Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Viruses ; 14(4)2022 03 23.
Article in English | MEDLINE | ID: covidwho-1834917

ABSTRACT

In recent years, advances in diagnostics and deep sequencing technologies have led to the identification and characterization of novel viruses in cats as protoparviruses and chaphamaparvoviruses, unveiling the diversity of the feline virome in the respiratory tract. Observational, epidemiological and experimental data are necessary to demonstrate firmly if some viruses are able to cause disease, as this information may be confounded by virus- or host-related factors. Also, in recent years, researchers were able to monitor multiple examples of transmission to felids of viruses with high pathogenic potential, such as the influenza virus strains H5N1, H1N1, H7N2, H5N6 and H3N2, and in the late 2019, the human hypervirulent coronavirus SARS-CoV-2. These findings suggest that the study of viral infections always requires a multi-disciplinary approach inspired by the One Health vision. By reviewing the literature, we provide herewith an update on the emerging viruses identified in cats and their potential association with respiratory disease.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza, Human , Orthomyxoviridae Infections , Animals , COVID-19/veterinary , Cats , Humans , Influenza A Virus, H3N2 Subtype , Influenza A Virus, H7N2 Subtype , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , SARS-CoV-2/genetics
2.
Emerg Infect Dis ; 27(12): 3045-3051, 2021.
Article in English | MEDLINE | ID: covidwho-1613521

ABSTRACT

Influenza strains circulating among swine populations can cause outbreaks in humans. In October 2020, we detected a variant influenza A subtype H1N2 of swine origin in a person in Alberta, Canada. We initiated a public health, veterinary, and laboratory investigation to identify the source of the infection and determine whether it had spread. We identified the probable source as a local pig farm where a household contact of the index patient worked. Phylogenetic analysis revealed that the isolate closely resembled strains found at that farm in 2017. Retrospective and prospective surveillance using molecular testing did not identify any secondary cases among 1,532 persons tested in the surrounding area. Quick collaboration between human and veterinary public health practitioners in this case enabled a rapid response to a potential outbreak.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Alberta/epidemiology , Animals , Humans , Influenza A Virus, H1N2 Subtype , Influenza A Virus, H3N2 Subtype , Influenza, Human/epidemiology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Phylogeny , Prospective Studies , Retrospective Studies , Swine , Swine Diseases/epidemiology
3.
Transbound Emerg Dis ; 68(6): 3349-3359, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1526423

ABSTRACT

The influenza D virus (IDV) was first identified and characterized in 2011. Considering the virus' zoonotic potential, its genome nature (segmented RNA virus), its worldwide circulation in livestock and its role in bovine respiratory disease, an increased interest is given to IDV. However, few data are available on drivers of emergence of IDV. We first listed fifty possible drivers of emergence of IDV in ruminants and swine. As recently carried out for COVID-19 in pets (Transboundary and Emerging Diseases, 2020), a scoring system was developed per driver and scientific experts (N = 28) were elicited to (a) allocate a score to each driver, (b) weight the drivers' scores within each domain and (c) weight the different domains among themselves. An overall weighted score was calculated per driver, and drivers were ranked in decreasing order. Drivers with comparable likelihoods to play a role in the emergence of IDV in ruminants and swine in Europe were grouped using a regression tree analysis. Finally, the robustness of the expert elicitation was verified. Eight drivers were ranked with the highest probability to play a key role in the emergence of IDV: current species specificity of the causing agent of the disease; influence of (il)legal movements of live animals (ruminants, swine) from neighbouring/European Union member states and from third countries for the disease to (re-)emerge in a given country; detection of emergence; current knowledge of the pathogen; vaccine availability; animal density; and transport vehicles of live animals. As there is still limited scientific knowledge on the topic, expert elicitation of knowledge and multi-criteria decision analysis, in addition to clustering and sensitivity analyses, are very important to prioritize future studies, starting from the top eight drivers. The present methodology could be applied to other emerging animal diseases.


Subject(s)
COVID-19 , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Animals , COVID-19/veterinary , Cattle , Europe/epidemiology , Humans , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/veterinary , SARS-CoV-2 , Swine , Swine Diseases/epidemiology , Swine Diseases/prevention & control
4.
Front Immunol ; 11: 596964, 2020.
Article in English | MEDLINE | ID: covidwho-1067653

ABSTRACT

We designed the killed swine influenza A virus (SwIAV) H1N2 antigen (KAg) with polyriboinosinic:polyribocytidylic acid [(Poly(I:C)] adsorbed corn-derived Nano-11 particle based nanovaccine called Nano-11-KAg+Poly(I:C), and evaluated its immune correlates in maternally derived antibody (MDA)-positive pigs against a heterologous H1N1 SwIAV infection. Immunologically, in tracheobronchial lymph nodes (TBLN) detected enhanced H1N2-specific cytotoxic T-lymphocytes (CTLs) in Nano-11-KAg+Poly(I:C) vaccinates, and in commercial vaccinates detected CTLs with mainly IL-17A+ and early effector phenotypes specific to both H1N2 and H1N1 SwAIV. In commercial vaccinates, activated H1N2- and H1N1-specific IFNγ+&TNFα+, IL-17A+ and central memory T-helper/Memory cells, and in Nano-11-KAg+Poly(I:C) vaccinates H1N2-specific central memory, IFNγ+ and IFNγ+&TNFα+, and H1N1-specific IL-17A+ T-helper/Memory cells were observed. Systemically, Nano-11-KAg+Poly(I:C) vaccine augmented H1N2-specific IFNγ+ CTLs and H1N1-specific IFNγ+ T-helper/Memory cells, and commercial vaccine boosted H1N2- specific early effector CTLs and H1N1-specific IFNγ+&TNFα+ CTLs, as well as H1N2- and H1N1-specific T-helper/Memory cells with central memory, IFNγ+&TNFα+, and IL-17A+ phenotypes. Remarkably, commercial vaccine induced an increase in H1N1-specific T-helper cells in TBLN and naive T-helper cells in both TBLN and peripheral blood mononuclear cells (PBMCs), while H1N1- and H1N2-specific only T-helper cells were augmented in Nano-11-KAg+Poly(I:C) vaccinates in both TBLN and PBMCs. Furthermore, the Nano-11-KAg+Poly(I:C) vaccine stimulated robust cross-reactive IgG and secretory IgA (SIgA) responses in lungs, while the commercial vaccine elicited high levels of serum and lung IgG and serum hemagglutination inhibition (HI) titers. In conclusion, despite vast genetic difference (77% in HA gene identity) between the vaccine H1N2 and H1N1 challenge viruses in Nano-11-KAg+Poly(I:C) vaccinates, compared to over 95% identity between H1N1 of commercial vaccine and challenge viruses, the virus load and macroscopic lesions in the lungs of both types of vaccinates were comparable, but the Nano-11-KAg+Poly(I:C) vaccine cleared the virus from the nasal passage better. These data suggested the important role played by Nano-11 and Poly(I:C) in the induction of polyfunctional, cross-protective cell-mediated immunity against SwIAV in MDA-positive pigs.


Subject(s)
Influenza A virus/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Nanoparticles , Orthomyxoviridae Infections/veterinary , Poly I-C , Swine Diseases/prevention & control , Vaccines, Inactivated , Animals , Antibodies, Viral/immunology , Antigens, Viral/immunology , Cross Reactions , Cytokines/metabolism , Immunity, Cellular , Immunologic Memory , Influenza Vaccines/chemistry , Nanoparticles/chemistry , Poly I-C/chemistry , Swine , Swine Diseases/immunology , Swine Diseases/virology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Viral Load
5.
Emerg Infect Dis ; 26(1): 173-176, 2020 01.
Article in English | MEDLINE | ID: covidwho-966221

ABSTRACT

We examined nasal swabs and serum samples acquired from dromedary camels in Nigeria and Ethiopia during 2015-2017 for evidence of influenza virus infection. We detected antibodies against influenza A(H1N1) and A(H3N2) viruses and isolated an influenza A(H1N1)pdm09-like virus from a camel in Nigeria. Influenza surveillance in dromedary camels is needed.


Subject(s)
Camelus/virology , Influenza A virus , Orthomyxoviridae Infections/veterinary , Animals , Ethiopia/epidemiology , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Nigeria/epidemiology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology
6.
Emerg Infect Dis ; 26(1): 168-171, 2020 01.
Article in English | MEDLINE | ID: covidwho-829054

ABSTRACT

Influenza D virus (IDV) can potentially cause respiratory diseases in livestock. We isolated a new IDV strain from diseased cattle in Japan; this strain is phylogenetically and antigenically distinguished from the previously described IDVs.


Subject(s)
Cattle Diseases/epidemiology , Orthomyxoviridae Infections/veterinary , Thogotovirus/genetics , Animals , Cattle/virology , Cattle Diseases/virology , Japan/epidemiology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology , Phyllachorales , Real-Time Polymerase Chain Reaction/veterinary
7.
Virology ; 551: 10-15, 2020 12.
Article in English | MEDLINE | ID: covidwho-796700

ABSTRACT

Bovine respiratory disease (BRD) is the costliest disease affecting the cattle industry globally. Orthomyxoviruses, influenza C virus (ICV) and influenza D virus (IDV) have recently been implicated to play a role in BRD. However, there are contradicting reports about the association of IDV and ICV to BRD. Using the largest cohort study (cattle, n = 599) to date we investigated the association of influenza viruses in cattle with BRD. Cattle were scored for respiratory symptoms and pooled nasal and pharyngeal swabs were tested for bovine viral diarrhea virus, bovine herpesvirus 1, bovine respiratory syncytial virus, bovine coronavirus, ICV and IDV by real-time PCR. Cattle that have higher viral loads of IDV and ICV also have greater numbers of co-infecting viruses than controls. More strikingly, 2 logs higher IDV viral RNA in BRD-symptomatic cattle that are co-infected animals than those infected with IDV alone. Our results strongly suggest that ICV and IDV may be significant contributors to BRD.


Subject(s)
Bovine Respiratory Disease Complex/virology , Influenzavirus C/pathogenicity , Orthomyxoviridae Infections/veterinary , Thogotovirus/pathogenicity , Viral Load/veterinary , Animals , Bovine Respiratory Disease Complex/epidemiology , Cattle , Coinfection/epidemiology , Coinfection/veterinary , Coinfection/virology , Female , Influenzavirus C/isolation & purification , Livestock , Male , Odds Ratio , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology , Prevalence , RNA, Viral/analysis , Thogotovirus/isolation & purification
8.
J Vet Diagn Invest ; 32(4): 585-588, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-603625

ABSTRACT

Influenza D virus (IDV) is considered a new agent involved in bovine respiratory disease (BRD). Based on seroprevalence studies or isolation from clinical samples, this virus has been detected on several continents and in several animal species, including cattle, pigs, camel, horses, and goats. We used an indirect in-house ELISA to detect anti-IDV antibodies in 165 serum samples from bulls on 116 farms in the province of La Pampa, Argentina. Eighty-five of 116 (73%) farms had at least 1 positive animal, and 112 of 165 (68%) of the analyzed samples were positive. There were no significant differences in the proportion of seropositive samples depending on the geographic region in which the samples were taken. Our results suggest that IDV infection is endemic in La Pampa; the clinical importance of IDV in Argentina remains to be investigated.


Subject(s)
Cattle Diseases/epidemiology , Orthomyxoviridae Infections/veterinary , Thogotovirus/isolation & purification , Animals , Antibodies, Viral/blood , Argentina/epidemiology , Cattle , Cattle Diseases/virology , Enzyme-Linked Immunosorbent Assay/veterinary , Male , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology , Prevalence , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL