Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Biosci Rep ; 42(3)2022 03 31.
Article in English | MEDLINE | ID: covidwho-1713232

ABSTRACT

The adipose tissue (AT) has a major role in contributing to obesity-related pathologies through regulating systemic immunometabolism. The pathogenicity of the AT is underpinned by its remarkable plasticity to be reprogrammed during obesity, in the perspectives of tissue morphology, extracellular matrix (ECM) composition, angiogenesis, immunometabolic homoeostasis and circadian rhythmicity. Dysregulation in these features escalates the pathogenesis conferred by this endometabolic organ. Intriguingly, the potential to be reprogrammed appears to be an Achilles' heel of the obese AT that can be targeted for the management of obesity and its associated comorbidities. Here, we provide an overview of the reprogramming processes of white AT (WAT), with a focus on their dynamics and pleiotropic actions over local and systemic homoeostases, followed by a discussion of potential strategies favouring therapeutic reprogramming. The potential involvement of AT remodelling in the pathogenesis of COVID-19 is also discussed.


Subject(s)
COVID-19 , Adipose Tissue/pathology , Adipose Tissue, White/pathology , Humans , Obesity/genetics , Obesity/pathology , SARS-CoV-2
2.
Front Immunol ; 12: 760288, 2021.
Article in English | MEDLINE | ID: covidwho-1488433

ABSTRACT

Both age and obesity are leading risk factors for severe coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Specifically, although most infections occur in individuals under the age of 55 years, 95% of hospitalizations, admissions to the intensive care unit, and deaths occur in those over the age of 55 years. Moreover, hospitalized COVID-19 patients have a higher prevalence of obesity. It is generally believed that chronic low-grade inflammation and dysregulated innate and adaptive immune responses that are associated with aging and obesity are responsible for this elevated risk of severe disease. However, the impact of advanced age and obesity on the host response to SARS-CoV-2 infection remains poorly defined. In this study, we assessed changes in the concentration of soluble immune mediators, IgG antibody titers, frequency of circulating immune cells, and cytokine responses to mitogen stimulation as a function of BMI and age. We detected significant negative correlations between BMI and myeloid immune cell subsets that were more pronounced in aged patients. Similarly, inflammatory cytokine production by monocytes was also negatively correlated with BMI in aged patients. These data suggest that the BMI-dependent impact on host response to SARS-CoV-2 is more pronounced on innate responses of aged patients.


Subject(s)
Aging/immunology , Body Mass Index , COVID-19/pathology , Obesity/pathology , SARS-CoV-2/immunology , Adaptive Immunity , Adult , Aged , Aged, 80 and over , Antibodies, Viral/immunology , Cytokines/immunology , Female , Hospitalization , Humans , Immunity, Innate , Linear Models , Male , Middle Aged , Monocytes/immunology , Young Adult
3.
Genes (Basel) ; 12(10)2021 09 26.
Article in English | MEDLINE | ID: covidwho-1480689

ABSTRACT

Trefoil Factor Family Member 2 (TFF2) belongs to TFF family peptides that includes TFF1, TFF2, TFF3. TFF2 is mainly known for its roles in the mucosal protection. In the context of obesity and high fat diet (HFD), Tff2 has been characterized as a HFD-induced gene. The knock-out of Tff2 in mice lead to the protection from HFD-induced obesity with a metabolic profile towards a negative energy balance. Such HFD-specific expression gives Tff2 a pattern worth exploring in biomedical research. Indeed, measuring TFF2/TFF2/Tff2 expression in biological samples following the ingestion of high-fat diet reflects the biological "responsiveness" to the lipids ingestion and would reflect the severity of obesity establishment afterwards. Such property could be explored for instance to screen animal models, evaluate the predisposition to HFD-induced obesity as well as in biomedical and clinical applications. Results might advance obesity research especially in terms of understanding lipid-induced signals, appetite control and adiposity storage.


Subject(s)
Obesity/metabolism , Trefoil Factor-2/genetics , Animals , Diet, High-Fat/adverse effects , Humans , Obesity/etiology , Obesity/genetics , Obesity/pathology , Trefoil Factor-2/metabolism
4.
PLoS One ; 16(10): e0257891, 2021.
Article in English | MEDLINE | ID: covidwho-1468161

ABSTRACT

BACKGROUND: Previous studies have shown that a high body mass index (BMI) is a risk factor for severe COVID-19. The aim of the present study was to assess whether a high BMI affects the risk of death or prolonged length of stay (LOS) in patients with COVID-19 during intensive care in Sweden. METHODS AND FINDINGS: In this observational, register-based study, we included patients with COVID-19 from the Swedish Intensive Care Registry admitted to intensive care units (ICUs) in Sweden. Outcomes assessed were death during intensive care and ICU LOS ≥14 days. We used logistic regression models to evaluate the association (odds ratio [OR] and 95% confidence interval [CI]) between BMI and the outcomes. Valid weight and height information could be retrieved in 1,649 patients (1,227 (74.4%) males) with COVID-19. We found a significant association between BMI and the risk of the composite outcome death or LOS ≥14 days in survivors (OR per standard deviation [SD] increase 1.30, 95%CI 1.16-1.44, adjusted for sex, age and comorbidities), and this association remained after further adjustment for severity of illness (simplified acute physiology score; SAPS3) at ICU admission (OR 1.30 per SD, 95%CI 1.17-1.45). Individuals with a BMI ≥ 35 kg/m2 had a doubled risk of the composite outcome. A high BMI was also associated with death during intensive care and a prolonged LOS in survivors assessed as separate outcomes. The main limitations were the restriction to the first wave of the pandemic, and the lack of information on socioeconomic status as well as smoking. CONCLUSIONS: In this large cohort of Swedish ICU patients with COVID-19, a high BMI was associated with increasing risk of death and prolonged length of stay in the ICU. Based on our findings, we suggest that individuals with obesity should be more closely monitored when hospitalized for COVID-19.


Subject(s)
COVID-19/diagnosis , Obesity/pathology , Adult , Body Mass Index , COVID-19/complications , COVID-19/virology , Cohort Studies , Critical Care , Female , Humans , Intensive Care Units , Length of Stay , Male , Middle Aged , Obesity/complications , Odds Ratio , Registries , Risk Factors , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Sweden
5.
Infect Genet Evol ; 95: 105092, 2021 11.
Article in English | MEDLINE | ID: covidwho-1433676

ABSTRACT

OBJECTIVES: To compare the demographics, clinical characteristics and severity of patients infected with nine different SARS-CoV-2 variants, during three phases of the COVID-19 epidemic in Marseille. METHODS: A single centre retrospective cohort study was conducted in 1760 patients infected with SARS-CoV-2 of Nextstrain clades 20A, 20B, and 20C (first phase, February-May 2020), Pangolin lineages B.1.177 (we named Marseille-2) and B.1.160 (Marseille-4) variants (second phase, June-December 2020), and B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma) and A.27 (Marseille-501) variants (third phase, January 2021-today). Outcomes were the occurrence of clinical failures, including hospitalisation, transfer to the intensive-care unit, and death. RESULTS: During each phase, no major differences were observed with regards to age and gender distribution, the prevalence of chronic diseases, and clinical symptoms between variants circulating in a given phase. The B.1.177 and B.1.160 variants were associated with more severe outcomes. Infections occurring during the second phase were associated with a higher rate of death as compared to infections during the first and third phases. Patients in the second phase were more likely to be hospitalised than those in the third phase. Patients infected during the third phase were more frequently obese than others. CONCLUSION: A large cohort study is recommended to evaluate the transmissibility and to better characterise the clinical severity of emerging variants.


Subject(s)
COVID-19/pathology , Diabetes Mellitus/pathology , Genome, Viral , Hypertension/pathology , Obesity/pathology , SARS-CoV-2/pathogenicity , Adult , Aged , COVID-19/epidemiology , COVID-19/mortality , COVID-19/virology , Comorbidity , Diabetes Mellitus/epidemiology , Diabetes Mellitus/mortality , Diabetes Mellitus/virology , Female , France/epidemiology , Genotype , Heart Diseases/epidemiology , Heart Diseases/mortality , Heart Diseases/pathology , Heart Diseases/virology , Hospitalization/statistics & numerical data , Hospitals , Humans , Hypertension/epidemiology , Hypertension/mortality , Hypertension/virology , Intensive Care Units , Male , Middle Aged , Neoplasms/epidemiology , Neoplasms/mortality , Neoplasms/pathology , Neoplasms/virology , Obesity/epidemiology , Obesity/mortality , Obesity/virology , Phylogeny , Retrospective Studies , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sequence Analysis, RNA , Severity of Illness Index , Survival Analysis
6.
Front Immunol ; 12: 739025, 2021.
Article in English | MEDLINE | ID: covidwho-1417086

ABSTRACT

A rise in adiposity in the United States has resulted in more than 70% of adults being overweight or obese, and global obesity rates have tripled since 1975. Following the 2009 H1N1 pandemic, obesity was characterized as a risk factor that could predict severe infection outcomes to viral infection. Amidst the SARS-CoV-2 pandemic, obesity has remained a significant risk factor for severe viral disease as obese patients have a higher likelihood for developing severe symptoms and requiring hospitalization. However, the mechanism by which obesity enhances viral disease is unknown. In this study, we utilized a diet-induced obesity mouse model of West Nile virus (WNV) infection, a flavivirus that cycles between birds and mosquitoes and incidentally infects both humans and mice. Likelihood for severe WNV disease is associated with risk factors such as diabetes that are comorbidities also linked to obesity. Utilizing this model, we showed that obesity-associated chronic inflammation increased viral disease severity as obese female mice displayed higher mortality rates and elevated viral titers in the central nervous system. In addition, our studies highlighted that obesity also dysregulates host acute adaptive immune responses, as obese female mice displayed significant dysfunction in neutralizing antibody function. These studies highlight that obesity-induced immunological dysfunction begins at early time points post infection and is sustained through memory phase, thus illuminating a potential for obesity to alter the differentiation landscape of adaptive immune cells.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cytokines/blood , Obesity/immunology , West Nile Fever/mortality , West Nile virus/immunology , Animals , COVID-19/pathology , Disease Models, Animal , Female , Humans , Inflammation/pathology , Liver/injuries , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Obesity/pathology , Severity of Illness Index , West Nile Fever/immunology , West Nile Fever/pathology
7.
Sci Rep ; 11(1): 17968, 2021 09 09.
Article in English | MEDLINE | ID: covidwho-1402115

ABSTRACT

The impact of overlapping risk factors on coronavirus disease (COVID-19) severity is unclear. To evaluate the impact of type 2 diabetes (T2D) and obesity on COVID-19 severity, we conducted a cohort study with 28,095 anonymized COVID-19 patients using data from the COVID-19 Research Database from January 1, 2020 to November 30, 2020. The mean age was 50.8 ± 17.5 years, and 11,802 (42%) patients were male. Data on age, race, sex, T2D complications, antidiabetic medication prescription, and body mass index ≥ 30 kg/m2 (obesity) were analysed using Cox proportional hazard models, with hospitalization risk and critical care within 30 days of COVID-19 diagnosis as the main outcomes. The risk scores were 0-4 for age ≥ 65 years, male sex, T2D, and obesity. Among the participants, 11,294 (61.9%) had obesity, and 4445 (15.8%) had T2D. T2D, obesity, and male sex were significantly associated with COVID-19 hospitalization risk. Regarding hospitalization risk scores, compared with those for hospitalization risk score 0 and critical care risk score 0, hazard ratios [95% confidence intervals] were 19.034 [10.470-34.600] and 55.803 [12.761-244.015] (P < 0.001) (P < 0.001), respectively, for risk score 4. Complications from diabetes and obesity increased hospitalization and critical care risks for COVID-19 patients.


Subject(s)
COVID-19/pathology , Critical Care/statistics & numerical data , Diabetes Mellitus, Type 2/pathology , Obesity/pathology , Severity of Illness Index , Aged , Aging/pathology , COVID-19/drug therapy , Diabetes Complications/pathology , Female , Hospitalization/statistics & numerical data , Humans , Hypoglycemic Agents/therapeutic use , Intensive Care Units/statistics & numerical data , Male , Metformin/therapeutic use , Middle Aged , Risk Factors , SARS-CoV-2 , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , United States
8.
Front Endocrinol (Lausanne) ; 12: 726967, 2021.
Article in English | MEDLINE | ID: covidwho-1394754

ABSTRACT

In March 2020, the WHO declared coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a global pandemic. Obesity was soon identified as a risk factor for poor prognosis, with an increased risk of intensive care admissions and mechanical ventilation, but also of adverse cardiovascular events. Obesity is associated with adipose tissue, chronic low-grade inflammation, and immune dysregulation with hypertrophy and hyperplasia of adipocytes and overexpression of pro-inflammatory cytokines. However, to implement appropriate therapeutic strategies, exact mechanisms must be clarified. The role of white visceral adipose tissue, increased in individuals with obesity, seems important, as a viral reservoir for SARS-CoV-2 via angiotensin-converting enzyme 2 (ACE2) receptors. After infection of host cells, the activation of pro-inflammatory cytokines creates a setting conducive to the "cytokine storm" and macrophage activation syndrome associated with progression to acute respiratory distress syndrome. In obesity, systemic viral spread, entry, and prolonged viral shedding in already inflamed adipose tissue may spur immune responses and subsequent amplification of a cytokine cascade, causing worse outcomes. More precisely, visceral adipose tissue, more than subcutaneous fat, could predict intensive care admission; and lower density of epicardial adipose tissue (EAT) could be associated with worse outcome. EAT, an ectopic adipose tissue that surrounds the myocardium, could fuel COVID-19-induced cardiac injury and myocarditis, and extensive pneumopathy, by strong expression of inflammatory mediators that could diffuse paracrinally through the vascular wall. The purpose of this review is to ascertain what mechanisms may be involved in unfavorable prognosis among COVID-19 patients with obesity, especially cardiovascular events, emphasizing the harmful role of excess ectopic adipose tissue, particularly EAT.


Subject(s)
COVID-19/metabolism , Cardiomyopathies/metabolism , Intra-Abdominal Fat/metabolism , Obesity/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/immunology , Cardiomyopathies/immunology , Cardiomyopathies/pathology , Heart Diseases/immunology , Heart Diseases/metabolism , Heart Diseases/pathology , Humans , Inflammation , Intra-Abdominal Fat/pathology , Obesity/complications , Obesity/immunology , Obesity/pathology , Pericardium , Prognosis , SARS-CoV-2/metabolism , Serine Endopeptidases/metabolism
10.
Adipocyte ; 10(1): 408-411, 2021 12.
Article in English | MEDLINE | ID: covidwho-1360282

ABSTRACT

Angiotensin converting enzyme-2 (ACE2) is the cell-surface receptor enabling cellular entry of SARS-CoV-2. ACE2 is highly expressed in adipose tissue (AT), rendering AT a potential SARS-CoV-2 reservoir contributing to massive viral spread in COVID-19 patients with obesity. Although rodent and cell studies suggest that the polyphenol resveratrol alters ACE2, human studies are lacking. Here, we investigated the effects of 30-days resveratrol supplementation on RAS components in AT and skeletal muscle in men with obesity in a placebo-controlled cross-over study. Resveratrol markedly decreased ACE2 (~40%) and leptin (~30%), but did neither alter angiotensinogen, ACE and AT1R expression in AT nor skeletal muscle RAS components. These findings demonstrate that resveratrol supplementation reduces ACE2 in AT, which might dampen SARS-CoV-2 spread in COVID-19.


Subject(s)
Adipose Tissue/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Resveratrol/administration & dosage , Adipose Tissue/cytology , Angiotensin-Converting Enzyme 2/genetics , COVID-19/pathology , COVID-19/virology , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Down-Regulation/drug effects , Humans , Leptin/genetics , Leptin/metabolism , Male , Middle Aged , Obesity/drug therapy , Obesity/pathology , Placebo Effect , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Resveratrol/pharmacology , SARS-CoV-2/isolation & purification
11.
Biosci Rep ; 41(8)2021 08 27.
Article in English | MEDLINE | ID: covidwho-1343479

ABSTRACT

An influenza-like virus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for COVID-19 disease and spread worldwide within a short time. COVID-19 has now become a significant concern for public health. Obesity is highly prevalent worldwide and is considered a risk factor for impairing the adaptive immune system. Although diabetes, hypertension, cardiovascular disease (CVD), and renal failure are considered the risk factors for COVID-19, obesity is not yet well-considered. The present study approaches establishing a systemic association between the prevalence of obesity and its impact on immunity concerning the severe outcomes of COVID-19 utilizing existing knowledge. Overall study outcomes documented the worldwide prevalence of obesity, its effects on immunity, and a possible underlying mechanism covering obesity-related risk pathways for the severe outcomes of COVID-19. Overall understanding from the present study is that being an immune system impairing factor, the role of obesity in the severe outcomes of COVID-19 is worthy.


Subject(s)
Adaptive Immunity/immunology , COVID-19/pathology , Obesity/immunology , Obesity/pathology , Humans , Inflammation/pathology , Obesity/epidemiology , Risk Factors , SARS-CoV-2/immunology
12.
Biochimie ; 179: 257-265, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1326917

ABSTRACT

It is becoming obvious that in addition to aging and various hearth pathologies, excess of body weight, especially obesity is a major risk factor for severity of COVID-19 infection. Intriguingly the receptor for SARS-CoV-2 is ACE2, a member of the angiotensin receptor family that has a relatively large tissue distribution. This observation likely explains the multitude of symptoms that have been described from human patients. The adipose tissue also expresses ACE2, suggesting that adipocytes are potentially infected by SARS-CoV-2. Here we discuss some of the potential contribution of the adipose tissue to the severity of the infection and propose some aspects of obese patients metabolic phenotyping to help stratification of individuals with high risk of severe disease.


Subject(s)
COVID-19/complications , Obesity/complications , Adipose Tissue/pathology , Adipose Tissue/virology , Cytokines/metabolism , Humans , Obesity/metabolism , Obesity/pathology , Prevalence
13.
Int J Mol Sci ; 22(13)2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1295858

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has claimed over 2.7 million lives globally. Obesity has been associated with increased severity and mortality of COVID-19. However, the molecular mechanisms by which obesity exacerbates COVID-19 pathologies are not well-defined. The levels of free fatty acids (FFAs) are elevated in obese subjects. This study was therefore designed to examine how excess levels of different FFAs may affect the progression of COVID-19. Biological molecules associated with palmitic acid (PA) and COVID-19 were retrieved from QIAGEN Knowledge Base, and Ingenuity Pathway Analysis tools were used to analyze these datasets and explore the potential pathways affected by different FFAs. Our study found that one of the top 10 canonical pathways affected by PA was the coronavirus pathogenesis pathway, mediated by key inflammatory mediators, including PTGS2; cytokines, including IL1ß and IL6; chemokines, including CCL2 and CCL5; transcription factors, including NFκB; translation regulators, including EEF1A1; and apoptotic mediators, including BAX. In contrast, n-3 fatty acids may attenuate PA's activation of the coronavirus pathogenesis pathway by inhibiting the activity of such mediators as IL1ß, CCL2, PTGS2, and BAX. Furthermore, PA may modulate the expression of ACE2, the main cell surface receptor for the SARS-CoV-2 spike protein.


Subject(s)
COVID-19/metabolism , Fatty Acids, Nonesterified/metabolism , Obesity/metabolism , Palmitic Acid/metabolism , SARS-CoV-2/pathogenicity , COVID-19/blood , COVID-19/epidemiology , COVID-19/pathology , Chemokines/metabolism , Computational Biology/methods , Cytokines/metabolism , Databases, Factual , Fatty Acids, Nonesterified/blood , Humans , Inflammation Mediators/metabolism , Obesity/pathology , Pandemics , SARS-CoV-2/isolation & purification
14.
Front Immunol ; 12: 649359, 2021.
Article in English | MEDLINE | ID: covidwho-1295634

ABSTRACT

Obesity is one of the foremost risk factors in coronavirus infection resulting in severe illness and mortality as the pandemic progresses. Obesity is a well-known predisposed chronic inflammatory condition. The dynamics of obesity and its impacts on immunity may change the disease severity of pneumonia, especially in acute respiratory distress syndrome, a primary cause of death from SARS-CoV-2 infection. The adipocytes of adipose tissue secret leptin in proportion to individuals' body fat mass. An increase in circulating plasma leptin is a typical characteristic of obesity and correlates with a leptin-resistant state. Leptin is considered a pleiotropic molecule regulating appetite and immunity. In immunity, leptin functions as a cytokine and coordinates the host's innate and adaptive responses by promoting the Th1 type of immune response. Leptin induced the proliferation and functions of antigen-presenting cells, monocytes, and T helper cells, subsequently influencing the pro-inflammatory cytokine secretion by these cells, such as TNF-α, IL-2, or IL-6. Leptin scarcity or resistance is linked with dysregulation of cytokine secretion leading to autoimmune disorders, inflammatory responses, and increased susceptibility towards infectious diseases. Therefore, leptin activity by leptin long-lasting super active antagonist's dysregulation in patients with obesity might contribute to high mortality rates in these patients during SARS-CoV-2 infection. This review systematically discusses the interplay mechanism between leptin and inflammatory cytokines and their contribution to the fatal outcomes in COVID-19 patients with obesity.


Subject(s)
COVID-19/pathology , Leptin/immunology , Obesity/pathology , SARS-CoV-2/immunology , Adipocytes/metabolism , Antigen-Presenting Cells/immunology , COVID-19/mortality , Cytokines/immunology , Disease Susceptibility/pathology , Humans , Leptin/blood , Monocytes/immunology , Risk Factors , Severity of Illness Index , Th1 Cells/immunology
15.
PLoS One ; 16(5): e0252026, 2021.
Article in English | MEDLINE | ID: covidwho-1243847

ABSTRACT

To investigate the mechanisms underlying the SARS-CoV-2 infection severity observed in patients with obesity, we performed a prospective study of 51 patients evaluating the impact of multiple immune parameters during 2 weeks after admission, on vital organs' functions according to body mass index (BMI) categories. High-dimensional flow cytometric characterization of immune cell subsets was performed at admission, 30 systemic cytokines/chemokines levels were sequentially measured, thirteen endothelial markers were determined at admission and at the zenith of the cytokines. Computed tomography scans on admission were quantified for lung damage and hepatic steatosis (n = 23). Abnormal BMI (> 25) observed in 72.6% of patients, was associated with a higher rate of intensive care unit hospitalization (p = 0.044). SARS-CoV-2 RNAaemia, peripheral immune cell subsets and cytokines/chemokines were similar among BMI groups. A significant association between inflammatory cytokines and liver, renal, and endothelial dysfunctions was observed only in patients with obesity (BMI > 30). In contrast, early signs of lung damage (ground-glass opacity) correlated with Th1/M1/inflammatory cytokines only in normal weight patients. Later lesions of pulmonary consolidation correlated with BMI but were independent of cytokine levels. Our study reveals distinct physiopathological mechanisms associated with SARS-CoV-2 infection in patients with obesity that may have important clinical implications.


Subject(s)
COVID-19/pathology , Cytokines/metabolism , Liver/physiopathology , Lung/physiopathology , Obesity/pathology , Aged , Biomarkers/metabolism , Body Mass Index , COVID-19/complications , COVID-19/virology , Chemokines/blood , Chemokines/metabolism , Cytokines/blood , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Female , Hospitalization/statistics & numerical data , Humans , Intensive Care Units , Liver/diagnostic imaging , Lung/diagnostic imaging , Male , Middle Aged , Obesity/complications , Prospective Studies , RNA, Viral/blood , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Severity of Illness Index
16.
Cell Metab ; 33(2): 234-241, 2021 02 02.
Article in English | MEDLINE | ID: covidwho-1198672

ABSTRACT

Long-standing systemic inequalities-fueling unequal access to critical resources such as healthcare, housing, education, and employment opportunities-are largely responsible for the significant race disparities in obesity and COVID-19. Because of this legacy, public health emergencies like the COVID-19 pandemic disproportionately impact communities of color, exacerbated by high rates of pre-existing chronic diseases like obesity. Learning from this history is instructive for understanding our present situation and for crafting effective solutions that promote health equity. Critical action is needed now to meaningfully address the disproportionate impact of these major public health problems on Black and Brown populations.


Subject(s)
COVID-19/pathology , Health Policy , Obesity/pathology , African Americans , COVID-19/complications , COVID-19/ethnology , COVID-19/virology , Health Equity , Health Status Disparities , Humans , Obesity/complications , Obesity/ethnology , Politics , SARS-CoV-2/isolation & purification
17.
Cells ; 10(4)2021 04 17.
Article in English | MEDLINE | ID: covidwho-1194614

ABSTRACT

Emerging data suggest that obesity is a major risk factor for the progression of major complications such as acute respiratory distress syndrome (ARDS), cytokine storm and coagulopathy in COVID-19. Understanding the mechanisms underlying the link between obesity and disease severity as a result of SARS-CoV-2 infection is crucial for the development of new therapeutic interventions and preventive measures in this high-risk group. We propose that multiple features of obesity contribute to the prevalence of severe COVID-19 and complications. First, viral entry can be facilitated by the upregulation of viral entry receptors, like angiotensin-converting enzyme 2 (ACE2), among others. Second, obesity-induced chronic inflammation and disruptions of insulin and leptin signaling can result in impaired viral clearance and a disproportionate or hyper-inflammatory response, which together with elevated ferritin levels can be a direct cause for ARDS and cytokine storm. Third, the negative consequences of obesity on blood coagulation can contribute to the progression of thrombus formation and hemorrhage. In this review we first summarize clinical findings on the relationship between obesity and COVID-19 disease severity and then further discuss potential mechanisms that could explain the risk for major complications in patients suffering from obesity.


Subject(s)
COVID-19/complications , Obesity/complications , Animals , COVID-19/immunology , COVID-19/pathology , Chronic Disease , Humans , Immunity , Inflammation/complications , Inflammation/immunology , Inflammation/pathology , Insulin Resistance , Obesity/immunology , Obesity/pathology , Risk Factors , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Severity of Illness Index , Unfolded Protein Response , Virus Internalization
18.
Front Immunol ; 12: 651728, 2021.
Article in English | MEDLINE | ID: covidwho-1190315

ABSTRACT

The coronavirus infectious disease 2019 (COVID-19) pandemic has hit the world, affecting health, medical care, economies and our society as a whole. Furthermore, COVID-19 pandemic joins the increasing prevalence of metabolic syndrome in western countries. Patients suffering from obesity, type II diabetes mellitus, cardiac involvement and metabolic associated fatty liver disease (MAFLD) have enhanced risk of suffering severe COVID-19 and mortality. Importantly, up to 25% of the population in western countries is susceptible of suffering from both MAFLD and COVID-19, while none approved treatment is currently available for any of them. Moreover, it is well known that exacerbated innate immune responses are key in the development of the most severe stages of MAFLD and COVID-19. In this review, we focus on the role of the immune system in the establishment and progression of MAFLD and discuss its potential implication in the development of severe COVID-19 in MAFLD patients. As a result, we hope to clarify their common pathology, but also uncover new potential therapeutic targets and prognostic biomarkers for further research.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , COVID-19/pathology , Fatty Liver/immunology , Immunity, Innate/immunology , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 2/pathology , Fatty Liver/pathology , Humans , Liver/immunology , Liver/pathology , Obesity/pathology , Risk Factors , SARS-CoV-2/immunology , Severity of Illness Index
19.
J Mol Med (Berl) ; 99(7): 899-915, 2021 07.
Article in English | MEDLINE | ID: covidwho-1171990

ABSTRACT

The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic has proven a challenge to healthcare systems since its first appearance in late 2019. The global spread and devastating effects of coronavirus disease 2019 (COVID-19) on patients have resulted in countless studies on risk factors and disease progression. Overweight and obesity emerged as one of the major risk factors for developing severe COVID-19. Here we review the biology of coronavirus infections in relation to obesity. In particular, we review literature about the impact of adiposity-related systemic inflammation on the COVID-19 disease severity, involving cytokine, chemokine, leptin, and growth hormone signaling, and we discuss the involvement of hyperactivation of the renin-angiotensin-aldosterone system (RAAS). Due to the sheer number of publications on COVID-19, we cannot be completed, and therefore, we apologize for all the publications that we do not cite.


Subject(s)
COVID-19/genetics , Inflammation/genetics , Obesity/genetics , SARS-CoV-2/genetics , COVID-19/complications , COVID-19/pathology , COVID-19/virology , Disease Progression , Humans , Inflammation/complications , Inflammation/pathology , Inflammation/virology , Obesity/complications , Obesity/pathology , Obesity/virology , Pandemics , Peptidyl-Dipeptidase A/genetics , Renin-Angiotensin System/genetics , Risk Factors , SARS-CoV-2/pathogenicity
20.
Front Cell Infect Microbiol ; 11: 590874, 2021.
Article in English | MEDLINE | ID: covidwho-1158345

ABSTRACT

Gut microbiome alterations may play a paramount role in determining the clinical outcome of clinical COVID-19 with underlying comorbid conditions like T2D, cardiovascular disorders, obesity, etc. Research is warranted to manipulate the profile of gut microbiota in COVID-19 by employing combinatorial approaches such as the use of prebiotics, probiotics and symbiotics. Prediction of gut microbiome alterations in SARS-CoV-2 infection may likely permit the development of effective therapeutic strategies. Novel and targeted interventions by manipulating gut microbiota indeed represent a promising therapeutic approach against COVID-19 immunopathogenesis and associated co-morbidities. The impact of SARS-CoV-2 on host innate immune responses associated with gut microbiome profiling is likely to contribute to the development of key strategies for application and has seldom been attempted, especially in the context of symptomatic as well as asymptomatic COVID-19 disease.


Subject(s)
COVID-19/pathology , Dysbiosis/microbiology , Gastrointestinal Microbiome/immunology , Gastrointestinal Tract/microbiology , Immunity, Innate/immunology , Angiotensin-Converting Enzyme 2/biosynthesis , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Bacteria/metabolism , COVID-19/therapy , Cardiovascular Diseases/pathology , Diabetes Mellitus, Type 2/pathology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/metabolism , Gene Expression/genetics , Humans , Leukocyte L1 Antigen Complex/biosynthesis , Obesity/pathology , Probiotics/pharmacology , SARS-CoV-2/immunology , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL