Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
1.
J Immunol ; 211(2): 252-260, 2023 07 15.
Article in English | MEDLINE | ID: covidwho-20241408

ABSTRACT

SARS-CoV-2 has caused an estimated 7 million deaths worldwide to date. A secreted SARS-CoV-2 accessory protein, known as open reading frame 8 (ORF8), elicits inflammatory pulmonary cytokine responses and is associated with disease severity in COVID-19 patients. Recent reports proposed that ORF8 mediates downstream signals in macrophages and monocytes through the IL-17 receptor complex (IL-17RA, IL-17RC). However, generally IL-17 signals are found to be restricted to the nonhematopoietic compartment, thought to be due to rate-limiting expression of IL-17RC. Accordingly, we revisited the capacity of IL-17 and ORF8 to induce cytokine gene expression in mouse and human macrophages and monocytes. In SARS-CoV-2-infected human and mouse lungs, IL17RC mRNA was undetectable in monocyte/macrophage populations. In cultured mouse and human monocytes and macrophages, ORF8 but not IL-17 led to elevated expression of target cytokines. ORF8-induced signaling was fully preserved in the presence of anti-IL-17RA/RC neutralizing Abs and in Il17ra-/- cells. ORF8 signaling was also operative in Il1r1-/- bone marrow-derived macrophages. However, the TLR/IL-1R family adaptor MyD88, which is dispensable for IL-17R signaling, was required for ORF8 activity yet MyD88 is not required for IL-17 signaling. Thus, we conclude that ORF8 transduces inflammatory signaling in monocytes and macrophages via MyD88 independently of the IL-17R.


Subject(s)
COVID-19 , Monocytes , Humans , Mice , Animals , Monocytes/metabolism , SARS-CoV-2/genetics , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Receptors, Interleukin-17/genetics , Receptors, Interleukin-17/metabolism , Open Reading Frames , COVID-19/genetics , Macrophages/metabolism , Cytokines/metabolism
2.
Res Vet Sci ; 159: 146-159, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2311847

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is an entero-pathogenic coronavirus, which belongs to the genus Alphacoronavirus in the family Coronaviridae, causing lethal watery diarrhea in piglets. Previous studies have shown that PEDV has developed an antagonistic mechanism by which it evades the antiviral activities of interferon (IFN), such as the sole accessory protein open reading frame 3 (ORF3) being found to inhibit IFN-ß promoter activities, but how this mechanism used by PEDV ORF3 inhibits activation of the type I signaling pathway remains not fully understood. Thus, in this present study, we showed that PEDV ORF3 inhibited both polyinosine-polycytidylic acid (poly(I:C))- and IFNα2b-stimulated transcription of IFN-ß and interferon-stimulated genes (ISGs) mRNAs. The expression levels of antiviral proteins in the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs)-mediated pathway was down-regulated in cells with over-expression of PEDV ORF3 protein, but global protein translation remained unchanged and the association of ORF3 with RLRs-related antiviral proteins was not detected, implying that ORF3 only specifically suppressed the expression of these signaling molecules. At the same time, we also found that the PEDV ORF3 protein inhibited interferon regulatory factor 3 (IRF3) phosphorylation and poly(I:C)-induced nuclear translocation of IRF3, which further supported the evidence that type I IFN production was abrogated by PEDV ORF3 through interfering with RLRs signaling. Furthermore, PEDV ORF3 counteracted transcription of IFN-ß and ISGs mRNAs, which were triggered by over-expression of signal proteins in the RLRs-mediated pathway. However, to our surprise, PEDV ORF3 initially induced, but subsequently reduced the transcription of IFN-ß and ISGs mRNAs to normal levels. Additionally, mRNA transcriptional levels of signaling molecules located at IFN-ß upstream were not inhibited, but elevated by PEDV ORF3 protein. Collectively, these results demonstrate that inhibition of type I interferon signaling by PEDV ORF3 can be realized through down-regulating the expression of signal molecules in the RLRs-mediated pathway, but not via inhibiting their mRNAs transcription. This study points to a new mechanism evolved by PEDV through blockage of the RLRs-mediated pathway by ORF3 protein to circumvent the host's antiviral immunity.


Subject(s)
Coronavirus Infections , Interferon Type I , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Porcine epidemic diarrhea virus/genetics , Open Reading Frames , Signal Transduction , Antiviral Agents , Coronavirus Infections/veterinary , Interferon Type I/metabolism
3.
FASEB J ; 37(5): e22919, 2023 05.
Article in English | MEDLINE | ID: covidwho-2306604

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes injury to multiple organ systems, including the brain. SARS-CoV-2's neuropathological mechanisms may include systemic inflammation and hypoxia, as well as direct cell damage resulting from viral infections of neurons and glia. How the virus directly causes injury to brain cells, acutely and over the long term, is not well understood. In order to gain insight into this process, we studied the neuropathological effects of open reading frame 3a (ORF3a), a SARS-CoV-2 accessory protein that is a key pathological factor of the virus. Forced ORF3a brain expression in mice caused the rapid onset of neurological impairment, neurodegeneration, and neuroinflammation-key neuropathological features found in coronavirus disease (COVID-19, which is caused by SARS-CoV-2 infection). Furthermore, ORF3a expression blocked autophagy progression in the brain and caused the neuronal accumulation of α-synuclein and glycosphingolipids, all of which are linked to neurodegenerative disease. Studies with ORF3-expressing HeLa cells confirmed that ORF3a disrupted the autophagy-lysosomal pathway and blocked glycosphingolipid degradation, resulting in their accumulation. These findings indicate that, in the event of neuroinvasion by SARS-CoV-2, ORF3a expression in brain cells may drive neuropathogenesis and be an important mediator of both short- and long-term neurological manifestations of COVID-19.


Subject(s)
COVID-19 , Neurodegenerative Diseases , Humans , Animals , Mice , SARS-CoV-2 , COVID-19/pathology , Neurodegenerative Diseases/pathology , HeLa Cells , Open Reading Frames , Sphingolipids , Brain/pathology , Homeostasis , Lysosomes , Autophagy
4.
J Mol Graph Model ; 122: 108487, 2023 07.
Article in English | MEDLINE | ID: covidwho-2292448

ABSTRACT

Ongoing global pandemic caused by coronavirus (COVID-19) requires urgent development of vaccines, treatments, and diagnostic tools. Open reading frame 3a (ORF3a) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is considered to be a potential drug target for COVID-19 treatment. ORF3a is an accessory protein that plays a significant role in virus-host interactions and in facilitating host immune responses. Using putrescine, spermidine and spermine, an aliphatic polyamine for the activity suppression of ORF3a appears to be a promising approach in finding new targets for drug design. In this study, we explored the possible binding poses of polyamines to the ORF3a protein using a combination of various computational approaches i.e. pocket prediction, blind and site-specific molecular docking, molecular dynamics and ligand flooding simulations. The results showed that the tip of cytoplasmic domain and the upper tunnel of transmembrane domain of ORF3a provide a suitable binding site specific for the polyamines. MD simulations revealed the stability of spermidine binding in the upper tunnel pocket of ORF3a through salt bridge and hydrogen bond interactions between the amine groups of the ligand and negatively charged residues of ORF3a. These findings can be helpful in designing new therapeutic drugs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Molecular Docking Simulation , Polyamines , Open Reading Frames , Spermidine , COVID-19 Drug Treatment , Ligands
5.
Viruses ; 15(4)2023 03 29.
Article in English | MEDLINE | ID: covidwho-2291466

ABSTRACT

The COVID-19 pandemic has resulted in upwards of 6.8 million deaths over the past three years, and the frequent emergence of variants continues to strain global health. Although vaccines have greatly helped mitigate disease severity, SARS-CoV-2 is likely to remain endemic, making it critical to understand its viral mechanisms contributing to pathogenesis and discover new antiviral therapeutics. To efficiently infect, this virus uses a diverse set of strategies to evade host immunity, accounting for its high pathogenicity and rapid spread throughout the COVID-19 pandemic. Behind some of these critical host evasion strategies is the accessory protein Open Reading Frame 8 (ORF8), which has gained recognition in SARS-CoV-2 pathogenesis due to its hypervariability, secretory property, and unique structure. This review discusses the current knowledge on SARS-CoV-2 ORF8 and proposes actualized functional models describing its pivotal roles in both viral replication and immune evasion. A better understanding of ORF8's interactions with host and viral factors is expected to reveal essential pathogenic strategies utilized by SARS-CoV-2 and inspire the development of novel therapeutics to improve COVID-19 disease outcomes.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Open Reading Frames , Pandemics , Antiviral Agents
6.
PLoS One ; 15(12): e0243887, 2020.
Article in English | MEDLINE | ID: covidwho-2266241

ABSTRACT

The clinical condition COVID-19, caused by SARS-CoV-2, was declared a pandemic by the WHO in March 2020. Currently, there are more than 5 million cases worldwide, and the pandemic has increased exponentially in many countries, with different incidences and death rates among regions/ethnicities and, intriguingly, between sexes. In addition to the many factors that can influence these discrepancies, we suggest a biological aspect, the genetic variation at the viral S protein receptor in human cells, ACE2 (angiotensin I-converting enzyme 2), which may contribute to the worse clinical outcome in males and in some regions worldwide. We performed exomics analysis in native and admixed South American populations, and we also conducted in silico genomics databank investigations in populations from other continents. Interestingly, at least ten polymorphisms in coding, noncoding and regulatory sites were found that can shed light on this issue and offer a plausible biological explanation for these epidemiological differences. In conclusion, there are ACE2 polymorphisms that could influence epidemiological discrepancies observed among ancestry and, moreover, between sexes.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Polymorphism, Single Nucleotide/genetics , COVID-19/virology , Exome/genetics , Female , Humans , Male , Open Reading Frames/genetics , RNA, Untranslated/genetics , Regulatory Sequences, Ribonucleic Acid/genetics , South America
7.
Mol Cells ; 46(1): 41-47, 2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2217666

ABSTRACT

The rapid development of mRNA vaccines has contributed to the management of the current coronavirus disease 2019 (COVID-19) pandemic, suggesting that this technology may be used to manage future outbreaks of infectious diseases. Because the antigens targeted by mRNA vaccines can be easily altered by simply changing the sequence present in the coding region of mRNA structures, it is more appropriate to develop vaccines, especially during rapidly developing outbreaks of infectious diseases. In addition to allowing rapid development, mRNA vaccines have great potential in inducing successful antigen-specific immunity by expressing target antigens in cells and simultaneously triggering immune responses. Indeed, the two COVID-19 mRNA vaccines approved by the U.S. Food and Drug Administration have shown significant efficacy in preventing infections. The ability of mRNAs to produce target proteins that are defective in specific diseases has enabled the development of options to treat intractable diseases. Clinical applications of mRNA vaccines/therapeutics require strategies to safely deliver the RNA molecules into targeted cells. The present review summarizes current knowledge about mRNA vaccines/ therapeutics, their clinical applications, and their delivery strategies.


Subject(s)
COVID-19 Vaccines , mRNA Vaccines , Humans , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , mRNA Vaccines/administration & dosage , Open Reading Frames , Pandemics , United States
8.
PLoS Pathog ; 19(1): e1011128, 2023 01.
Article in English | MEDLINE | ID: covidwho-2214826

ABSTRACT

Coronavirus disease 2019 is a respiratory infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Evidence on the pathogenesis of SARS-CoV-2 is accumulating rapidly. In addition to structural proteins such as Spike and Envelope, the functional roles of non-structural and accessory proteins in regulating viral life cycle and host immune responses remain to be understood. Here, we show that open reading frame 8 (ORF8) acts as messenger for inter-cellular communication between alveolar epithelial cells and macrophages during SARS-CoV-2 infection. Mechanistically, ORF8 is a secretory protein that can be secreted by infected epithelial cells via both conventional and unconventional secretory pathways. Conventionally secreted ORF8 is glycosylated and loses the ability to recognize interleukin 17 receptor A of macrophages, possibly due to the steric hindrance imposed by N-glycosylation at Asn78. However, unconventionally secreted ORF8 does not undergo glycosylation without experiencing the ER-Golgi trafficking, thereby activating the downstream NF-κB signaling pathway and facilitating a burst of cytokine release. Furthermore, we show that ORF8 deletion in SARS-CoV-2 attenuates inflammation and yields less lung lesions in hamsters. Our data collectively highlights a role of ORF8 protein in the development of cytokine storms during SARS-CoV-2 infection.


Subject(s)
COVID-19 , Cytokine Release Syndrome , SARS-CoV-2 , Viral Proteins , Humans , COVID-19/pathology , Cytokine Release Syndrome/pathology , Inflammation , Open Reading Frames , SARS-CoV-2/physiology , Viral Proteins/metabolism
9.
Virol J ; 19(1): 193, 2022 11 21.
Article in English | MEDLINE | ID: covidwho-2139347

ABSTRACT

A global pandemic is underway caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 genome, like its predecessor SARS-CoV, contains open reading frames that encode accessory proteins involved in virus-host interactions active during infection and which likely contribute to pathogenesis. One of these accessory proteins is 7b, with only 44 (SARS-CoV) and 43 (SARS-CoV-2) residues. It has one predicted transmembrane domain fully conserved, which suggests a functional role, whereas most variability is contained in the predicted cytoplasmic C-terminus. In SARS-CoV, 7b protein is expressed in infected cells, and the transmembrane domain was necessary and sufficient for Golgi localization. Also, anti-p7b antibodies have been found in the sera of SARS-CoV convalescent patients. In the present study, we have investigated the hypothesis that SARS-2 7b protein forms oligomers with ion channel activity. We show that in both SARS viruses 7b is almost completely α-helical and has a single transmembrane domain. In SDS, 7b forms various oligomers, from monomers to tetramers, but only monomers when exposed to reductants. Combination of SDS gel electrophoresis and analytical ultracentrifugation (AUC) in both equilibrium and velocity modes suggests a dimer-tetramer equilibrium, but a monomer-dimer-tetramer equilibrium in the presence of reductant. This data suggests that although disulfide-linked dimers may be present, they are not essential to form tetramers. Inclusion of pentamers or higher oligomers in the SARS-2 7b model were detrimental to fit quality. Preliminary models of this association was generated with AlphaFold2, and two alternative models were exposed to a molecular dynamics simulation in presence of a model lipid membrane. However, neither of the two models provided any evident pathway for ions. To confirm this, SARS-2 p7b was studied using Planar Bilayer Electrophysiology. Addition of p7b to model membranes produced occasional membrane permeabilization, but this was not consistent with bona fide ion channels made of a tetrameric assembly of α-helices.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Detergents , Open Reading Frames , Cytoplasm
10.
BMC Ecol Evol ; 22(1): 123, 2022 10 28.
Article in English | MEDLINE | ID: covidwho-2098309

ABSTRACT

The genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains many insertions/deletions (indels) from the genomes of other SARS-related coronaviruses. Some of the identified indels have recently reported to involve relatively long segments of 10-300 consecutive bases and with diverse RNA sequences around gaps between virus species, both of which are different characteristics from the classical shorter in-frame indels. These non-classical complex indels have been identified in non-structural protein 3 (Nsp3), the S1 domain of the spike (S), and open reading frame 8 (ORF8). To determine whether the occurrence of these non-classical indels in specific genomic regions is ubiquitous among broad species of SARS-related coronaviruses in different animal hosts, the present study compared SARS-related coronaviruses from humans (SARS-CoV and SARS-CoV-2), bats (RaTG13 and Rc-o319), and pangolins (GX-P4L), by performing multiple sequence alignment. As a result, indel hotspots with diverse RNA sequences of different lengths between the viruses were confirmed in the Nsp2 gene (approximately 2500-2600 base positions in the overall 29,900 bases), Nsp3 gene (approximately 3000-3300 and 3800-3900 base positions), N-terminal domain of the spike protein (21,500-22,500 base positions), and ORF8 gene (27,800-28,200 base positions). Abnormally high rate of point mutations and complex indels in these regions suggest that the occurrence of mutations in these hotspots may be selectively neutral or even benefit the survival of the viruses. The presence of such indel hotspots has not been reported in different human SARS-CoV-2 strains in the last 2 years, suggesting a lower rate of indels in human SARS-CoV-2. Future studies to elucidate the mechanisms enabling the frequent development of long and complex indels in specific genomic regions of SARS-related coronaviruses would offer deeper insights into the process of viral evolution.


Subject(s)
COVID-19 , Chiroptera , Severe acute respiratory syndrome-related coronavirus , Animals , Humans , Open Reading Frames/genetics , SARS-CoV-2/genetics , Genome, Viral/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Evolution, Molecular , Phylogeny , COVID-19/genetics , Chiroptera/genetics , Pangolins
11.
mBio ; 13(4): e0097122, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-1950002

ABSTRACT

Patients with severe coronavirus disease 2019 tend to have high levels of proinflammatory cytokines, which eventually lead to cytokine storm and the development of acute respiratory distress syndrome. However, the detailed molecular mechanisms of proinflammatory cytokine production remain unknown. Here, we screened severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genes and found that nonstructural protein 6 (NSP6) and open reading frame 7a (ORF7a) activated the NF-κB pathway. NSP6 and ORF7a interacted with transforming growth factor ß-activated kinase 1 (TAK1), and knockout (KO) of TAK1 or NF-κB essential modulator (NEMO) abolished NF-κB activation by NSP6 and ORF7a. Interestingly, K61 of NSP6 was conjugated to K63-linked polyubiquitin chains by the E3 ubiquitin ligase tripartite motif-containing 13, and this polyubiquitination of NSP6 appeared crucial for recruitment of NEMO to the NSP6-TAK1 complex and NF-κB activation. On the other hand, ring finger protein 121 (RNF121) was required for the polyubiquitination of ORF7a. Knockdown of RNF121 significantly decreased ORF7a binding of TAK1 and NEMO, resulting in the suppression of NF-κB activation. Taken together, our results provide novel molecular insights into the pathogenesis of SARS-CoV-2 and the host immune response to SARS-CoV-2 infection. IMPORTANCE The detailed molecular basis of the induction of proinflammatory cytokines and chemokines by SARS-CoV-2 is unclear, although such induction is clearly related to the severity of COVID-19. Here, we show that SARS-CoV-2 NSP6 and ORF7a lead to NF-κB activation through associations with TAK1. K63-linked polyubiquitination of NSP6 and ORF7a by TRIM13 and RNF121, respectively, appears essential for NF-κB activation. These results suggest that inhibition of the NSP6 and ORF7a gene products may reduce the severity of COVID-19 symptoms by decreasing proinflammatory cytokine levels.


Subject(s)
COVID-19 , NF-kappa B , Cytokines/metabolism , Humans , NF-kappa B/metabolism , Open Reading Frames , SARS-CoV-2/genetics , Ubiquitination
12.
Biomolecules ; 12(7)2022 07 12.
Article in English | MEDLINE | ID: covidwho-1928475

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a high mutation rate and many variants have emerged in the last 2 years, including Alpha, Beta, Delta, Gamma and Omicron. Studies showed that the host-genome similarity (HGS) of SARS-CoV-2 is higher than SARS-CoV and the HGS of open reading frame (ORF) in coronavirus genome is closely related to suppression of innate immunity. Many works have shown that ORF 6 and ORF 8 of SARS-CoV-2 play an important role in suppressing IFN-ß signaling pathway in vivo. However, the relation between HGS and the adaption of SARS-CoV-2 variants is still not clear. This work investigates HGS of SARS-CoV-2 variants based on a dataset containing more than 40,000 viral genomes. The relation between HGS of viral ORFs and the suppression of antivirus response is studied. The results show that ORF 7b, ORF 6 and ORF 8 are the top 3 genes with the highest HGS. In the past 2 years, the HGS values of ORF 8 and ORF 7B of SARS-CoV-2 have increased greatly. A remarkable correlation is discovered between HGS and inhibition of antivirus response of immune system, which suggests that the similarity between coronavirus and host gnome may be an indicator of the suppression of innate immunity. Among the five variants (Alpha, Beta, Delta, Gamma and Omicron), Delta has the highest HGS and Omicron has the lowest HGS. This finding implies that the high HGS in Delta variant may indicate further suppression of host innate immunity. However, the relatively low HGS of Omicron is still a puzzle. By comparing the mutations in genomes of Alpha, Delta and Omicron variants, a commonly shared mutation ACT > ATT is identified in high-HGS strain populations. The high HGS mutations among the three variants are quite different. This finding strongly suggests that mutations in high HGS strains are different in different variants. Only a few common mutations survive, which may play important role in improving the adaptability of SARS-CoV-2. However, the mechanism for how the mutations help SARS-CoV-2 escape immunity is still unclear. HGS analysis is a new method to study virus-host interaction and may provide a way to understand the rapid mutation and adaption of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Humans , Open Reading Frames/genetics , SARS-CoV-2/genetics , Viral Proteins/genetics
13.
PLoS One ; 17(6): e0270314, 2022.
Article in English | MEDLINE | ID: covidwho-1910676

ABSTRACT

Tracking temporal and spatial genomic changes and evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are among the most urgent research topics worldwide, which help to elucidate the coronavirus disease 2019 (COVID-19) pathogenesis and the effect of deleterious variants. Our current study concentrates genetic diversity of SARS-CoV-2 variants in Uzbekistan and their associations with COVID-19 severity. Thirty-nine whole genome sequences (WGS) of SARS-CoV-2 isolated from PCR-positive patients from Tashkent, Uzbekistan for the period of July-August 2021, were generated and further subjected to further genomic analysis. Genome-wide annotations of clinical isolates from our study have revealed a total of 223 nucleotide-level variations including SNPs and 34 deletions at different positions throughout the entire genome of SARS-CoV-2. These changes included two novel mutations at the Nonstructural protein (Nsp) 13: A85P and Nsp12: Y479N, which were unreported previously. There were two groups of co-occurred substitution patterns: the missense mutations in the Spike (S): D614G, Open Reading Frame (ORF) 1b: P314L, Nsp3: F924, 5`UTR:C241T; Nsp3:P2046L and Nsp3:P2287S, and the synonymous mutations in the Nsp4:D2907 (C8986T), Nsp6:T3646A and Nsp14:A1918V regions, respectively. The "Nextstrain" clustered the largest number of SARS-CoV-2 strains into the Delta clade (n = 32; 82%), followed by two Alpha-originated (n = 4; 10,3%) and 20A (n = 3; 7,7%) clades. Geographically the Delta clade sample sequences were grouped into several clusters with the SARS-CoV genotypes from Russia, Denmark, USA, Egypt and Bangladesh. Phylogenetically, the Delta isolates in our study belong to the two main subclades 21A (56%) and 21J (44%). We found that females were more affected by 21A, whereas males by 21J variant (χ2 = 4.57; p ≤ 0.05, n = 32). The amino acid substitution ORF7a:P45L in the Delta isolates found to be significantly associated with disease severity. In conclusion, this study evidenced that Identified novel substitutions Nsp13: A85P and Nsp12: Y479N, have a destabilizing effect, while missense substitution ORF7a: P45L significantly associated with disease severity.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Female , Genome, Viral/genetics , Humans , Male , Mutation , Open Reading Frames/genetics , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Uzbekistan/epidemiology
14.
J Med Virol ; 94(11): 5174-5188, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1905900

ABSTRACT

A characteristic feature of COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is the dysregulated immune response with impaired type I and III interferon (IFN) expression and an overwhelming inflammatory cytokine storm. RIG-I-like receptors (RLRs) and cGAS-STING signaling pathways are responsible for sensing viral infection and inducing IFN production to combat invading viruses. Multiple proteins of SARS-CoV-2 have been reported to modulate the RLR signaling pathways to achieve immune evasion. Although SARS-CoV-2 infection also activates the cGAS-STING signaling by stimulating micronuclei formation during the process of syncytia, whether SARS-CoV-2 modulates the cGAS-STING pathway requires further investigation. Here, we screened 29 SARS-CoV-2-encoded viral proteins to explore the viral proteins that affect the cGAS-STING signaling pathway and found that SARS-CoV-2 open reading frame 10 (ORF10) targets STING to antagonize IFN activation. Overexpression of ORF10 inhibits cGAS-STING-induced interferon regulatory factor 3 phosphorylation, translocation, and subsequent IFN induction. Mechanistically, ORF10 interacts with STING, attenuates the STING-TBK1 association, and impairs STING oligomerization and aggregation and STING-mediated autophagy; ORF10 also prevents the endoplasmic reticulum (ER)-to-Golgi trafficking of STING by anchoring STING in the ER. Taken together, these findings suggest that SARS-CoV-2 ORF10 impairs the cGAS-STING signaling by blocking the translocation of STING and the interaction between STING and TBK1 to antagonize innate antiviral immunity.


Subject(s)
COVID-19 , Interferon Type I , Autophagy , Humans , Immunity, Innate , Interferon Type I/genetics , Interferons , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nucleotidyltransferases/genetics , Open Reading Frames , Protein Serine-Threonine Kinases/genetics , SARS-CoV-2 , Viral Proteins/metabolism
15.
Microbiol Spectr ; 10(4): e0074422, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1901936

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 is responsible for the COVID-19 pandemic that has caused unprecedented loss of life and economic trouble all over the world, though the mechanism of its replication remains poorly understood. In this study, antibodies were generated and used to systematically determine the expression profile and subcellular distribution of 11 SARS-CoV-2 nonstructural replicase proteins (nsp1, nsp2, nsp3, nsp5, nsp7, nsp8, nsp9, nsp10, nsp13, nsp14, and nsp15) by Western blot and immunofluorescence assay. Nsp3, nsp5, and nsp8 were detected in perinuclear foci at different time points, with diffusion and stronger fluorescence observed over time. In particular, colocalization of nsp8 and nsp13 with different replicase proteins suggested viral protein-protein interaction, which may be key to understanding their functions and potential molecular mechanisms. Viral intermediate dsRNA was detected in perinuclear foci as early as 2-h postinfection, indicating the initiation of virus replication. With the passage of time, these perinuclear dsRNA foci became larger and brighter, and nearly all colocalized with N protein, consistent with viral growth over time. Thus, the development of these anti-nsp antibodies provides basic tools for the further study of replication and diagnosis of SARS-CoV-2. IMPORTANCE The intracellular localization of SARS-CoV-2 replicase nonstructural proteins (nsp) during infection has not been fully elucidated. In this study, we systematically analyzed the expression and subcellular localization of 11 distinct viral nsp and dsRNA over time in SARS-CoV-2-infected cells by using individual antibody against these replicase proteins. The data indicated that nsp gene expression is highly regulated in space and time, which could be useful to understand the function of viral replicases and future development of diagnostics and potential antiviral strategies against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Open Reading Frames , Pandemics , RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2/genetics
16.
Genome Biol ; 23(1): 133, 2022 06 20.
Article in English | MEDLINE | ID: covidwho-1896371

ABSTRACT

The COVID-19 pandemic has emphasized the importance of accurate detection of known and emerging pathogens. However, robust characterization of pathogenic sequences remains an open challenge. To address this need we developed SeqScreen, which accurately characterizes short nucleotide sequences using taxonomic and functional labels and a customized set of curated Functions of Sequences of Concern (FunSoCs) specific to microbial pathogenesis. We show our ensemble machine learning model can label protein-coding sequences with FunSoCs with high recall and precision. SeqScreen is a step towards a novel paradigm of functionally informed synthetic DNA screening and pathogen characterization, available for download at www.gitlab.com/treangenlab/seqscreen .


Subject(s)
Machine Learning , Bacteria/genetics , Bacteria/pathogenicity , COVID-19 , Humans , Leukocytes, Mononuclear/virology , Open Reading Frames
17.
Elife ; 112022 05 05.
Article in English | MEDLINE | ID: covidwho-1876105

ABSTRACT

Overlapping coding regions balance selective forces between multiple genes. One possible division of nucleotide sequence is that the predominant selective force on a particular nucleotide can be attributed to just one gene. While this arrangement has been observed in regions in which one gene is structured and the other is disordered, we sought to explore how overlapping genes balance constraints when both protein products are structured over the same sequence. We use a combination of sequence analysis, functional assays, and selection experiments to examine an overlapped region in HIV-1 that encodes helical regions in both Env and Rev. We find that functional segregation occurs even in this overlap, with each protein spacing its functional residues in a manner that allows a mutable non-binding face of one helix to encode important functional residues on a charged face in the other helix. Additionally, our experiments reveal novel and critical functional residues in Env and have implications for the therapeutic targeting of HIV-1.


Subject(s)
HIV-1 , HIV-1/chemistry , HIV-1/genetics , Open Reading Frames
18.
Biochem Biophys Res Commun ; 616: 14-18, 2022 08 06.
Article in English | MEDLINE | ID: covidwho-1850694

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a major threat to human health. As a unique putative protein of SARS-CoV-2, the N-terminus of ORF10 can be recognized by ZYG11B, a substrate receptor of the Cullin 2-RING E3 ubiquitin ligase (CRL2). Here we elucidated recognition mechanism of ORF10 N-terminus by ZYG11B through presenting the crystal structure of ZYG11B bound to ORF10 N-terminal peptide. Our work expands the current understanding of ORF10 interaction with ZYG11B, and may also inspire the development of novel therapies for COVID-19.


Subject(s)
COVID-19 , Cell Cycle Proteins , Open Reading Frames , Ubiquitin-Protein Ligases , COVID-19/metabolism , COVID-19/virology , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cullin Proteins , Humans , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism
19.
Mol Ecol ; 31(13): 3672-3692, 2022 07.
Article in English | MEDLINE | ID: covidwho-1846261

ABSTRACT

Coronaviruses (CoVs) have complex genomes that encode a fixed array of structural and nonstructural components, as well as a variety of accessory proteins that differ even among closely related viruses. Accessory proteins often play a role in the suppression of immune responses and may represent virulence factors. Despite their relevance for CoV phenotypic variability, information on accessory proteins is fragmentary. We applied a systematic approach based on homology detection to create a comprehensive catalogue of accessory proteins encoded by CoVs. Our analyses grouped accessory proteins into 379 orthogroups and 12 super-groups. No orthogroup was shared by the four CoV genera and very few were present in all or most viruses in the same genus, reflecting the dynamic evolution of CoV genomes. We observed differences in the distribution of accessory proteins in CoV genera. Alphacoronaviruses harboured the largest diversity of accessory open reading frames (ORFs), deltacoronaviruses the smallest. However, the average number of accessory proteins per genome was highest in betacoronaviruses. Analysis of the evolutionary history of some orthogroups indicated that the different CoV genera adopted similar evolutionary strategies. Thus, alphacoronaviruses and betacoronaviruses acquired phosphodiesterases and spike-like accessory proteins independently, whereas horizontal gene transfer from reoviruses endowed betacoronaviruses and deltacoronaviruses with fusion-associated small transmembrane (FAST) proteins. Finally, analysis of accessory ORFs in annotated CoV genomes indicated ambiguity in their naming. This complicates cross-communication among researchers and hinders automated searches of large data sets (e.g., PubMed, GenBank). We suggest that orthogroup membership is used together with a naming system to provide information on protein function.


Subject(s)
Coronavirus , Amino Acid Sequence , Coronavirus/chemistry , Coronavirus/genetics , Evolution, Molecular , Genome, Viral/genetics , Open Reading Frames/genetics
20.
J Med Virol ; 94(9): 4193-4205, 2022 09.
Article in English | MEDLINE | ID: covidwho-1844142

ABSTRACT

As one of the most rapidly evolving proteins of the genus Betacoronavirus, open reading frames (ORF8's) function and potential pathological consequence in vivo are still obscure. In this study, we show that the secretion of ORF8 is dependent on its N-terminal signal peptide sequence and can be inhibited by reactive oxygen species scavenger and endoplasmic reticulum-Golgi transportation inhibitor in cultured cells. To trace the effect of its possible in vivo secretion, we examined the plasma samples of coronavirus disease 2019 (COVID-19) convalescent patients and found that the patients aged from 40 to 60 had higher antibody titers than those under 40. To explore ORF8's in vivo function, we administered the mice with ORF8 via tail-vein injection to simulate the circulating ORF8 in the patient. Although no apparent difference in body weight, food intake, and vitality was detected between vehicle- and ORF8-treated mice, the latter displayed morphological abnormalities of testes and epididymides, as indicated by the loss of the central ductal lumen accompanied by a decreased fertility in 5-week-old male mice. Furthermore, the analysis of gene expression in the testes between vehicle- and ORF8-treated mice identified a decreased expression of Col1a1, the loss of which is known to be associated with mice's infertility. Although whether our observation in mice could be translated to humans remains unclear, our study provides a potential mouse model that can be used to investigate the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the human reproductive system.


Subject(s)
COVID-19 , Infertility, Male , SARS-CoV-2 , Viral Proteins , Amino Acid Sequence , Animals , Antibodies, Viral/blood , Fertility , Humans , Infertility, Male/virology , Male , Mice , Open Reading Frames
SELECTION OF CITATIONS
SEARCH DETAIL