Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
EBioMedicine ; 81: 104132, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1914311

ABSTRACT

BACKGROUND: Human seasonal coronaviruses usually cause mild upper-respiratory tract infection, but severe complications can occur in specific populations. Research into seasonal coronaviruses is limited and robust experimental models are largely lacking. This study aims to establish human airway organoids (hAOs)-based systems for seasonal coronavirus infection and to demonstrate their applications in studying virus-host interactions and therapeutic development. METHODS: The infections of seasonal coronaviruses 229E, OC43 and NL63 in 3D cultured hAOs with undifferentiated or differentiated phenotypes were tested. The kinetics of virus replication and production was profiled at 33 °C and 37 °C. Genome-wide transcriptome analysis by RNA sequencing was performed in hAOs under various conditions. The antiviral activity of molnupiravir and remdesivir, two approved medications for treating COVID19, was tested. FINDINGS: HAOs efficiently support the replication and infectious virus production of seasonal coronaviruses 229E, OC43 and NL63. Interestingly, seasonal coronaviruses replicate much more efficiently at 33 °C compared to 37 °C, resulting in over 10-fold higher levels of viral replication. Genome-wide transcriptomic analyses revealed distinct patterns of infection-triggered host responses at 33 °C compared to 37 °C temperature. Treatment of molnupiravir and remdesivir dose-dependently inhibited the replication of 229E, OC43 and NL63 in hAOs. INTERPRETATION: HAOs are capable of modeling 229E, OC43 and NL63 infections. The intriguing finding that lower temperature resembling that in the upper respiratory tract favors viral replication may help to better understand the pathogenesis and transmissibility of seasonal coronaviruses. HAOs-based innovative models shall facilitate the research and therapeutic development against seasonal coronavirus infections. FUNDING: This research is supported by funding of a VIDI grant (No. 91719300) from the Netherlands Organization for Scientific Research and the Dutch Cancer Society Young Investigator Grant (10140) to Q.P., and the ZonMw COVID project (114025011) from the Netherlands Organization for Health Research and Development to R.R.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Respiratory Tract Infections , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Coronavirus 229E, Human/genetics , Humans , Organoids/pathology , Respiratory System/pathology , Respiratory Tract Infections/pathology , Seasons
2.
J Mol Biol ; 434(3): 167243, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1851574

ABSTRACT

Brain organoids are self-organized three-dimensional aggregates generated from pluripotent stem cells. They exhibit complex cell diversities and organized architectures that resemble human brain development ranging from neural tube formation, neuroepithelium differentiation, neurogenesis and gliogenesis, to neural circuit formation. Rapid advancements in brain organoid culture technologies have allowed researchers to generate more accurate models of human brain development and neurological diseases. These models also allow for direct investigation of pathological processes associated with infectious diseases affecting the nervous system. In this review, we first briefly summarize recent advancements in brain organoid methodologies and neurodevelopmental processes that can be effectively modeled by brain organoids. We then focus on applications of brain organoids to investigate the pathogenesis of neurotropic viral infection. Finally, we discuss limitations of the current brain organoid methodologies as well as applications of other organ specific organoids in the infectious disease research.


Subject(s)
Communicable Diseases , Organoids , Brain/pathology , Cell Differentiation , Humans , Neurogenesis , Organoids/pathology
3.
Cell Stem Cell ; 29(2): 217-231.e8, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1586459

ABSTRACT

Kidney failure is frequently observed during and after COVID-19, but it remains elusive whether this is a direct effect of the virus. Here, we report that SARS-CoV-2 directly infects kidney cells and is associated with increased tubule-interstitial kidney fibrosis in patient autopsy samples. To study direct effects of the virus on the kidney independent of systemic effects of COVID-19, we infected human-induced pluripotent stem-cell-derived kidney organoids with SARS-CoV-2. Single-cell RNA sequencing indicated injury and dedifferentiation of infected cells with activation of profibrotic signaling pathways. Importantly, SARS-CoV-2 infection also led to increased collagen 1 protein expression in organoids. A SARS-CoV-2 protease inhibitor was able to ameliorate the infection of kidney cells by SARS-CoV-2. Our results suggest that SARS-CoV-2 can directly infect kidney cells and induce cell injury with subsequent fibrosis. These data could explain both acute kidney injury in COVID-19 patients and the development of chronic kidney disease in long COVID.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/complications , Fibrosis , Humans , Kidney , Organoids/pathology
5.
Cells ; 10(11)2021 11 04.
Article in English | MEDLINE | ID: covidwho-1533814

ABSTRACT

Lung cancer organoid (LCO) is a novel model of lung cancer that facilitates drug screening. However, the success rate of LCOs varies from 7% to 87%, and the culture medium compositions are markedly different. Airway organoid media can be used for LCO cultures, but this promotes the overgrowth of normal cell organoids especially in LCOs from intrapulmonary lesions. Several modified media are specifically utilized for promoting the cancer cell's growth. For culturing high-purity LCOs, cancer cells from metastatic lesions and malignant effusions are used. Recently, single-cell RNA sequencing has identified previously unknown cell populations in the lungs and lung cancer. This sequencing technology can be used to validate whether the LCO recapitulates the heterogeneity and functional hierarchy of the primary tumor. Several groups have attempted to culture LCOs with mesenchymal cells and immune cells to recapitulate the tumor microenvironment. Disease modeling using LCO provides novel insight into the pathophysiology of lung cancer and enables high-throughput screening for drug discovery and prognosis prediction. An LCO model would help to identify new concepts as a basis for lung cancer targeting by discovering innovative therapeutic targets.


Subject(s)
Lung Neoplasms/pathology , Organoids/pathology , Animals , Clinical Trials as Topic , Disease Models, Animal , Humans , Reproducibility of Results , Tumor Microenvironment
6.
Nat Commun ; 12(1): 6610, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1521737

ABSTRACT

COVID-19 typically manifests as a respiratory illness, but several clinical reports have described gastrointestinal symptoms. This is particularly true in children in whom gastrointestinal symptoms are frequent and viral shedding outlasts viral clearance from the respiratory system. These observations raise the question of whether the virus can replicate within the stomach. Here we generate gastric organoids from fetal, pediatric, and adult biopsies as in vitro models of SARS-CoV-2 infection. To facilitate infection, we induce reverse polarity in the gastric organoids. We find that the pediatric and late fetal gastric organoids are susceptible to infection with SARS-CoV-2, while viral replication is significantly lower in undifferentiated organoids of early fetal and adult origin. We demonstrate that adult gastric organoids are more susceptible to infection following differentiation. We perform transcriptomic analysis to reveal a moderate innate antiviral response and a lack of differentially expressed genes belonging to the interferon family. Collectively, we show that the virus can efficiently infect the gastric epithelium, suggesting that the stomach might have an active role in fecal-oral SARS-CoV-2 transmission.


Subject(s)
COVID-19/pathology , Intestinal Mucosa/virology , Organoids/virology , SARS-CoV-2/physiology , Stomach/virology , Virus Replication/physiology , Aborted Fetus , Aged , Animals , COVID-19/virology , Cell Line , Child , Child, Preschool , Chlorocebus aethiops , Humans , Infant , Intestinal Mucosa/pathology , Middle Aged , Organoids/pathology , SARS-CoV-2/isolation & purification , Stomach/pathology
7.
Int J Mol Sci ; 22(3)2021 Jan 26.
Article in English | MEDLINE | ID: covidwho-1389389

ABSTRACT

A high-throughput drug screen identifies potentially promising therapeutics for clinical trials. However, limitations that persist in current disease modeling with limited physiological relevancy of human patients skew drug responses, hamper translation of clinical efficacy, and contribute to high clinical attritions. The emergence of induced pluripotent stem cell (iPSC) technology revolutionizes the paradigm of drug discovery. In particular, iPSC-based three-dimensional (3D) tissue engineering that appears as a promising vehicle of in vitro disease modeling provides more sophisticated tissue architectures and micro-environmental cues than a traditional two-dimensional (2D) culture. Here we discuss 3D based organoids/spheroids that construct the advanced modeling with evolved structural complexity, which propels drug discovery by exhibiting more human specific and diverse pathologies that are not perceived in 2D or animal models. We will then focus on various central nerve system (CNS) disease modeling using human iPSCs, leading to uncovering disease pathogenesis that guides the development of therapeutic strategies. Finally, we will address new opportunities of iPSC-assisted drug discovery with multi-disciplinary approaches from bioengineering to Omics technology. Despite technological challenges, iPSC-derived cytoarchitectures through interactions of diverse cell types mimic patients' CNS and serve as a platform for therapeutic development and personalized precision medicine.


Subject(s)
Central Nervous System Diseases/drug therapy , Drug Discovery/methods , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Tissue Engineering/methods , Animals , COVID-19/drug therapy , COVID-19/pathology , Central Nervous System Diseases/pathology , Drug Discovery/instrumentation , Drug Evaluation, Preclinical/instrumentation , Drug Evaluation, Preclinical/methods , Humans , Induced Pluripotent Stem Cells/pathology , Lab-On-A-Chip Devices , Organoids/cytology , Organoids/drug effects , Organoids/pathology , Tissue Engineering/instrumentation , Zika Virus Infection/drug therapy , Zika Virus Infection/pathology
8.
Vet Res ; 52(1): 77, 2021 Jun 02.
Article in English | MEDLINE | ID: covidwho-1257965

ABSTRACT

The number and severity of diseases affecting lung development and adult respiratory function have stimulated great interest in developing new in vitro models to study lung in different species. Recent breakthroughs in 3-dimensional (3D) organoid cultures have led to new physiological in vitro models that better mimic the lung than conventional 2D cultures. Lung organoids simulate multiple aspects of the real organ, making them promising and useful models for studying organ development, function and disease (infection, cancer, genetic disease). Due to their dynamics in culture, they can serve as a sustainable source of functional cells (biobanking) and be manipulated genetically. Given the differences between species regarding developmental kinetics, the maturation of the lung at birth, the distribution of the different cell populations along the respiratory tract and species barriers for infectious diseases, there is a need for species-specific lung models capable of mimicking mammal lungs as they are of great interest for animal health and production, following the One Health approach. This paper reviews the latest developments in the growing field of lung organoids.


Subject(s)
Lung , Mammals , Organoids , Tissue Culture Techniques/methods , Animals , Lung/growth & development , Lung/pathology , Lung/physiopathology , Organoids/growth & development , Organoids/pathology , Organoids/physiopathology
9.
Mol Cells ; 44(6): 377-383, 2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1289259

ABSTRACT

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a novel virus that causes coronavirus disease 2019 (COVID-19). To understand the identity, functional characteristics and therapeutic targets of the virus and the diseases, appropriate infection models that recapitulate the in vivo pathophysiology of the viral infection are necessary. This article reviews the various infection models, including Vero cells, human cell lines, organoids, and animal models, and discusses their advantages and disadvantages. This knowledge will be helpful for establishing an efficient system for defense against emerging infectious diseases.


Subject(s)
COVID-19/virology , Models, Theoretical , Organoids/virology , SARS-CoV-2/pathogenicity , Animals , COVID-19/immunology , COVID-19/pathology , Cats , Cell Line, Tumor , Chickens/virology , Chlorocebus aethiops/virology , Cricetinae , Dogs , Ferrets/virology , Humans , Mice , Organoids/immunology , Organoids/pathology , Rabbits , SARS-CoV-2/growth & development , Swine/virology , Vero Cells
10.
J Pathol ; 254(4): 303-306, 2021 07.
Article in English | MEDLINE | ID: covidwho-1258101

ABSTRACT

The 2021 Annual Review Issue of The Journal of Pathology contains 14 invited reviews on current research areas of particular importance in pathology. The subjects included here reflect the broad range of interests covered by the journal, including both basic and applied research fields but always with the aim of improving our understanding of human disease. This year, our reviews encompass the huge impact of the COVID-19 pandemic, the development and application of biomarkers for immune checkpoint inhibitors, recent advances in multiplexing antigen/nucleic acid detection in situ, the use of genomics to aid drug discovery, organoid methodologies in research, the microbiome in cancer, the role of macrophage-stroma interactions in fibrosis, and TGF-ß as a driver of fibrosis in multiple pathologies. Other reviews revisit the p53 field and its lack of clinical impact to date, dissect the genetics of mitochondrial diseases, summarise the cells of origin and genetics of sarcomagenesis, provide new data on the role of TRIM28 in tumour predisposition, review our current understanding of cancer stem cell niches, and the function and regulation of p63. The reviews are authored by experts in their field from academia and industry, and provide comprehensive updates of the chosen areas, in which there has been considerable recent progress. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
COVID-19/genetics , COVID-19/virology , Neoplasms/pathology , SARS-CoV-2/pathogenicity , COVID-19/pathology , Genomics/methods , Humans , Neoplasms/complications , Neoplasms/genetics , Organoids/pathology , United Kingdom
11.
Stem Cell Reports ; 16(5): 1156-1164, 2021 05 11.
Article in English | MEDLINE | ID: covidwho-1225409

ABSTRACT

Coronavirus disease 2019 (COVID-19) patients have manifested a variety of neurological complications, and there is still much to reveal regarding the neurotropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human stem cell-derived brain organoids offer a valuable in vitro approach to study the cellular effects of SARS-CoV-2 on the brain. Here we used human embryonic stem cell-derived cortical organoids to investigate whether SARS-CoV-2 could infect brain tissue in vitro and found that cortical organoids could be infected at low viral titers and within 6 h. Importantly, we show that glial cells and cells of the choroid plexus were preferentially targeted in our model, but not neurons. Interestingly, we also found expression of angiotensin-converting enzyme 2 in SARS-CoV-2 infected cells; however, viral replication and cell death involving DNA fragmentation does not occur. We believe that our model is a tractable platform to study the cellular effects of SARS-CoV-2 infection in brain tissue.


Subject(s)
COVID-19/pathology , Choroid Plexus/pathology , Human Embryonic Stem Cells/cytology , Neuroglia/virology , Organoids/innervation , Organoids/pathology , Cells, Cultured , Choroid Plexus/cytology , Choroid Plexus/virology , Humans , Neuroglia/pathology , Neurons/virology , Organoids/cytology , SARS-CoV-2/pathogenicity
12.
Stem Cell Reports ; 16(4): 940-953, 2021 04 13.
Article in English | MEDLINE | ID: covidwho-1180038

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leading to coronavirus disease 2019 (COVID-19) usually results in respiratory disease, but extrapulmonary manifestations are of major clinical interest. Intestinal symptoms of COVID-19 are present in a significant number of patients, and include nausea, diarrhea, and viral RNA shedding in feces. Human induced pluripotent stem cell-derived intestinal organoids (HIOs) represent an inexhaustible cellular resource that could serve as a valuable tool to study SARS-CoV-2 as well as other enteric viruses that infect the intestinal epithelium. Here, we report that SARS-CoV-2 productively infects both proximally and distally patterned HIOs, leading to the release of infectious viral particles while stimulating a robust transcriptomic response, including a significant upregulation of interferon-related genes that appeared to be conserved across multiple epithelial cell types. These findings illuminate a potential inflammatory epithelial-specific signature that may contribute to both the multisystemic nature of COVID-19 as well as its highly variable clinical presentation.


Subject(s)
COVID-19/pathology , Colon/pathology , Intestinal Mucosa/pathology , Organoids/pathology , Cell Line , Colon/virology , Epithelial Cells/virology , Humans , Induced Pluripotent Stem Cells/cytology , Inflammation/virology , Intestinal Mucosa/virology , Models, Biological , Organoids/cytology , Organoids/virology , SARS-CoV-2 , Virus Replication/physiology
13.
Int J Mol Sci ; 22(5)2021 Feb 26.
Article in English | MEDLINE | ID: covidwho-1115421

ABSTRACT

In this Review, we briefly describe the basic virology and pathogenesis of SARS-CoV-2, highlighting how stem cell technology and organoids can contribute to the understanding of SARS-CoV-2 cell tropisms and the mechanism of disease in the human host, supporting and clarifying findings from clinical studies in infected individuals. We summarize here the results of studies, which used these technologies to investigate SARS-CoV-2 pathogenesis in different organs. Studies with in vitro models of lung epithelia showed that alveolar epithelial type II cells, but not differentiated lung alveolar epithelial type I cells, are key targets of SARS-CoV-2, which triggers cell apoptosis and inflammation, while impairing surfactant production. Experiments with human small intestinal organoids and colonic organoids showed that the gastrointestinal tract is another relevant target for SARS-CoV-2. The virus can infect and replicate in enterocytes and cholangiocytes, inducing cell damage and inflammation. Direct viral damage was also demonstrated in in vitro models of human cardiomyocytes and choroid plexus epithelial cells. At variance, endothelial cells and neurons are poorly susceptible to viral infection, thus supporting the hypothesis that neurological symptoms and vascular damage result from the indirect effects of systemic inflammatory and immunological hyper-responses to SARS-CoV-2 infection.


Subject(s)
COVID-19/pathology , Organoids/virology , SARS-CoV-2/physiology , Stem Cells/virology , Animals , Apoptosis , COVID-19/virology , Cardiovascular System/cytology , Cardiovascular System/pathology , Cardiovascular System/virology , Central Nervous System/cytology , Central Nervous System/pathology , Central Nervous System/virology , Gastrointestinal Tract/cytology , Gastrointestinal Tract/pathology , Gastrointestinal Tract/virology , Humans , Inflammation/pathology , Inflammation/virology , Lung/cytology , Lung/pathology , Lung/virology , Organoids/pathology , Stem Cells/pathology , Viral Tropism , Virus Internalization
14.
EMBO J ; 40(5): e107651, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1082516

ABSTRACT

Defining the pulmonary cell types infected by SARS-CoV-2 and finding ways to prevent subsequent tissue damage are key goals for controlling COVID-19. Recent work establishing a human lung organoid-derived air-liquid interface model permissive to SARS-CoV-2 infection identifies alveolar type II cells as the primary cell type infected, reports an infection-induced interferon response and demonstrates the effectiveness of interferon lambda 1 treatment in dampening lung infection.


Subject(s)
Alveolar Epithelial Cells/metabolism , COVID-19/metabolism , Models, Biological , Organoids/metabolism , SARS-CoV-2/physiology , Virus Replication , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , COVID-19/drug therapy , COVID-19/pathology , Humans , Organoids/pathology , Organoids/virology
15.
EMBO Mol Med ; 13(4): e13191, 2021 04 09.
Article in English | MEDLINE | ID: covidwho-1068062

ABSTRACT

SARS-CoV-2, the agent that causes COVID-19, invades epithelial cells, including those of the respiratory and gastrointestinal mucosa, using angiotensin-converting enzyme-2 (ACE2) as a receptor. Subsequent inflammation can promote rapid virus clearance, but severe cases of COVID-19 are characterized by an inefficient immune response that fails to clear the infection. Using primary epithelial organoids from human colon, we explored how the central antiviral mediator IFN-γ, which is elevated in COVID-19, affects epithelial cell differentiation, ACE2 expression, and susceptibility to infection with SARS-CoV-2. In mouse and human colon, ACE2 is mainly expressed by surface enterocytes. Inducing enterocyte differentiation in organoid culture resulted in increased ACE2 production. IFN-γ treatment promoted differentiation into mature KRT20+ enterocytes expressing high levels of ACE2, increased susceptibility to SARS-CoV-2 infection, and resulted in enhanced virus production in infected cells. Similarly, infection-induced epithelial interferon signaling promoted enterocyte maturation and enhanced ACE2 expression. We here reveal a mechanism by which IFN-γ-driven inflammatory responses induce a vulnerable epithelial state with robust replication of SARS-CoV-2, which may have an impact on disease outcome and virus transmission.


Subject(s)
COVID-19/etiology , Interferon-gamma/immunology , Models, Immunological , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/immunology , COVID-19/pathology , Cell Differentiation/immunology , Colon/immunology , Colon/pathology , Colon/virology , Disease Susceptibility , Enterocytes/metabolism , Enterocytes/pathology , Enterocytes/virology , Gene Expression , Host Microbial Interactions/immunology , Humans , Interferon-gamma/administration & dosage , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/virology , Mice , Organoids/immunology , Organoids/pathology , Organoids/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Virus Replication/immunology
16.
EMBO J ; 40(2): e107213, 2021 01 15.
Article in English | MEDLINE | ID: covidwho-1068058

ABSTRACT

COVID-19 is increasingly understood as a systemic disease with pathogenic manifestations beyond the respiratory tract. Recent work by Ramani et al (2020) dissects the cellular and molecular mechanisms of SARS-CoV-2's neurotrophic properties, using viral exposure of human brain organoids. Their findings highlight neurons as primary target of cerebral SARS-CoV-2 infection and uncover its Tau-related neurotoxicity.


Subject(s)
Brain/pathology , Brain/virology , COVID-19/pathology , Organoids/pathology , tau Proteins/metabolism , Humans , Neurons/pathology , Neurons/virology , Organoids/virology , SARS-CoV-2/pathogenicity
17.
Int J Mol Sci ; 22(3)2021 Jan 26.
Article in English | MEDLINE | ID: covidwho-1050617

ABSTRACT

A high-throughput drug screen identifies potentially promising therapeutics for clinical trials. However, limitations that persist in current disease modeling with limited physiological relevancy of human patients skew drug responses, hamper translation of clinical efficacy, and contribute to high clinical attritions. The emergence of induced pluripotent stem cell (iPSC) technology revolutionizes the paradigm of drug discovery. In particular, iPSC-based three-dimensional (3D) tissue engineering that appears as a promising vehicle of in vitro disease modeling provides more sophisticated tissue architectures and micro-environmental cues than a traditional two-dimensional (2D) culture. Here we discuss 3D based organoids/spheroids that construct the advanced modeling with evolved structural complexity, which propels drug discovery by exhibiting more human specific and diverse pathologies that are not perceived in 2D or animal models. We will then focus on various central nerve system (CNS) disease modeling using human iPSCs, leading to uncovering disease pathogenesis that guides the development of therapeutic strategies. Finally, we will address new opportunities of iPSC-assisted drug discovery with multi-disciplinary approaches from bioengineering to Omics technology. Despite technological challenges, iPSC-derived cytoarchitectures through interactions of diverse cell types mimic patients' CNS and serve as a platform for therapeutic development and personalized precision medicine.


Subject(s)
Central Nervous System Diseases/drug therapy , Drug Discovery/methods , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Tissue Engineering/methods , Animals , COVID-19/drug therapy , COVID-19/pathology , Central Nervous System Diseases/pathology , Drug Discovery/instrumentation , Drug Evaluation, Preclinical/instrumentation , Drug Evaluation, Preclinical/methods , Humans , Induced Pluripotent Stem Cells/pathology , Lab-On-A-Chip Devices , Organoids/cytology , Organoids/drug effects , Organoids/pathology , Tissue Engineering/instrumentation , Zika Virus Infection/drug therapy , Zika Virus Infection/pathology
18.
J Exp Med ; 218(3)2021 03 01.
Article in English | MEDLINE | ID: covidwho-1024074

ABSTRACT

Although COVID-19 is considered to be primarily a respiratory disease, SARS-CoV-2 affects multiple organ systems including the central nervous system (CNS). Yet, there is no consensus on the consequences of CNS infections. Here, we used three independent approaches to probe the capacity of SARS-CoV-2 to infect the brain. First, using human brain organoids, we observed clear evidence of infection with accompanying metabolic changes in infected and neighboring neurons. However, no evidence for type I interferon responses was detected. We demonstrate that neuronal infection can be prevented by blocking ACE2 with antibodies or by administering cerebrospinal fluid from a COVID-19 patient. Second, using mice overexpressing human ACE2, we demonstrate SARS-CoV-2 neuroinvasion in vivo. Finally, in autopsies from patients who died of COVID-19, we detect SARS-CoV-2 in cortical neurons and note pathological features associated with infection with minimal immune cell infiltrates. These results provide evidence for the neuroinvasive capacity of SARS-CoV-2 and an unexpected consequence of direct infection of neurons by SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Blocking/chemistry , COVID-19 , Cerebral Cortex , Neurons , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , COVID-19/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cerebral Cortex/virology , Disease Models, Animal , Female , Humans , Male , Mice , Middle Aged , Neurons/metabolism , Neurons/pathology , Neurons/virology , Organoids/metabolism , Organoids/pathology , Organoids/virology
20.
Cell Stem Cell ; 28(2): 331-342.e5, 2021 02 04.
Article in English | MEDLINE | ID: covidwho-1009887

ABSTRACT

ApoE4, a strong genetic risk factor for Alzheimer disease, has been associated with increased risk for severe COVID-19. However, it is unclear whether ApoE4 alters COVID-19 susceptibility or severity, and the role of direct viral infection in brain cells remains obscure. We tested the neurotropism of SARS-CoV2 in human-induced pluripotent stem cell (hiPSC) models and observed low-grade infection of neurons and astrocytes that is boosted in neuron-astrocyte co-cultures and organoids. We then generated isogenic ApoE3/3 and ApoE4/4 hiPSCs and found an increased rate of SARS-CoV-2 infection in ApoE4/4 neurons and astrocytes. ApoE4 astrocytes exhibited enlarged size and elevated nuclear fragmentation upon SARS-CoV-2 infection. Finally, we show that remdesivir treatment inhibits SARS-CoV2 infection of hiPSC neurons and astrocytes. These findings suggest that ApoE4 may play a causal role in COVID-19 severity. Understanding how risk factors impact COVID-19 susceptibility and severity will help us understand the potential long-term effects in different patient populations.


Subject(s)
Apolipoproteins E/metabolism , Brain/pathology , Brain/virology , COVID-19/virology , Induced Pluripotent Stem Cells/virology , SARS-CoV-2/physiology , Tropism/physiology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Antiviral Agents/pharmacology , Astrocytes/drug effects , Astrocytes/pathology , Astrocytes/virology , Cell Differentiation , Chlorocebus aethiops , Humans , Nerve Degeneration/pathology , Neurites/pathology , Neurons/drug effects , Neurons/pathology , Neurons/virology , Organoids/drug effects , Organoids/pathology , Organoids/virology , Protein Isoforms/metabolism , Synapses/pathology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL