Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Bull Exp Biol Med ; 172(3): 283-287, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1611428

ABSTRACT

We studied laboratory parameters of patients with COVID-19 against the background of chronic pathologies (cardiovascular pathologies, obesity, type 2 diabetes melitus, and cardiovascular pathologies with allergy to statins). A decrease in pH and a shift in the electrolyte balance of blood plasma were revealed in all studied groups and were most pronounced in patients with cardiovascular pathologies with allergy to statin. It was found that low pH promotes destruction of lipid components of the erythrocyte membranes in patients with chronic pathologies, which was seen from a decrease in Na+/K+-ATPase activity and significant hyponatrenemia. In patients with cardiovascular pathologies and allergy to statins, erythrocyte membranes were most sensitive to a decrease in pH, while erythrocyte membranes of obese patients showed the greatest resistance to low pH and oxidative stress.


Subject(s)
COVID-19/complications , Hyponatremia/etiology , Hypoxia/complications , Sodium-Potassium-Exchanging ATPase/physiology , Aged , COVID-19/metabolism , Cardiovascular Diseases/complications , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/virology , Case-Control Studies , Chronic Disease , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/virology , Drug Hypersensitivity/complications , Drug Hypersensitivity/metabolism , Drug Hypersensitivity/virology , Erythrocyte Membrane/metabolism , Erythrocytes/metabolism , Female , Fluid Shifts/physiology , Humans , Hydrogen-Ion Concentration , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hyponatremia/metabolism , Hyponatremia/virology , Hypoxia/metabolism , Lipid Peroxidation/physiology , Male , Middle Aged , Obesity/complications , Obesity/metabolism , Obesity/virology , Oxidative Stress/physiology , SARS-CoV-2/physiology , Sodium/metabolism , Stress, Physiological/physiology
2.
J Infect Dev Ctries ; 15(10): 1396-1403, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1518656

ABSTRACT

INTRODUCTION: Mortality rates associated with COVID-19 vary widely between countries and, within countries, between regions. These differences might be explained by population susceptibility, environmental factors, transmission dynamics, containment strategies, and diagnostic approaches. We aimed to analyze if obesity and diabetes prevalence are associated with higher COVID-19 mortality rates in Mexico. METHODOLOGY: We analyzed the mortality rate for each of the 2,457 municipalities in Mexico, one of the countries with highest COVID-19 mortality rate, during the first seven months of the pandemic to identify factors associated with higher mortality, including demographic, health-related characteristics (prevalence of obesity, diabetes, and hypertension in adults older than 20 years old), and altitude. RESULTS: During the first seven months of the COVID-19 pandemic there were 85,666 deaths reported in Mexico, with a cumulative mortality rate of 67 per 100,000 population. The mean mortality rate for the 2,457 municipalities in Mexico was 33.9 per 100,000 population. At a municipal level, the prevalence of diabetes and obesity, as well as high human development index, and location at < 500 or > 2000 above sea level were associated with higher mortality rate. CONCLUSIONS: Elevated obesity and diabetes prevalence explain, in part, high COVID-19 mortality rates registered in certain municipalities in Mexico. These results suggest that a regionalized approach should be considered to successfully limit the impact of SARS-CoV-2.


Subject(s)
COVID-19/epidemiology , COVID-19/mortality , Ecology , Obesity/epidemiology , Adult , Diabetes Mellitus/epidemiology , Female , Humans , Hypertension/epidemiology , Male , Mexico/epidemiology , Middle Aged , Obesity/complications , Obesity/virology , Prevalence , Young Adult
3.
Viruses ; 13(7)2021 07 01.
Article in English | MEDLINE | ID: covidwho-1448932

ABSTRACT

Infection has recently started receiving greater attention as an unusual causative/inducing factor of obesity. Indeed, the biological plausibility of infectobesity includes direct roles of some viruses to reprogram host metabolism toward a more lipogenic and adipogenic status. Furthermore, the probability that humans may exchange microbiota components (virome/virobiota) points out that the altered response of IFN and other cytokines, which surfaces as a central mechanism for adipogenesis and obesity-associated immune suppression, is due to the fact that gut microbiota uphold intrinsic IFN signaling. Last but not least, the adaptation of both host immune and metabolic system under persistent viral infections play a central role in these phenomena. We hereby discuss the possible link between adenovirus and obesity-related nonalcoholic fatty liver disease (NAFLD). The mechanisms of adenovirus-36 (Ad-36) involvement in hepatic steatosis/NAFLD consist in reducing leptin gene expression and insulin sensitivity, augmenting glucose uptake, activating the lipogenic and pro-inflammatory pathways in adipose tissue, and increasing the level of macrophage chemoattractant protein-1, all of these ultimately leading to chronic inflammation and altered lipid metabolism. Moreover, by reducing leptin expression and secretion Ad-36 may have in turn an obesogenic effect through increased food intake or decreased energy expenditure via altered fat metabolism. Finally, Ad-36 is involved in upregulation of cAMP, phosphatidylinositol 3-kinase, and p38 signaling pathways, downregulation of Wnt10b expression, increased expression of CCAAT/enhancer binding protein-beta, and peroxisome proliferator-activated receptor gamma 2 with consequential lipid accumulation.


Subject(s)
Inflammation , Lipid Metabolism , Non-alcoholic Fatty Liver Disease/complications , Obesity/etiology , Obesity/virology , Adenoviridae/immunology , Adenoviridae Infections/complications , Adenoviridae Infections/immunology , Animals , Diet, High-Fat , Glucose/metabolism , Humans , Lipogenesis , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/virology , Obesity/complications , Obesity/immunology , Signal Transduction
4.
Infect Genet Evol ; 95: 105092, 2021 11.
Article in English | MEDLINE | ID: covidwho-1433676

ABSTRACT

OBJECTIVES: To compare the demographics, clinical characteristics and severity of patients infected with nine different SARS-CoV-2 variants, during three phases of the COVID-19 epidemic in Marseille. METHODS: A single centre retrospective cohort study was conducted in 1760 patients infected with SARS-CoV-2 of Nextstrain clades 20A, 20B, and 20C (first phase, February-May 2020), Pangolin lineages B.1.177 (we named Marseille-2) and B.1.160 (Marseille-4) variants (second phase, June-December 2020), and B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma) and A.27 (Marseille-501) variants (third phase, January 2021-today). Outcomes were the occurrence of clinical failures, including hospitalisation, transfer to the intensive-care unit, and death. RESULTS: During each phase, no major differences were observed with regards to age and gender distribution, the prevalence of chronic diseases, and clinical symptoms between variants circulating in a given phase. The B.1.177 and B.1.160 variants were associated with more severe outcomes. Infections occurring during the second phase were associated with a higher rate of death as compared to infections during the first and third phases. Patients in the second phase were more likely to be hospitalised than those in the third phase. Patients infected during the third phase were more frequently obese than others. CONCLUSION: A large cohort study is recommended to evaluate the transmissibility and to better characterise the clinical severity of emerging variants.


Subject(s)
COVID-19/pathology , Diabetes Mellitus/pathology , Genome, Viral , Hypertension/pathology , Obesity/pathology , SARS-CoV-2/pathogenicity , Adult , Aged , COVID-19/epidemiology , COVID-19/mortality , COVID-19/virology , Comorbidity , Diabetes Mellitus/epidemiology , Diabetes Mellitus/mortality , Diabetes Mellitus/virology , Female , France/epidemiology , Genotype , Heart Diseases/epidemiology , Heart Diseases/mortality , Heart Diseases/pathology , Heart Diseases/virology , Hospitalization/statistics & numerical data , Hospitals , Humans , Hypertension/epidemiology , Hypertension/mortality , Hypertension/virology , Intensive Care Units , Male , Middle Aged , Neoplasms/epidemiology , Neoplasms/mortality , Neoplasms/pathology , Neoplasms/virology , Obesity/epidemiology , Obesity/mortality , Obesity/virology , Phylogeny , Retrospective Studies , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sequence Analysis, RNA , Severity of Illness Index , Survival Analysis
5.
Hum Mol Genet ; 31(3): 471-480, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1434399

ABSTRACT

Symptoms related with gastro-esophageal reflux disease (GERD) were previously shown to be linked with increased risk for the 2019 coronavirus disease (COVID-19). We aim to interrogate the possibility of a shared genetic basis between GERD and COVID-19 outcomes. Using published GWAS data for GERD (78 707 cases; 288 734 controls) and COVID-19 susceptibility (up to 32 494 cases; 1.5 million controls), we examined the genetic relationship between GERD and three COVID-19 outcomes: risk of developing severe COVID-19, COVID-19 hospitalization and overall COVID-19 risk. We estimated the genetic correlation between GERD and COVID-19 outcomes followed by Mendelian randomization (MR) analyses to assess genetic causality. Conditional analyses were conducted to examine whether known COVID-19 risk factors (obesity, smoking, type-II diabetes, coronary artery disease) can explain the relationship between GERD and COVID-19. We found small to moderate genetic correlations between GERD and COVID-19 outcomes (rg between 0.06 and 0.24). MR analyses revealed a OR of 1.15 (95% CI: 0.96-1.39) for severe COVID-19; 1.16 (1.01-1.34) for risk of COVID-19 hospitalization; 1.05 (0.97-1.13) for overall risk of COVID-19 per doubling of odds in developing GERD. The genetic correlation/associations between GERD and COVID-19 showed mild attenuation towards the null when obesity and smoking was adjusted for. Susceptibility for GERD and risk of COVID-19 hospitalization were genetically correlated, with MR findings supporting a potential causal role between the two. The genetic association between GERD and COVID-19 was partially attenuated when obesity is accounted for, consistent with obesity being a major risk factor for both diseases.


Subject(s)
COVID-19/genetics , Diabetes Mellitus, Type 2/genetics , Gastroesophageal Reflux/genetics , Genetic Predisposition to Disease , Body Mass Index , COVID-19/complications , COVID-19/virology , Coronary Artery Disease/complications , Coronary Artery Disease/genetics , Coronary Artery Disease/virology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/virology , Female , Gastroesophageal Reflux/complications , Gastroesophageal Reflux/virology , Genome-Wide Association Study , Hospitalization , Humans , Male , Mendelian Randomization Analysis , Obesity/complications , Obesity/genetics , Obesity/virology , Polymorphism, Single Nucleotide , Risk Factors , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Severity of Illness Index , Smoking/adverse effects
6.
Int J Mol Sci ; 22(18)2021 Sep 09.
Article in English | MEDLINE | ID: covidwho-1409706

ABSTRACT

The susceptibility and the severity of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are associated with hyperandrogenism, obesity, and preexisting pulmonary, metabolic, renal, and cardiac conditions. Polycystic ovary syndrome (PCOS), the most common endocrine disorder in premenopausal women, is associated with obesity, hyperandrogenism, and cardiometabolic dysregulations. We analyzed cardiac, renal, circulatory, and urinary SARS-CoV-2 viral entry proteins (ACE2, TMPRSS2, TMPRSS4, furin, cathepsin L, and ADAM17) and androgen receptor (AR) expression, in a peripubertal androgen exposure model of PCOS. Peripubertal female mice were treated with dihydrotestosterone (DHT) and low (LFD) or high (HFD) fat diet for 90 days. HFD exacerbated DHT-induced increase in body weight, fat mass, and cardiac and renal hypertrophy. In the heart, DHT upregulated AR protein in both LFD and HFD, ACE2 in HFD, and ADAM17 in LFD. In the kidney, AR protein expression was upregulated by both DHT and HFD. Moreover, ACE2 and ADAM17 were upregulated by DHT in both diets. Renal TMPRSS2, furin, and cathepsin L were upregulated by DHT and differentially modulated by the diet. DHT upregulated urinary ACE2 in both diets, while neither treatment modified serum ACE2. Renal AR mRNA expression positively correlated with Ace2, Tmprss2, furin, cathepsin L, and ADAM17. Our findings suggest that women with PCOS could be a population with a high risk of COVID-19-associated cardiac and renal complications. Furthermore, our study suggests that weight loss by lifestyle modifications (i.e., diet) could potentially mitigate COVID-19-associated deleterious cardiorenal outcomes in women with PCOS.


Subject(s)
COVID-19 , Obesity , Polycystic Ovary Syndrome/virology , Receptors, Coronavirus/immunology , SARS-CoV-2/physiology , Virus Internalization , Animals , COVID-19/immunology , COVID-19/virology , Female , Heart , Kidney , Mice , Mice, Inbred C57BL , Obesity/immunology , Obesity/virology
7.
PLoS One ; 16(9): e0256988, 2021.
Article in English | MEDLINE | ID: covidwho-1394552

ABSTRACT

Epidemiological studies suggest that individuals with comorbid conditions including diabetes, chronic lung, inflammatory and vascular disease, are at higher risk of adverse COVID-19 outcomes. Genome-wide association studies have identified several loci associated with increased susceptibility and severity for COVID-19. However, it is not clear whether these associations are genetically determined or not. We used a Phenome-Wide Association (PheWAS) approach to investigate the role of genetically determined COVID-19 susceptibility on disease related outcomes. PheWAS analyses were performed in order to identify traits and diseases related to COVID-19 susceptibility and severity, evaluated through a predictive COVID-19 risk score. We utilised phenotypic data in up to 400,000 individuals from the UK Biobank, including Hospital Episode Statistics and General Practice data. We identified a spectrum of associations between both genetically determined COVID-19 susceptibility and severity with a number of traits. COVID-19 risk was associated with increased risk for phlebitis and thrombophlebitis (OR = 1.11, p = 5.36e-08). We also identified significant signals between COVID-19 susceptibility with blood clots in the leg (OR = 1.1, p = 1.66e-16) and with increased risk for blood clots in the lung (OR = 1.12, p = 1.45 e-10). Our study identifies significant association of genetically determined COVID-19 with increased blood clot events in leg and lungs. The reported associations between both COVID-19 susceptibility and severity and other diseases adds to the identification and stratification of individuals at increased risk, adverse outcomes and long-term effects.


Subject(s)
COVID-19/genetics , Obesity/genetics , Thrombophlebitis/genetics , Thrombosis/genetics , COVID-19/epidemiology , COVID-19/virology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/pathology , Cardiovascular Diseases/virology , Female , Genetic Predisposition to Disease , Humans , Male , Mendelian Randomization Analysis , Obesity/epidemiology , Obesity/virology , Phenomics , Phenotype , Polymorphism, Single Nucleotide/genetics , SARS-CoV-2/pathogenicity , Thrombophlebitis/epidemiology , Thrombophlebitis/virology , Thrombosis/epidemiology , Thrombosis/virology
8.
Viruses ; 13(7)2021 06 30.
Article in English | MEDLINE | ID: covidwho-1289031

ABSTRACT

There are some reports and case series addressing Coronavirus Disease 2019 (COVID-19) infections during pregnancy in upper income countries, but there are few data on pregnant women with comorbid conditions in low and middle income Countries. This study evaluated the proportion and the maternal and neonatal outcomes associated with SARS-CoV-2 infection among pregnant women with comorbidities. Participants were recruited consecutively in order of admission to a maternity for pregnant women with comorbidities. Sociodemographic, clinical, and laboratory data were prospectively collected during hospitalization. Pregnant women were screened at entry: nasopharyngeal swabs were tested by RT-PCR; serum samples were tested for IgG antibodies against spike protein by ELISA. From April to June 2020, 115 eligible women were included in the study. The proportion of SARS-CoV-2 infection was 28.7%. The rate of obesity was 60.9%, vascular hypertension 40.0%, and HIV 21.7%. The most common clinical presentations were ageusia (21.2%), anosmia (18.2%), and fever (18.2%). Prematurity was higher among mothers who had a SARS-CoV-2 infection based on RT-PCR. There were two cases of fetal demise. We found a high proportion of COVID-19 among pregnant women with comorbidities. This underscores the importance of antenatal care during the pandemic to implement universal SARS-CoV-2 screening, precautionary measures, and the rollout of vaccination programs for pregnant women.


Subject(s)
COVID-19/epidemiology , Immunoglobulin G/blood , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/virology , SARS-CoV-2/immunology , Adult , COVID-19/immunology , Cohort Studies , Comorbidity , Female , Hospitalization , Humans , Infant, Newborn , Infectious Disease Transmission, Vertical , Obesity/complications , Obesity/virology , Pilot Projects , Pregnancy , Pregnant Women , SARS-CoV-2/genetics , Young Adult
9.
Br J Nutr ; 125(6): 628-632, 2021 03 28.
Article in English | MEDLINE | ID: covidwho-1221095

ABSTRACT

As COVID-19 continues to spread worldwide, severe disease and mortality have been observed in obese patients. We discuss how obesity and obesity-associated factors such as 'meta-flammation', dietary fat intake and paradoxical suppression of the innate immune response within the pulmonary compartment may be crucial determinants in the host response to a novel viral pathogen. Modulation of immune cell bioenergetics and metabolic potential plays a central role in the innate immune response to infection, and as we strive to combat this new global health threat, immunometabolism of the innate immune system warrants attention.


Subject(s)
COVID-19/immunology , Immune System/virology , Obesity/immunology , Obesity/virology , SARS-CoV-2/immunology , COVID-19/mortality , Dietary Fats/immunology , Eating/immunology , Energy Metabolism/immunology , Humans , Immunity, Innate/immunology , Inflammation , Obesity/mortality , Respiratory System/immunology , Respiratory System/virology
10.
J Med Virol ; 93(4): 2359-2364, 2021 04.
Article in English | MEDLINE | ID: covidwho-1217385

ABSTRACT

BACKGROUND AND OBJECTIVES: The outbreak of COVID-19 has created a global public health crisis. Little is known about the predisposing factors of this infection. The aim of this study was to explore an association between the serum vitamin D level, obesity, and underlying health conditions, as well as the vulnerability to COVID-19 in the Iranian population. METHODS: We conducted a case-control study of 201 patients with coronavirus infection and 201 controls. Cases and controls were matched for age and gender. The study was carried out for 2 months (February 2020-April 2020) at Imam Khomeini Hospital Complex, Tehran, Iran. Serum 25(OH) vitamin D was measured using the enzyme-linked immunosorbent assay method. Information containing age, gender, clinical symptoms, body mass index, computed tomography scan findings, and underlying health conditions related to each participant were elicited from health records. RESULTS: A significant negative correlation (p = .02) was observed between the serum vitamin D level and developing coronavirus infection. Also, the results showed that the COVID-19 cases were more likely to be overweight than the controls (p = .023). Diabetes mellitus, hypertension, and respiratory infections were found in 20.89%, 9.65%, and 6.96% of cases, respectively. These underlying health conditions were not significantly different between cases and controls (p = .81). CONCLUSIONS: Vitamin D deficiency and obesity are two main predisposing factors associated with the vulnerability to coronavirus infection in the Iranian population.


Subject(s)
COVID-19/blood , Obesity/blood , Vitamin D Deficiency/blood , Adult , Body Mass Index , COVID-19/epidemiology , COVID-19/virology , Case-Control Studies , Female , Humans , Iran/epidemiology , Male , Middle Aged , Obesity/epidemiology , Obesity/virology , SARS-CoV-2/isolation & purification , Vitamin D/analogs & derivatives , Vitamin D/blood , Vitamin D Deficiency/epidemiology , Vitamin D Deficiency/virology
11.
J Clin Endocrinol Metab ; 106(5): e2025-e2034, 2021 04 23.
Article in English | MEDLINE | ID: covidwho-1199961

ABSTRACT

PURPOSE: Comorbidities making up metabolic syndrome (MetS), such as obesity, type 2 diabetes, and chronic cardiovascular disease can lead to increased risk of coronavirus disease-2019 (COVID-19) with a higher morbidity and mortality. SARS-CoV-2 antibodies are higher in severely or critically ill COVID-19 patients, but studies have not focused on levels in convalescent patients with MetS, which this study aimed to assess. METHODS: This retrospective study focused on adult convalescent outpatients with SARS-CoV-2 positive serology during the COVID-19 pandemic at NewYork Presbyterian/Weill Cornell. Data collected for descriptive and correlative analysis included SARS-COV-2 immunoglobin G (IgG) levels and history of MetS comorbidities from April 17, 2020 to May 20, 2020. Additional data, including SARS-CoV-2 IgG levels, body mass index (BMI), hemoglobin A1c (HbA1c) and lipid levels were collected and analyzed for a second cohort from May 21, 2020 to June 21, 2020. SARS-CoV-2 neutralizing antibodies were measured in a subset of the study cohort. RESULTS: SARS-CoV-2 IgG levels were significantly higher in convalescent individuals with MetS comorbidities. When adjusted for age, sex, race, and time duration from symptom onset to testing, increased SARS-CoV-2 IgG levels remained significantly associated with obesity (P < 0.0001). SARS-CoV-2 IgG levels were significantly higher in patients with HbA1c ≥6.5% compared to those with HbA1c <5.7% (P = 0.0197) and remained significant on multivariable analysis (P = 0.0104). A positive correlation was noted between BMI and antibody levels [95% confidence interval: 0.37 (0.20-0.52) P < 0.0001]. Neutralizing antibody titers were higher in COVID-19 individuals with BMI ≥ 30 (P = 0.0055). CONCLUSION: Postconvalescent SARS-CoV-2 IgG and neutralizing antibodies are elevated in obese patients, and a positive correlation exists between BMI and antibody levels.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Metabolic Syndrome/immunology , Adult , Antibodies, Neutralizing/blood , COVID-19/blood , COVID-19/complications , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/virology , Female , Humans , Immunoglobulin G/blood , Male , Metabolic Syndrome/blood , Metabolic Syndrome/virology , Middle Aged , Obesity/blood , Obesity/immunology , Obesity/virology , Retrospective Studies
12.
J Med Virol ; 93(2): 1188-1193, 2021 02.
Article in English | MEDLINE | ID: covidwho-1196500

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic is a global health crisis. Very few studies have reported association between obesity and severity of COVID-19. In this meta-analysis, we assessed the association of obesity and outcomes in COVID-19 hospitalized patients. Data from observational studies describing the obesity or body mass index and outcomes of COVID-19 hospitalized patients from December 1, 2019, to August 15, 2020, was extracted following PRISMA guidelines with a consensus of two independent reviewers. Adverse outcomes defined as intensive care units, oxygen saturation less than 90%, invasive mechanical ventilation, severe disease, and in-hospital mortality. The odds ratio (OR) and 95% confidence interval (95% CI) were obtained and forest plots were created using random-effects models. A total of 10 studies with 10,233 confirmed COVID-19 patients were included. The overall prevalence of obesity in our study was 33.9% (3473/10,233). In meta-analysis, COVID-19 patient with obesity had higher odds of poor outcomes compared with better outcomes with a pooled OR of 1.88 (95% CI: 1.25-2.80; p = 0.002), with 86% heterogeneity between studies (p < 0.00001). Our study suggests a significant association between obesity and COVID-19 severity and poor outcomes. Our results findings may have important suggestions for the clinical management and future research of obesity and COVID-19.


Subject(s)
COVID-19/physiopathology , Hospital Mortality , Hospitalization/statistics & numerical data , Obesity/complications , Body Mass Index , Humans , Intensive Care Units/statistics & numerical data , Obesity/virology , Observational Studies as Topic , Prevalence , Respiration, Artificial/statistics & numerical data
13.
J Med Virol ; 93(1): 257-261, 2021 01.
Article in English | MEDLINE | ID: covidwho-1196393

ABSTRACT

Obesity and COVID-19 are both worldwide epidemics now. There may be some potential relationships between them, but little is known. This study was done to explore this relationship through literature search, systematic review, and meta-analysis. Pubmed, Embase, WOS, Cochrane, CNKI, Wanfang, and Sinomed databases were searched to collect literature concerning obesity and COVID-19. Systematic review and meta-analysis were conducted after literature screening, quality assessment, and data extraction. A total of 180 articles were initially searched after duplicate removal, and 9 were finally included in our analysis. Results show that severe COVID-19 patients have a higher body mass index than non-severe ones (WMD = 2.67; 95% CI, 1.52-3.82); COVID-19 patients with obesity were more severely affected and have a worse outcome than those without (OR = 2.31; 95% CI, 1.3-4.12). Obesity may aggravate COVID-19.


Subject(s)
COVID-19/physiopathology , Obesity/complications , Body Mass Index , COVID-19/virology , Humans , Obesity/virology , Risk Factors , Severity of Illness Index
14.
J Mol Med (Berl) ; 99(7): 899-915, 2021 07.
Article in English | MEDLINE | ID: covidwho-1171990

ABSTRACT

The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic has proven a challenge to healthcare systems since its first appearance in late 2019. The global spread and devastating effects of coronavirus disease 2019 (COVID-19) on patients have resulted in countless studies on risk factors and disease progression. Overweight and obesity emerged as one of the major risk factors for developing severe COVID-19. Here we review the biology of coronavirus infections in relation to obesity. In particular, we review literature about the impact of adiposity-related systemic inflammation on the COVID-19 disease severity, involving cytokine, chemokine, leptin, and growth hormone signaling, and we discuss the involvement of hyperactivation of the renin-angiotensin-aldosterone system (RAAS). Due to the sheer number of publications on COVID-19, we cannot be completed, and therefore, we apologize for all the publications that we do not cite.


Subject(s)
COVID-19/genetics , Inflammation/genetics , Obesity/genetics , SARS-CoV-2/genetics , COVID-19/complications , COVID-19/pathology , COVID-19/virology , Disease Progression , Humans , Inflammation/complications , Inflammation/pathology , Inflammation/virology , Obesity/complications , Obesity/pathology , Obesity/virology , Pandemics , Peptidyl-Dipeptidase A/genetics , Renin-Angiotensin System/genetics , Risk Factors , SARS-CoV-2/pathogenicity
15.
Am J Respir Cell Mol Biol ; 65(1): 13-21, 2021 07.
Article in English | MEDLINE | ID: covidwho-1166652

ABSTRACT

Coronavirus disease (COVID-19), the clinical syndrome caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a global health pandemic with substantial morbidity and mortality. COVID-19 has cast a shadow on nearly every aspect of society, straining health systems and economies across the world. Although it is widely accepted that a close relationship exists between obesity, cardiovascular disease, and metabolic disorders on infection, we are only beginning to understand ways in which the immunological sequelae of obesity functions as a predisposing factor related to poor clinical outcomes in COVID-19. As both the innate and adaptive immune systems are each primed by obesity, the alteration of key pathways results in both an immunosuppressed and hyperinflammatory state. The present review will discuss the cellular and molecular immunology of obesity in the context of its role as a risk factor for severe COVID-19, discuss the role of cytokine storm, and draw parallels to prior viral epidemics such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and 2009 H1N1.


Subject(s)
COVID-19 , Cardiovascular Diseases , Cytokine Release Syndrome , Obesity , SARS-CoV-2 , COVID-19/immunology , COVID-19/metabolism , COVID-19/mortality , Cardiovascular Diseases/immunology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/mortality , Critical Illness , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/metabolism , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/virology , Disease-Free Survival , Humans , Obesity/immunology , Obesity/metabolism , Obesity/mortality , Obesity/virology , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Survival Rate
16.
PLoS One ; 16(3): e0245424, 2021.
Article in English | MEDLINE | ID: covidwho-1148242

ABSTRACT

SARS-CoV-2 (Severe Acute Respiratory Syndrome Corona Virus-2), cause of COVID-19 (Coronavirus Disease of 2019), represents a significant risk to people living with pre-existing conditions associated with exacerbated inflammatory responses and consequent dysfunctional immunity. In this paper, we have evaluated the influence of obesity, a condition associated with chronic systemic inflammation, on the secretion of SARS-CoV-2-specific IgG antibodies in the blood of COVID-19 patients. Our hypothesis is that obesity is associated with reduced amounts of specific IgG antibodies. Results have confirmed our hypothesis and have shown that SARS-CoV-2 IgG antibodies are negatively associated with Body Mass Index (BMI) in COVID-19 obese patients, as expected based on the known influence of obesity on humoral immunity. Antibodies in COVID-19 obese patients are also negatively associated with serum levels of pro-inflammatory and metabolic markers of inflammaging and pulmonary inflammation, such as SAA (serum amyloid A protein), CRP (C-reactive protein), and ferritin, but positively associated with NEFA (nonesterified fatty acids). These results altogether could help to identify an inflammatory signature with strong predictive value for immune dysfunction. Inflammatory markers identified may subsequently be targeted to improve humoral immunity in individuals with obesity and in individuals with other chronic inflammatory conditions.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Obesity/virology , Adult , Aged , Antibodies/blood , Antibodies/immunology , Antibodies, Viral/blood , Biomarkers/blood , Body Mass Index , COVID-19/blood , COVID-19/epidemiology , Coronavirus Infections/virology , Female , Humans , Immunity, Humoral/immunology , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Obesity/complications , Obesity/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
17.
Int J Mol Sci ; 22(6)2021 Mar 20.
Article in English | MEDLINE | ID: covidwho-1143520

ABSTRACT

The recent pandemic Sars-CoV2 infection and studies on previous influenza epidemic have drawn attention to the association between the obesity and infectious diseases susceptibility and worse outcome. Metabolic complications, nutritional aspects, physical inactivity, and a chronic unbalance in the hormonal and adipocytokine microenvironment are major determinants in the severity of viral infections in obesity. By these pleiotropic mechanisms obesity impairs immune surveillance and the higher leptin concentrations produced by adipose tissue and that characterize obesity substantially contribute to such immune response dysregulation. Indeed, leptin not only controls energy balance and body weight, but also plays a regulatory role in the interplay between energy metabolism and immune system. Since leptin receptor is expressed throughout the immune system, leptin may exert effects on cells of both innate and adaptive immune system. Chronic inflammatory states due to metabolic (i.e., obesity) as well as infectious diseases increase leptin concentrations and consequently lead to leptin resistance further fueling inflammation. Multiple factors, including inflammation and ER stress, contribute to leptin resistance. Thus, if leptin is recognized as one of the adipokines responsible for the low grade inflammation found in obesity, on the other hand, impairments of leptin signaling due to leptin resistance appear to blunt the immunologic effects of leptin and possibly contribute to impaired vaccine-induced immune responses. However, many aspects concerning leptin interactions with inflammation and immune system as well as the therapeutical approaches to overcome leptin resistance and reduced vaccine effectiveness in obesity remain a challenge for future research.


Subject(s)
Leptin/immunology , Leptin/metabolism , Obesity/complications , Obesity/virology , Virus Diseases/complications , Animals , Antiviral Agents/therapeutic use , COVID-19/complications , COVID-19/drug therapy , COVID-19/immunology , COVID-19/metabolism , Energy Metabolism/immunology , Humans , Immune System/metabolism , Immune System/virology , Obesity/immunology , Obesity/metabolism , Viral Vaccines/therapeutic use , Virus Diseases/drug therapy , Virus Diseases/immunology , Virus Diseases/metabolism
18.
Biochem Biophys Res Commun ; 538: 92-96, 2021 01 29.
Article in English | MEDLINE | ID: covidwho-1125278

ABSTRACT

Obesity is a major risk factor for SARS-CoV-2 infection and COVID-19 severity. The underlying basis of this association is likely complex in nature. The host-cell receptor angiotensin converting enzyme 2 (ACE2) and the type II transmembrane serine protease (TMPRSS2) are important for viral cell entry. It is unclear whether obesity alters expression of Ace2 and Tmprss2 in the lower respiratory tract. Here, we show that: 1) Ace2 expression is elevated in the lung and trachea of diet-induced obese male mice and reduced in the esophagus of obese female mice relative to lean controls; 2) Tmprss2 expression is increased in the trachea of obese male mice but reduced in the lung and elevated in the trachea of obese female mice relative to lean controls; 3) in chow-fed lean mice, females have higher expression of Ace2 in the lung and esophagus as well as higher Tmprss2 expression in the lung but lower expression in the trachea compared to males; and 4) in diet-induced obese mice, males have higher expression of Ace2 in the trachea and higher expression of Tmprss2 in the lung compared to females, whereas females have higher expression of Tmprss2 in the trachea relative to males. Our data indicate diet- and sex-dependent modulation of Ace2 and Tmprss2 expression in the lower respiratory tract and esophagus. Given the high prevalence of obesity worldwide and a sex-biased mortality rate, we discuss the implications and relevance of our results for COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/enzymology , Esophagus/enzymology , Lung/enzymology , Obesity/enzymology , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Trachea/enzymology , Virus Internalization , Animals , COVID-19/virology , Diet , Esophagus/virology , Female , Lung/virology , Male , Mice , Obesity/virology , Sex Factors , Trachea/virology
19.
Br J Nutr ; 125(8): 851-862, 2021 04 28.
Article in English | MEDLINE | ID: covidwho-1123111

ABSTRACT

COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was recognised by the WHO as a pandemic in 2020. Host preparation to combat the virus is an important strategy to avoid COVID-19 severity. Thus, the relationship between eating habits, nutritional status and their effects on the immune response and further implications in viral respiratory infections is an important topic discussed in this review. Malnutrition causes the most diverse alterations in the immune system, suppressing of the immune response and increasing the susceptibility to infections such as SARS-CoV-2. On the other hand, obesity induces low-grade chronic inflammation caused by excess adiposity, which increases angiotensin-converting enzyme 2. It decreases the immune response favouring SARS-CoV-2 virulence and promoting respiratory distress syndrome. The present review highlights the importance of food choices considering their inflammatory effects, consequently increasing the viral susceptibility observed in malnutrition and obesity. Healthy eating habits, micronutrients, bioactive compounds and probiotics are strategies for COVID-19 prevention. Therefore, a diversified and balanced diet can contribute to the improvement of the immune response to viral infections such as COVID-19.


Subject(s)
COVID-19/etiology , Diet/adverse effects , Disease Susceptibility/virology , Nutritional Status , SARS-CoV-2 , COVID-19/prevention & control , COVID-19/virology , Diet, Healthy/methods , Disease Susceptibility/physiopathology , Fast Foods/adverse effects , Humans , Malnutrition/etiology , Malnutrition/virology , Obesity/etiology , Obesity/virology
20.
Endocrinol Metab (Seoul) ; 36(1): 196-200, 2021 02.
Article in English | MEDLINE | ID: covidwho-1121720

ABSTRACT

Although obesity is a risk factor for infection, whether it has the same effect on coronavirus disease 2019 (COVID-19) need confirming. We conducted a retrospective propensity score matched case-control study to examine the association between obesity and COVID-19. This study included data from the Nationwide COVID-19 Registry and the Biennial Health Checkup database, until May 30, 2020. We identified 2,231 patients with confirmed COVID-19 and 10-fold-matched negative test controls. Overweight (body mass index [BMI] 23 to 24.9 kg/m2; adjusted odds ratio [aOR], 1.16; 95% confidence interval [CI], 1.1.03 to 1.30) and class 1 obesity (BMI 25 to 29.9 kg/m2; aOR, 1.27; 95% CI, 1.14 to 1.42) had significantly increased COVID-19 risk, while classes 2 and 3 obesity (BMI ≥30 kg/m2) showed similar but non-significant trend. Females and those <50 years had more robust association pattern. Overweight and obesity are possible risk factors of COVID-19.


Subject(s)
COVID-19/epidemiology , COVID-19/etiology , Obesity/virology , Overweight/virology , SARS-CoV-2 , Adult , Aged , Body Mass Index , COVID-19/virology , COVID-19 Testing/statistics & numerical data , Case-Control Studies , Databases, Factual , Female , Humans , Male , Middle Aged , Obesity/physiopathology , Odds Ratio , Overweight/physiopathology , Propensity Score , Registries , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL