Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Jpn J Infect Dis ; 75(4): 411-414, 2022 Jul 22.
Article in English | MEDLINE | ID: covidwho-1957588

ABSTRACT

The World Health Organization designated Omicron (B.1.1.529 lineage) of SARS-CoV-2 as a new variant of concern on November 26, 2021. The risk to public health conferred by the Omicron variant is still not completely clear, although its numerous gene mutations have raised concerns regarding its potential for increased transmissibility and immune escape. In this study, we describe the development of two single-nucleotide polymorphism genotyping assays targeting the G339D or T547K mutations of the spike protein to screen for the Omicron variant. A specificity test revealed that the two assays successfully discriminated the Omicron variant from the Delta and Alpha variants, each with a single nucleotide mismatch. In addition, a sensitivity test showed that the G339D and T547K assays detected at least 2.60 and 3.36 RNA copies of the Omicron variant, respectively, and 1.59 RNA copies of the Delta variant. These results demonstrate that both assays could be useful for detecting and discriminating the Omicron variant from other strains. In addition, because of the rapid and unpredictable evolution of SARS-CoV-2, combining our assays with previously developed assays for detecting other mutations may lead to a more accurate diagnostic system.


Subject(s)
COVID-19 , Genotyping Techniques , COVID-19/diagnosis , COVID-19/virology , Genotype , Humans , Nucleotides , RNA , RNA, Viral/genetics
2.
Commun Biol ; 5(1): 491, 2022 05 30.
Article in English | MEDLINE | ID: covidwho-1947506

ABSTRACT

The furin cleavage site (FCS) in SARS-CoV-2 is unique within the Severe acute respiratory syndrome-related coronavirus (SrC) species. We re-assessed diverse SrC from European horseshoe bats and analyzed the spike-encoding genomic region harboring the FCS in SARS-CoV-2. We reveal molecular features in SrC such as purine richness and RNA secondary structures that resemble those required for FCS acquisition in avian influenza viruses. We discuss the potential acquisition of FCS through molecular mechanisms such as nucleotide substitution, insertion, or recombination, and show that a single nucleotide exchange in two European bat-associated SrC may suffice to enable furin cleavage. Furthermore, we show that FCS occurrence is variable in bat- and rodent-borne counterparts of human coronaviruses. Our results suggest that furin cleavage sites can be acquired in SrC via conserved molecular mechanisms known in other reservoir-bound RNA viruses and thus support a natural origin of SARS-CoV-2.


Subject(s)
COVID-19 , Chiroptera , Animals , COVID-19/genetics , Chiroptera/genetics , Furin/genetics , Genome, Viral , Genomics , Nucleotides , SARS-CoV-2/genetics
3.
Molecules ; 27(13)2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1917636

ABSTRACT

The urgent response to the COVID-19 pandemic required accelerated evaluation of many approved drugs as potential antiviral agents against the causative pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Using cell-based, biochemical, and modeling approaches, we studied the approved HIV-1 nucleoside/tide reverse transcriptase inhibitors (NRTIs) tenofovir (TFV) and emtricitabine (FTC), as well as prodrugs tenofovir alafenamide (TAF) and tenofovir disoproxilfumarate (TDF) for their antiviral effect against SARS-CoV-2. A comprehensive set of in vitro data indicates that TFV, TAF, TDF, and FTC are inactive against SARS-CoV-2. None of the NRTIs showed antiviral activity in SARS-CoV-2 infected A549-hACE2 cells or in primary normal human lung bronchial epithelial (NHBE) cells at concentrations up to 50 µM TAF, TDF, FTC, or 500 µM TFV. These results are corroborated by the low incorporation efficiency of respective NTP analogs by the SARS-CoV-2 RNA-dependent-RNA polymerase (RdRp), and lack of the RdRp inhibition. Structural modeling further demonstrated poor fitting of these NRTI active metabolites at the SARS-CoV-2 RdRp active site. Our data indicate that the HIV-1 NRTIs are unlikely direct-antivirals against SARS-CoV-2, and clinicians and researchers should exercise caution when exploring ideas of using these and other NRTIs to treat or prevent COVID-19.


Subject(s)
Anti-HIV Agents , COVID-19 , HIV Infections , HIV-1 , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , COVID-19/drug therapy , Emtricitabine/pharmacology , Emtricitabine/therapeutic use , HIV Infections/drug therapy , Humans , Nucleosides/pharmacology , Nucleosides/therapeutic use , Nucleotides/pharmacology , Pandemics , RNA, Viral , RNA-Dependent RNA Polymerase , SARS-CoV-2 , Tenofovir/pharmacology , Tenofovir/therapeutic use
4.
Viruses ; 14(7)2022 06 28.
Article in English | MEDLINE | ID: covidwho-1911662

ABSTRACT

With the recent global spread of new SARS-CoV-2 variants, there remains an urgent need to develop effective and variant-resistant oral drugs. Recently, we reported in vitro results validating the use of combination drugs targeting both the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) and proofreading exonuclease (ExoN) as potential COVID-19 therapeutics. For the nucleotide analogues to be efficient SARS-CoV-2 inhibitors, two properties are required: efficient incorporation by RdRp and substantial resistance to excision by ExoN. Here, we have selected and evaluated nucleotide analogues with a variety of structural features for resistance to ExoN removal when they are attached at the 3' RNA terminus. We found that dideoxynucleotides and other nucleotides lacking both 2'- and 3'-OH groups were most resistant to ExoN excision, whereas those possessing both 2'- and 3'-OH groups were efficiently removed. We also found that the 3'-OH group in the nucleotide analogues was more critical than the 2'-OH for excision by ExoN. Since the functionally important sequences in Nsp14/10 are highly conserved among all SARS-CoV-2 variants, these identified structural features of nucleotide analogues offer invaluable insights for designing effective RdRp inhibitors that can be simultaneously efficiently incorporated by the RdRp and substantially resist ExoN excision. Such newly developed RdRp terminators would be good candidates to evaluate their ability to inhibit SARS-CoV-2 in cell culture and animal models, perhaps combined with additional exonuclease inhibitors to increase their overall effectiveness.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antiviral Agents/therapeutic use , Exonucleases , Nucleotides/chemistry , RNA, Viral/genetics
5.
Front Cell Infect Microbiol ; 12: 748948, 2022.
Article in English | MEDLINE | ID: covidwho-1902922

ABSTRACT

Viruses rapidly co-evolve with their hosts. The 9 million sequenced SARS-CoV-2 genomes by March 2022 provide a detailed account of viral evolution, showing that all amino acids have been mutated many times. However, only a few became prominent in the viral population. Here, we investigated the emergence of the same mutations in unrelated parallel lineages and the extent of such convergent evolution on the molecular level in the spike (S) protein. We found that during the first phase of the pandemic (until mid 2021, before mass vaccination) 31 mutations evolved independently ≥3-times within separated lineages. These included all the key mutations in SARS-CoV-2 variants of concern (VOC) at that time, indicating their fundamental adaptive advantage. The omicron added many more mutations not frequently seen before, which can be attributed to the synergistic nature of these mutations, which is more difficult to evolve. The great majority (24/31) of S-protein mutations under convergent evolution tightly cluster in three functional domains; N-terminal domain, receptor-binding domain, and Furin cleavage site. Furthermore, among the S-protein receptor-binding motif mutations, ACE2 affinity-improving substitutions are favoured. Next, we determined the mutation space in the S protein that has been covered by SARS-CoV-2. We found that all amino acids that are reachable by single nucleotide changes have been probed multiple times in early 2021. The substitutions requiring two nucleotide changes have recently (late 2021) gained momentum and their numbers are increasing rapidly. These provide a large mutation landscape for SARS-CoV-2 future evolution, on which research should focus now.


Subject(s)
SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Amino Acids , Mutation , Nucleotides , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
6.
STAR Protoc ; 3(3): 101468, 2022 09 16.
Article in English | MEDLINE | ID: covidwho-1895508

ABSTRACT

Nucleotide/nucleoside analogs (NAs) are important compounds used in antiviral drug development. To understand the action mode of NA drugs, we present an enzymology protocol to initially evaluate the intervention mechanism of the NTP forms of NAs on a coronaviral RNA-dependent RNA polymerase (RdRP). We describe the preparation of SARS-CoV-2 RdRP proteins and RNA constructs, followed by a primer-dependent RdRP assay to assess NTP forms of NAs. Two representative NA drugs, sofosbuvir and remdesivir, are used for demonstration of this protocol. For complete details on the use and execution of this protocol, please refer to Wu et al. (2021).


Subject(s)
Nucleosides , Nucleotides , RNA-Dependent RNA Polymerase , SARS-CoV-2 , Nucleosides/analogs & derivatives , Nucleosides/pharmacology , Nucleotides/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology
7.
Sci Rep ; 12(1): 9593, 2022 Jun 10.
Article in English | MEDLINE | ID: covidwho-1886230

ABSTRACT

The replication complex (RC) of SARS-CoV-2 was recently shown to be one of the fastest RNA-dependent RNA polymerases of any known coronavirus. With this rapid elongation, the RC is more prone to incorporate mismatches during elongation, resulting in a highly variable genomic sequence. Such mutations render the design of viral protein targets difficult, as drugs optimized for a given viral protein sequence can quickly become inefficient as the genomic sequence evolves. Here, we use biochemical experiments to characterize features of RNA template recognition and elongation fidelity of the SARS-CoV-2 RdRp, and the role of the exonuclease, nsp14. Our study highlights the 2'OH group of the RNA ribose as a critical component for RdRp template recognition and elongation. We show that RdRp fidelity is reduced in the presence of the 3' deoxy-terminator nucleotide 3'dATP, which promotes the incorporation of mismatched nucleotides (leading to U:C, U:G, U:U, C:U, and A:C base pairs). We find that the nsp10-nsp14 heterodimer is unable to degrade RNA products lacking free 2'OH or 3'OH ribose groups. Our results suggest the potential use of 3' deoxy-terminator nucleotides in RNA-derived oligonucleotide inhibitors as antivirals against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Nucleotides/pharmacology , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , Ribose , SARS-CoV-2/genetics , Viral Nonstructural Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/pharmacology , Virus Replication/genetics
8.
Gene ; 835: 146641, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-1885773

ABSTRACT

The subgenus Sarbecovirus includes two human viruses, SARS-CoV and SARS-CoV-2, respectively responsible for the SARS epidemic and COVID-19 pandemic, as well as many bat viruses and two pangolin viruses. Here, the synonymous nucleotide composition (SNC) of Sarbecovirus genomes was analysed by examining third codon-positions, dinucleotides, and degenerate codons. The results show evidence for the eight following groups: (i) SARS-CoV related coronaviruses (SCoVrC including many bat viruses from China), (ii) SARS-CoV-2 related coronaviruses (SCoV2rC; including five bat viruses from Cambodia, Thailand and Yunnan), (iii) pangolin sarbecoviruses, (iv) three bat sarbecoviruses showing evidence of recombination between SCoVrC and SCoV2rC genomes, (v) two highly divergent bat sarbecoviruses from Yunnan, (vi) the bat sarbecovirus from Japan, (vii) the bat sarbecovirus from Bulgaria, and (viii) the bat sarbecovirus from Kenya. All these groups can be diagnosed by specific nucleotide compositional features except the one concerned by recombination between SCoVrC and SCoV2rC. In particular, SCoV2rC genomes have less cytosines and more uracils at third codon-positions than other sarbecoviruses, whereas the genomes of pangolin sarbecoviruses show more adenines at third codon-positions. I suggest that taxonomic differences in the imbalanced nucleotide pools available in host cells during viral replication can explain the eight groups of SNC here detected among Sarbecovirus genomes. A related effect due to hibernating bats and their latitudinal distribution is also discussed. I conclude that the two independent host switches from Rhinolophus bats to pangolins resulted in convergent mutational constraints and that SARS-CoV-2 emerged directly from a horseshoe bat sarbecovirus.


Subject(s)
COVID-19 , Chiroptera , SARS Virus , Animals , China/epidemiology , Chiroptera/genetics , Genome, Viral , Humans , Nucleotides/genetics , Pandemics , Pangolins , Phylogeny , SARS-CoV-2/genetics
9.
Arch Virol ; 167(6): 1405-1420, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1864402

ABSTRACT

Coxsackievirus A19 (CV-A19) is an enterovirus belonging to the species Enterovirus C, and the prototype strain 8663 was isolated from a patient with Guillain-Barré syndrome in Japan. In this study, we determined the complete genome sequence of a CV-A19 isolate identified in a stool sample from a child with hand, foot, and mouth disease in Xinxiang, Henan, China, in 2019 and named it CV-A19 strain 2019103106/XX/CHN/2019 - 2019103106 for short. The genome of this virus consists of 7409 nucleotides, including a 6624-nucleotide open reading frame encoding a potential polyprotein precursor of 2207 amino acids. Compared with strain 8663, strain 2019103106 showed 85.1% nucleotide sequence identity in the complete genome and 85.6% identity in the VP1 coding region, reflecting their genetic divergence. Phylogenetic analysis of strain 2019103106 and other representative EV-C strains with sequences available in the GenBank database showed that CV-A19 strains could be grouped into two clusters based on the complete or 214-nucleotide partial VP1 coding regions, and 2019103106 belonged to cluster 1, with the closest relationship to CV-A19 strain SWG82 from Shandong, China. Phylogenetic trees based on the P2 and P3 coding regions highlighted the divergence between strains 2019103106 and 8663, implying that strain 2019103106 had undergone recombination. Further recombination analysis suggested that strains V18A-like CV-A1 and BBD26-like CV-A19 probably recombined to yield strain 2019103106. The present study points out the genetic diversity of CV-A19. It expands our understanding of the evolution of the CV-A19 genome, but more genome sequences of epidemic strains are needed to explain the phylogeny and evolutionary history of CV-A19 comprehensively.


Subject(s)
Coxsackievirus Infections , Enterovirus C, Human , Hand, Foot and Mouth Disease , Child , China/epidemiology , Enterovirus C, Human/genetics , Genome, Viral , Genomics , Hand, Foot and Mouth Disease/genetics , Humans , Nucleotides , Phylogeny , RNA, Viral/genetics
10.
Viruses ; 14(4)2022 04 15.
Article in English | MEDLINE | ID: covidwho-1834927

ABSTRACT

Nineteen CVA9 isolates were obtained between 2010 and 2019 from six provinces of mainland China, using the HFMD surveillance network established in China. Nucleotide sequencing revealed that the full-length VP1 of 19 CVA9 isolates was 906 bases encoding 302 amino acids. The combination of the thresholds of the phylogenetic tree and nucleotide divergence of different genotypes within the same serotype led to a value of 15-25%, and enabled CVA9 worldwide to be categorized into ten genotypes: A-J. The phylogenetic tree showed that the prototype strain was included in genotype A, and that the B, C, D, E, H, and J genotypes disappeared during virus evolution, whereas the F, I, and G genotypes showed co-circulation. Lineage G was the dominant genotype of CVA9 and included most of the strains from nine countries in Asia, North America, Oceania, and Europe. Most Chinese strains belonged to the G genotype, suggesting that the molecular epidemiology of China is consistent with that observed worldwide. The 165 partial VP1 strains (723 nt) showed a mean substitution rate of 3.27 × 10-3 substitution/site/year (95% HPD range 2.93-3.6 × 10-3), dating the tMRCA of CVA9 back to approximately 1922 (1911-1932). The spatiotemporal dynamics of CVA9 showed the spread of CVA9 obviously increased in recent years. Most CVA9 isolates originated in USA, but the epidemic areas of CVA9 are now concentrated in the Asia-Pacific region, European countries, and North America. Recombination analysis within the enterovirus B specie (59 serotypes) revealed eight recombination patterns in China at present, CVB4, CVB5, E30, CVB2, E11, HEV106, HEV85, and HEV75. E14, and E6 may act as recombinant donors in multiple regions. Comparison of temperature sensitivity revealed that temperature-insensitive strains have more amino acid substitutions in the RGD motif of the VP1 region, and the sites T283S, V284M, and R288K in the VP1 region may be related to the temperature tolerance of CVA9.


Subject(s)
Enterovirus B, Human , Nucleotides , China/epidemiology , Enterovirus B, Human/genetics , Evolution, Molecular , Genotype , Molecular Epidemiology , Phylogeny
11.
PLoS One ; 17(3): e0266417, 2022.
Article in English | MEDLINE | ID: covidwho-1833657

ABSTRACT

Due to rapid mutations in the coronavirus genome over time and re-emergence of multiple novel variants of concerns (VOC), there is a continuous need for a periodic genome sequencing of SARS-CoV-2 genotypes of particular region. This is for on-time development of diagnostics, monitoring and therapeutic tools against virus in the global pandemics condition. Toward this goal, we have generated 18 high-quality whole-genome sequence data from 32 SARS-CoV-2 genotypes of PCR-positive COVID-19 patients, sampled from the Tashkent region of Uzbekistan. The nucleotide polymorphisms in the sequenced sample genomes were determined, including nonsynonymous (missense) and synonymous mutations in coding regions of coronavirus genome. Phylogenetic analysis grouped fourteen whole genome sample sequences (1, 2, 4, 5, 8, 10-15, 17, 32) into the G clade (or GR sub-clade) and four whole genome sample sequences (3, 6, 25, 27) into the S clade. A total of 128 mutations were identified, consisting of 45 shared and 83 unique mutations. Collectively, nucleotide changes represented one unique frameshift mutation, four upstream region mutations, six downstream region mutations, 50 synonymous mutations, and 67 missense mutations. The sequence data, presented herein, is the first coronavirus genomic sequence data from the Republic of Uzbekistan, which should contribute to enrich the global coronavirus sequence database, helping in future comparative studies. More importantly, the sequenced genomic data of coronavirus genotypes of this study should be useful for comparisons, diagnostics, monitoring, and therapeutics of COVID-19 disease in local and regional levels.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral , Humans , Mutation , Nucleotides , Phylogeny , SARS-CoV-2/genetics , Uzbekistan/epidemiology
12.
J Phys Chem Lett ; 13(18): 4111-4118, 2022 May 12.
Article in English | MEDLINE | ID: covidwho-1829965

ABSTRACT

Inhibition of RNA-dependent RNA polymerase (RdRp) by nucleotide analogues with ribose modification provides a promising antiviral strategy for the treatment of SARS-CoV-2. Previous works have shown that remdesivir carrying 1'-substitution can act as a "delayed chain terminator", while nucleotide analogues with 2'-methyl group substitution could immediately terminate the chain extension. However, how the inhibition can be established by the 3'-ribose modification as well as other 2'-ribose modifications is not fully understood. Herein, we have evaluated the potential of several adenosine analogues with 2'- and/or 3'-modifications as obligate chain terminators by comprehensive structural analysis based on extensive molecular dynamics simulations. Our results suggest that 2'-modification couples with the protein environment to affect the structural stability, while 3'-hydrogen substitution inherently exerts "immediate termination" without compromising the structural stability in the active site. Our study provides an alternative promising modification scheme to orientate the further optimization of obligate terminators for SARS-CoV-2 RdRp.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , COVID-19/drug therapy , Humans , Nucleotides/chemistry , RNA-Dependent RNA Polymerase , Ribose , Virus Replication
13.
BMC Genomics ; 23(1): 305, 2022 Apr 14.
Article in English | MEDLINE | ID: covidwho-1808339

ABSTRACT

BACKGROUND: Measles caused by measles virus (MeV) is a highly contagious viral disease which has also been associated with complications including pneumonia, myocarditis, encephalitis, and subacute sclerosing panencephalitis. The current study isolated 33 strains belonging to 2 groups, outbreak and sporadic strains, in 13 cities of Shandong province, China from 2013 to 2019. Comparison of genetic characterization among 15 outbreak strains and 18 sporadic strains was performed by analyzing nucleotide sequences of the C-terminal region of N protein gene (N-450). RESULTS: All 33 stains belonged to genotype H1. The outbreak strains and sporadic strains distributed crossly in phylogenetic tree. Sequences alignment revealed some interesting G to A transversion which changed the amino acids on genomic sites 1317, 1422, and 1543. The nucleotide and amino acid similarities among outbreak isolates were 98-100% (0-10 nucleotide variations) and 97.7-100%, respectively; They were 97.3-100% and 96.6-100%, respectively for sporadic isolates. Evolutionary genetics analysis revealed that the mean evolution rates of outbreak and sporadic isolates were 1.26 N 10- 3 and 1.48 N 10- 3 substitutions per site per year separately, which were similar with corresponding data before 2012. Local transmission analysis suggested that there were three transmission chains in this study, two of them originated from Japan. Outbreak cases and sporadic cases emerged alternatively and were reciprocal causation on the transmission chains. CONCLUSIONS: Our study investigated the phylogeny and evolutional genetics of MeV during a 7-year surveillance, and compared epidemic and genetic characteristics of outbreak strains and sporadic strains. These results underscore the importance of evolutionary study alongside with sporadic cases in discovering and tracing possible outbreaks, especially in the stage of measles elimination.


Subject(s)
Measles , Amino Acids/genetics , China/epidemiology , Disease Outbreaks , Genotype , Humans , Measles/epidemiology , Measles virus/genetics , Molecular Epidemiology , Nucleotides , Phylogeny
14.
Acc Chem Res ; 55(9): 1249-1261, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1788259

ABSTRACT

The central dogma of molecular biology hinges on messenger RNA (mRNA), which presents a blueprint of the genetic information encoded in the DNA and serves as a template for translation into proteins. In addition to its fundamental importance in basic research, this class of biomolecules has recently become the first approved Covid vaccine, underscoring its utility in medical applications.Eukaryotic mRNA is heavily processed, including the 5' cap as the primary hallmark. This 5' cap protects mRNA from degradation by exoribonucleases but also interacts specifically with several proteins and enzymes to ensure mRNA turnover and processing, like splicing, export from the nucleus to the cytoplasm, and initiation of translation. The absence of a 5' cap leads to a strong immune response, and the methylation status contributes to distinguishing self from non-self RNA.Non-natural modifications of the 5' cap provide an avenue to label mRNAs and make them accessible to analyses, which is important to study their cellular localization, trafficking, and binding partners. They bear potential to engineer mRNAs, e.g., more stable or immunogenic mRNAs that are still translated, by impacting select interactions in a distinct manner. The modification of the 5' cap itself is powerful as it can be applied to make long mRNAs (∼1000 nt, not directly accessible by solid-phase synthesis) by in vitro transcription.This Account describes our contribution to the field of chemo-enzymatic modification of mRNA at the 5' cap. Our approach relies on RNA methyltransferases (MTases) with promiscuous activity on analogues of their natural cosubstrate S-adenosyl-L-methionine (AdoMet). We will describe how RNA MTases in combination with non-natural cosubstrates provide access to site-specific modification of different positions of the 5' cap, namely, the N2 and N7 position of guanosine and the N6 position of adenosine as the transcription start nucleotide (TSN) and exemplify strategies to make long mRNAs with modified 5' caps.We will compare the chemical and enzymatic synthesis of the AdoMet analogues used for this purpose. We could overcome previous limitations in methionine adenosyltransferase (MAT) substrate scope by engineering variants (termed PC-MATs) with the ability to convert methionine analogues with benzylic and photocaging groups at the sulfonium ion.The final part of this Account will highlight applications of the modified mRNAs. Like in many chemo-enzymatic approaches, a versatile strategy is to install small functional groups enzymatically and use them as handles in subsequent bioorthogonal reactions. We showed fluorescent labeling of mRNAs via different types of click chemistry in vitro and in cells. In a second line of applications, we used the handles to make mRNAs amenable for analyses, most notably next-generation sequencing. In the case of extremely promiscuous enzymes, the direct installation of photo-cross-linking groups was successful also and provided a way to covalently bind protein-interaction partners. Finally, the non-natural modifications of mRNAs can also modulate the properties of mRNAs. Propargylation of Am as the transcription start nucleotide at its N6 position maintained the translation of mRNAs but increased their immunogenicity. The installation of photocaging groups provides a way to revert these effects and control interactions by light.


Subject(s)
RNA, Messenger , S-Adenosylmethionine , COVID-19 Vaccines , Humans , Methionine , Methyltransferases/genetics , Methyltransferases/metabolism , Nucleotides , RNA , RNA, Messenger/metabolism , S-Adenosylmethionine/chemistry
15.
PLoS Genet ; 18(3): e1010130, 2022 03.
Article in English | MEDLINE | ID: covidwho-1770640

ABSTRACT

SARS-CoV-2 is a positive-sense, single-stranded RNA virus responsible for the COVID-19 pandemic. It remains unclear whether and to what extent the virus in human host cells undergoes RNA editing, a major RNA modification mechanism. Here we perform a robust bioinformatic analysis of metatranscriptomic data from multiple bronchoalveolar lavage fluid samples of COVID-19 patients, revealing an appreciable number of A-to-I RNA editing candidate sites in SARS-CoV-2. We confirm the enrichment of A-to-I RNA editing signals at these candidate sites through evaluating four characteristics specific to RNA editing: the inferred RNA editing sites exhibit (i) stronger ADAR1 binding affinity predicted by a deep-learning model built from ADAR1 CLIP-seq data, (ii) decreased editing levels in ADAR1-inhibited human lung cells, (iii) local clustering patterns, and (iv) higher RNA secondary structure propensity. Our results have critical implications in understanding the evolution of SARS-CoV-2 as well as in COVID-19 research, such as phylogenetic analysis and vaccine development.


Subject(s)
COVID-19 , SARS-CoV-2 , Adenosine Deaminase/metabolism , COVID-19/genetics , Humans , Nucleotides/metabolism , Pandemics , Phylogeny , RNA/metabolism , RNA Editing/genetics , SARS-CoV-2/genetics
16.
Microb Biotechnol ; 15(7): 1995-2021, 2022 07.
Article in English | MEDLINE | ID: covidwho-1752468

ABSTRACT

Sensitive and accurate RT-qPCR tests are the primary diagnostic tools to identify SARS-CoV-2-infected patients. While many SARS-CoV-2 RT-qPCR tests are available, there are significant differences in test sensitivity, workflow (e.g. hands-on-time), gene targets and other functionalities that users must consider. Several publicly available protocols shared by reference labs and public health authorities provide useful tools for SARS-CoV-2 diagnosis, but many have shortcomings related to sensitivity and laborious workflows. Here, we describe a series of SARS-CoV-2 RT-qPCR tests that are originally based on the protocol targeting regions of the RNA-dependent RNA polymerase (RdRp) and envelope (E) coding genes developed by the Charité Berlin. We redesigned the primers/probes, utilized locked nucleic acid nucleotides, incorporated dual probe technology and conducted extensive optimizations of reaction conditions to enhance the sensitivity and specificity of these tests. By incorporating an RNase P internal control and developing multiplexed assays for distinguishing SARS-CoV-2 and influenza A and B, we streamlined the workflow to provide quicker results and reduced consumable costs. Some of these tests use modified enzymes enabling the formulation of a room temperature-stable master mix and lyophilized positive control, thus increasing the functionality of the test and eliminating cold chain shipping and storage. Moreover, a rapid, RNA extraction-free version enables high sensitivity detection of SARS-CoV-2 in about an hour using minimally invasive, self-collected gargle samples. These RT-qPCR assays can easily be implemented in any diagnostic laboratory and can provide a powerful tool to detect SARS-CoV-2 and the most common seasonal influenzas during the vaccination phase of the pandemic.


Subject(s)
COVID-19 , Influenza, Human , COVID-19/diagnosis , COVID-19 Testing , Humans , Influenza, Human/diagnosis , Nucleotides , RNA, Viral/analysis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Sensitivity and Specificity , Technology
17.
Microbiol Spectr ; 10(2): e0219121, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1731263

ABSTRACT

SARS-CoV-2 continues adapting to human hosts during the current worldwide pandemic since 2019. This virus evolves through multiple means, such as single nucleotide mutations and structural variations, which has brought great difficulty to disease prevention and control of COVID-19. Structural variation, including multiple nucleotide changes like insertions and deletions, has a greater impact relative to single nucleotide mutation on both genome structures and protein functions. In this study, we found that deletion occurred frequently in not only SARS-CoV-2 but also in other SARS-related coronaviruses. These deletions showed obvious location bias and formed 45 recurrent deletion regions in the viral genome. Some of these deletions showed proliferation advantages, including four high-frequency deletions (nsp6 Δ106-109, S Δ69-70, S Δ144, and Δ28271) that were detected in around 50% of SARS-CoV-2 genomes and other 19 median-frequency deletions. In addition, the association between deletions and the WHO reported variants of concern (VOC) and variants of interest (VOI) of SARS-CoV-2 indicated that these variants had a unique combination of deletion patterns. In the spike (S) protein, the deletions in SARS-CoV-2 were mainly in the N-terminal domain. Some deletions, such as S Δ144/145 and S Δ243-244, have been confirmed to block the binding sites of neutralizing antibodies. Overall, this study revealed a conservative regional pattern and the potential effect of some deletions in SARS-CoV-2 over the whole genome, providing important evidence for potential epidemic control and vaccine development. IMPORTANCE Mutations in SARS-CoV-2 were studied extensively, while only the structure variations on the spike protein were discussed well in previous studies. To study the role of structural variations in virus evolution, we described the distribution of structure variations on the whole genome. Conserved patterns were found of deletions among SARS-CoV-2, SARS-CoV-2-like, and SARS-CoV-like viruses. There were 45 recurrent deletion regions (RDRs) in SARS-CoV-2 generated through the integration of deleted positions. In these regions, four high-frequency deletions parallelly appeared in multiple strains. Furthermore, in the spike protein, the deletions in SARS-CoV-2 were mainly in the N-terminal domain, blocking the binding sites of some neutralizing antibodies, while the structural variations in SARS-related coronavirus were mainly in the N-terminal domain and receptor binding domain. The receptor binding domain is highly related to hosting recognition. The deletions in the receptor binding domain may play a role in host adaption.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , COVID-19/epidemiology , Humans , Mutation , Nucleotides , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
18.
J Med Virol ; 94(7): 3421-3430, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1729155

ABSTRACT

The SARS-CoV-2 21K/BA.1, 21L/BA.2, and BA.3 Omicron variants have recently emerged worldwide. To date, the 21L/BA.2 Omicron variant has remained very minority globally but became predominant in Denmark instead of the 21K/BA.1 variant. Here, we describe the first cases diagnosed with this variant in south-eastern France. We identified 13 cases using variant-specific qPCR and next-generation sequencing between 28/11/2021 and 31/01/2022, the first two cases being diagnosed in travelers returning from Tanzania. Overall, viral genomes displayed a mean (±standard deviation) number of 65.9 ± 2.5 (range, 61-69) nucleotide substitutions and 31.0 ± 8.3 (27-50) nucleotide deletions, resulting in 49.6 ± 2.2 (45-52) amino acid substitutions (including 28 in the spike protein) and 12.4 ± 1.1 (12-15) amino acid deletions. Phylogeny showed the distribution in three different clusters of these genomes, which were most closely related to genomes from England and South Africa, from Singapore and Nepal, or from France and Denmark. Structural predictions highlighted a significant enlargement and flattening of the surface of the 21L/BA.2 N-terminal domain of the spike protein compared to that of the 21K/BA.1 Omicron variant, which may facilitate initial viral interactions with lipid rafts. Close surveillance is needed at global, country, and center scales to monitor the incidence and clinical outcome of the 21L/BA.2 Omicron variant.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Mutation , Nucleotides , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
19.
Angew Chem Int Ed Engl ; 61(19): e202115481, 2022 05 02.
Article in English | MEDLINE | ID: covidwho-1712024

ABSTRACT

Over the course of the COVID-19 pandemic, mRNA-based vaccines have gained tremendous importance. The development and analysis of modified RNA molecules benefit from advanced mass spectrometry and require sufficient understanding of fragmentation processes. Analogous to the degradation of RNA in solution by autohydrolysis, backbone cleavage of RNA strands was equally observed in the gas phase; however, the fragmentation mechanism remained elusive. In this work, autohydrolysis-like intermediates were generated from isolated RNA dinucleotides in the gas phase and investigated using cryogenic infrared spectroscopy in helium nanodroplets. Data from both experiment and density functional theory provide evidence for the formation of a five-membered cyclic phosphate intermediate and rule out linear or six-membered structures. Furthermore, the experiments show that another prominent condensed-phase reaction of RNA nucleotides can be induced in the gas phase: the tautomerization of cytosine. Both observed reactions are therefore highly universal and intrinsic properties of the investigated molecules.


Subject(s)
COVID-19 , RNA , Humans , Nucleotides/chemistry , Pandemics , Spectrophotometry, Infrared/methods
20.
J Immunoassay Immunochem ; 43(4): 347-364, 2022 Jul 04.
Article in English | MEDLINE | ID: covidwho-1713429

ABSTRACT

Alteration of micro-RNAs (miRNAs) expression, including miRNA-122a, -146a and -205 family members, can have profound effects on inflammatory and IFN pathways (miRNA-146a), known as hallmarks of COVID-19. SARS-CoV-2-infected patients were recruited at Policlinico Umberto I Hospital of Sapienza University of Rome (Italy). MiRNA-122a, -146a, -205 and IFI27 (Interferon Alpha Inducible Protein 27) levels were screened in SARS-CoV-2 patients (n = 14) and healthy controls (n = 10) by real-time RT-PCR assays. Then, miRNA-146a rs2910164 GC single-nucleotide polymorphism (SNP) was genotyped in a larger group of COVID-19 patients (n = 129), and its relationship with severe disease [Intensive Care Unit (ICU) support or survival/death] was assessed. SARS-CoV-2-positive patients had increased PCR, D-Dimer and Fibrinogen levels compared to healthy controls (p < .05 for all measurements). MiRNA-122a and -146a serum levels were upregulated in COVID-19 patients (miRNA-122a: p = .002; miRNA-146a: p < .001). Decreased IFI27 levels were observed in COVID-19 patients with higher miRNA-146a levels (p = .047). Moreover, miRNA-146a rs2910164 C/G genotypes distributions were similar in COVID-19 patients and in validated European healthy subjects (n = 37,214). MiRNA-146a SNP was not associated with severe COVID-19 outcome (ICU or death). MiRNA-122a and -146a levels were elevated in SARS-CoV-2 infected patients, with miRNA-146a upregulation possibly contributing to IFN pathways dysregulation (e.g., reduced IFI27 levels) observed in severe COVID-19, although there is no evidence for the involvement of rs2910164 SNP.


Subject(s)
COVID-19 , Circulating MicroRNA , MicroRNAs , COVID-19/genetics , Case-Control Studies , Genetic Predisposition to Disease , Genotype , Humans , MicroRNAs/genetics , Nucleotides , Polymorphism, Single Nucleotide , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL