with multiple sequence alignments identified two locations with trinucleotide substitutions, both in the nucleocapsid (N) gene. The first exchange from 5'-GAT-3' to 5'-CTA-3' at nucleotide positions 28,280-28,282 resulted in a change in the amino acid from aspartic acid (D) to leucine (L), which was predominant in clade GRY (Alpha). The second exchange from 5'-GGG-3' to 5'-AAC-3' at nucleotide positions 28,881-28,883 resulted in an amino acid change from arginine and glycine (RG) to lysine and arginine (KR), which was predominant in GR (Gamma), GRY (Alpha), and GRA (Omicron). Both trinucleotide substitutions occurred before June 2020. The sequence identity rate between these lineages suggests that coincidental succession of single-nucleotide substitutions is unlikely. Basic local alignment search tool sequence search revealed the absence of intermediating mutations based on single-base substitutions or overlapping indels before the emergence of these trinucleotide substitutions. These findings suggest that trinucleotide substitutions could have developed via an en bloc exchange. In summary, trinucleotide substitutions at two locations in the SARS-CoV-2 N gene were identified. This mutation may provide insights into the evolution of SARS-CoV-2.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Mutation/genetics , Nucleocapsid/genetics , Nucleotides , Amino Acids/genetics , PhylogenyABSTRACT
COVID-19 pandemic was caused by the severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2). The nucleocapsid (N) protein from Sars-CoV-2 is a highly immunogenic antigen and responsible for genome packing. Serological assays are important tools to detect previous exposure to SARS-CoV-2, complement epidemiological studies, vaccine evaluation and also in COVID-19 surveillance. SARS-CoV-2 N (r2N) protein was produced in Escherichia coli, characterized, and the immunological performance was evaluated by enzyme-linked immunosorbent assay (ELISA) and beads-based array immunoassay. r2N protein oligomers were evidenced when it is associated to nucleic acid. Benzonase treatment reduced host nucleic acid associated to r2N protein, but crosslinking assay still demonstrates the presence of higher-order oligomers. Nevertheless, after RNase treatment the higher-order oligomers reduced, and dimer form increased, suggesting RNA contributes to the oligomer formation. Structural analysis revealed nucleic acid did not interfere with the thermal stability of the recombinant protein. Interestingly, nucleic acid was able to prevent r2N protein aggregation even with increasing temperature while the protein benzonase treated begin aggregation process above 55 °C. In immunological characterization, ELISA performed with 233 serum samples presented a sensitivity of 97.44% (95% Confidence Interval, CI, 91.04%, 99.69%) and a specificity of 98.71% (95% CI, 95.42%, 99.84%) while beads-based array immunoassay carried out with 217 samples showed 100% sensitivity and 98.6% specificity. The results exhibited an excellent immunological performance of r2N protein in serologic assays showing that, even in presence of nucleic acid, it can be used as a component of an immunoassay for the sensitive and specific detection of SARS-CoV-2 antibodies.
Subject(s)
COVID-19 , Nucleic Acids , Humans , COVID-19/diagnosis , Nucleocapsid Proteins/genetics , SARS-CoV-2/genetics , COVID-19 Testing , Pandemics , Sensitivity and Specificity , Nucleocapsid , Enzyme-Linked Immunosorbent Assay/methods , Antibodies, Viral , Recombinant Proteins/geneticsABSTRACT
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) nucleocapsid protein is the most abundantly expressed viral protein during infection where it targets both RNA and host proteins. However, identifying how a single viral protein interacts with so many different targets remains a challenge, providing the impetus here for identifying the interaction sites through multiple methods. Through a combination of nuclear magnetic resonance (NMR), electron microscopy, and biochemical methods, we have characterized nucleocapsid interactions with RNA and with three host proteins, which include human cyclophilin-A, Pin1, and 14-3-3τ. Regarding RNA interactions, the nucleocapsid protein N-terminal folded domain preferentially interacts with smaller RNA fragments relative to the C-terminal region, suggesting an initial RNA engagement is largely dictated by this N-terminal region followed by weaker interactions to the C-terminal region. The nucleocapsid protein forms 10 nm ribonuclear complexes with larger RNA fragments that include 200 and 354 nucleic acids, revealing its potential diversity in sequestering different viral genomic regions during viral packaging. Regarding host protein interactions, while the nucleocapsid targets all three host proteins through its serine-arginine-rich region, unstructured termini of the nucleocapsid protein also engage host cyclophilin-A and host 14-3-3τ. Considering these host proteins play roles in innate immunity, the SARS-CoV-2 nucleocapsid protein may block the host response by competing interactions. Finally, phosphorylation of the nucleocapsid protein quenches an inherent dynamic exchange process within its serine-arginine-rich region. Our studies identify many of the diverse interactions that may be important for SARS-CoV-2 pathology during infection.
Subject(s)
COVID-19 , RNA , Humans , SARS-CoV-2/metabolism , Cyclophilins/analysis , Nucleocapsid/chemistry , Nucleocapsid/metabolism , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Arginine , Serine , NIMA-Interacting Peptidylprolyl Isomerase/analysisABSTRACT
The COVID-19 pandemic continues to affect individuals across the globe, with some individuals experiencing more severe disease than others. The relatively high frequency of re-infections and breakthrough infections observed with SARS-CoV-2 highlights the importance of extending our understanding of immunity to COVID-19. Here, we aim to shed light on the importance of antibody titres and epitope utilization in protection from re-infection. Health care workers are highly exposed to SARS-CoV-2 and are therefore also more likely to become re-infected. We utilized quantitative, multi-antigen, multi-epitope SARS-CoV-2 protein microarrays to measure IgG and IgA titres against various domains of the nucleocapsid and spike proteins. Potential re-infections in a large, diverse health care worker cohort (N = 300) during the second wave of the pandemic were identified by assessing the IgG anti-N titres before and after the second wave. We assessed epitope coverage and antibody titres between the 'single infection' and 're-infection' groups. Clear differences were observed in the breadth of the anti-N response before the second wave, with the epitope coverage for both IgG (p = 0.019) and IgA (p = 0.015) being significantly increased in those who did not become re-infected compared to those who did. Additionally, the IgG anti-N (p = 0.004) and anti-S titres (p = 0.018) were significantly higher in those not re-infected. These results highlight the importance of the breadth of elicited antibody epitope coverage following natural infection in protection from re-infection and disease in the COVID-19 pandemic.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Epitopes , Immunoglobulin G , Pandemics , Nucleocapsid , Reinfection , Immunoglobulin AABSTRACT
The coronavirus disease 2019 (COVID-19) pandemic is transmitted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has affected millions of people all around the world, leading to more than 6.5 million deaths. The nucleocapsid (N) phosphoprotein plays important roles in modulating viral replication and transcription, virus-infected cell cycle progression, apoptosis, and regulation of host innate immunity. As an immunodominant protein, N protein induces strong humoral and cellular immune responses in COVID-19 patients, making it a key marker for studying N-specific B cell and T cell responses and the development of diagnostic serological assays and efficient vaccines. In this review, we focus on the structural and functional features and the kinetic and epitope mapping of B cell and T cell responses against SARS-CoV-2 N protein to extend our understanding on the development of sensitive and specific diagnostic immunological tests and effective vaccines.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/metabolism , COVID-19 Vaccines , Nucleocapsid/metabolism , COVID-19 TestingABSTRACT
COVID-19 cases caused by new variants of highly mutable SARS-CoV-2 continue to be identified worldwide. Effective control of the spread of new variants can be achieved through targeting of conserved viral epitopes. In this regard, the SARS-CoV-2 nucleocapsid (N) protein, which is much more conserved than the evolutionarily influenced spike protein (S), is a suitable antigen. The recombinant N protein can be considered not only as a screening antigen but also as a basis for the development of next-generation COVID-19 vaccines, but little is known about induction of antibodies against the N protein via different SARS-CoV-2 variants. In addition, it is important to understand how antibodies produced against the antigen of one variant can react with the N proteins of other variants. Here, we used recombinant N proteins from five SARS-CoV-2 strains to investigate their immunogenicity and antigenicity in a mouse model and to obtain and characterize a panel of hybridoma-derived monoclonal anti-N antibodies. We also analyzed the variable epitopes of the N protein that are potentially involved in differential recognition of antiviral antibodies. These results will further deepen our knowledge of the cross-reactivity of the humoral immune response in COVID-19.
Subject(s)
COVID-19 , SARS-CoV-2 , Mice , Animals , Humans , Nucleocapsid Proteins/genetics , COVID-19/prevention & control , COVID-19 Vaccines , Nucleocapsid/metabolism , Epitopes/genetics , Recombinant Proteins/genetics , Antibodies, Viral , Spike Glycoprotein, CoronavirusABSTRACT
SARS-CoV-2 vaccine breakthrough infections frequently occurred even before the emergence of Omicron variants. Yet, relatively little is known about the impact of vaccination on SARS-CoV-2-specific T cell and antibody response dynamics upon breakthrough infection. We have therefore studied the dynamics of CD4 and CD8 T cells targeting the vaccine-encoded Spike and the non-encoded Nucleocapsid antigens during breakthrough infections (BTI, n=24) and in unvaccinated control infections (non-BTI, n=30). Subjects with vaccine breakthrough infection had significantly higher CD4 and CD8 T cell responses targeting the vaccine-encoded Spike during the first and third/fourth week after PCR diagnosis compared to non-vaccinated controls, respectively. In contrast, CD4 T cells targeting the non-vaccine encoded Nucleocapsid antigen were of significantly lower magnitude in BTI as compared to non-BTI. Hence, previous vaccination was linked to enhanced T cell responses targeting the vaccine-encoded Spike antigen, while responses against the non-vaccine encoded Nucleocapsid antigen were significantly attenuated.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , NucleocapsidABSTRACT
BACKGROUND: Emergence of new variants mainly variants of concerns (VOC) is caused by mutations in main structural proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, we aimed to investigate the mutations among structural proteins of SARS-CoV-2 globally. METHODS: We analyzed samples of amino-acid sequences (AASs) for envelope (E), membrane (M), nucleocapsid (N), and spike (S) proteins from the declaration of the coronavirus 2019 (COVID-19) as pandemic to January 2022. The presence and location of mutations were then investigated by aligning the sequences to the reference sequence and categorizing them based on frequency and continent. Finally, the related human genes with the viral structural genes were discovered, and their interactions were reported. RESULTS: The results indicated that the most relative mutations among the E, M, N, and S AASs occurred in the regions of 7 to 14, 66 to 88, 164 to 205, and 508 to 635 AAs, respectively. The most frequent mutations in E, M, N, and S proteins were T9I, I82T, R203M/R203K, and D614G. D614G was the most frequent mutation in all six geographical areas. Following D614G, L18F, A222V, E484K, and N501Y, respectively, were ranked as the most frequent mutations in S protein globally. Besides, A-kinase Anchoring Protein 8 Like (AKAP8L) was shown as the linkage unit between M, E, and E cluster genes. CONCLUSION: Screening the structural protein mutations can help scientists introduce better drug and vaccine development strategies.