Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Laryngol Otol ; 135(8): 710-717, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1340961

ABSTRACT

OBJECTIVE: The application of a 4K display resolution three-dimensional exoscope system (Vitom 3D) was evaluated to determine the feasibility of adopting the system in ENT surgery in the coronavirus disease 2019 era and beyond. METHODS: Eighteen ENT surgeons performed structured otological tasks on fresh-frozen sheep heads using the Vitom 3D. Structured feedback of the participants' experience was analysed. RESULTS: Seventy-four per cent and 94 per cent of participants reported that the Vitom 3D was ergonomic and comfortable to use respectively. Whilst colour fidelity and image quality were very good, 50 per cent of participants reported image distortion and pixilation at the highest magnification. All participants agreed that there was an increased educational value to exoscope technology. Half the participants preferred the microscope over the Vitom 3D for fine otological work, which may reflect the learning curve. CONCLUSION: The Vitom 3D exoscope is a promising and viable alternative for performing otological surgery when using full personal protective equipment in the coronavirus disease 2019 era.


Subject(s)
COVID-19/epidemiology , Microscopy/instrumentation , Otologic Surgical Procedures/methods , Animals , Disease Models, Animal , Feasibility Studies , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/surgery , Humans , Microscopy/methods , Otologic Surgical Procedures/education , Otologic Surgical Procedures/instrumentation , Sheep
2.
Otol Neurotol ; 42(3): e378-e379, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1109359

ABSTRACT

OBJECTIVE: The recent COVID-19 pandemic has required careful reconsideration of safe operating room practices. We describe our initial experiences performing otologic surgery with the exoscope during the COVID-19 pandemic. METHOD: The exoscope was used for several semiurgent otologic surgeries in combination with complete eye protection, a "tent" drape, a smoke evacuator with ultra-low particulate air filter, and betadine irrigation. These techniques are demonstrated in the accompanying video. This was compared with our experiences using the microscope. RESULTS: The described modified goggles allowed complete eye protection while providing a fully three-dimensional view of the surgical site. The other safety measures described are simple and efficient techniques which can easily be adopted for otologic surgery using the microscope. CONCLUSION: Use of the exoscope for otologic surgery during the COVID-19 pandemic allows full three-dimensional visualization of the surgical field while simultaneously providing complete eye protection. Use of the "tent" drape, ultra-low particulate air filter, and betadine irrigation are also options that otologic surgeons may consider for additional safety.


Subject(s)
COVID-19/prevention & control , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Microscopy/instrumentation , Microscopy/methods , Otologic Surgical Procedures/instrumentation , Otologic Surgical Procedures/methods , Humans , Imaging, Three-Dimensional , Mastoidectomy/instrumentation , Mastoidectomy/methods , Pandemics , Personal Protective Equipment , SARS-CoV-2
3.
Otolaryngol Clin North Am ; 53(6): 1153-1157, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-894153

ABSTRACT

The severe acute respiratory syndrome corona virus 2, responsible for the worldwide COVID-19 pandemic, has caused unprecedented changes to society as we know it. The effects have been particularly palpable in the practice of medicine. The field of otolaryngology has not been spared. We have had to significantly alter the way we provide care to patients, changes that are likely to become a new norm for the foreseeable future. This article highlights some of the changes as they apply to otology/neurotology. Although this is written from the perspective of an academic physician, it is also applicable to private practice colleagues.


Subject(s)
Coronavirus Infections/prevention & control , Elective Surgical Procedures , Infection Control/methods , Otologic Surgical Procedures/statistics & numerical data , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Severe Acute Respiratory Syndrome/prevention & control , COVID-19 , Coronavirus Infections/epidemiology , Female , Humans , Male , Neurotology/statistics & numerical data , Otologic Surgical Procedures/methods , Pandemics/statistics & numerical data , Pneumonia, Viral/epidemiology , Safety Management , Severe Acute Respiratory Syndrome/epidemiology , United States
4.
J Otolaryngol Head Neck Surg ; 49(1): 71, 2020 Oct 06.
Article in English | MEDLINE | ID: covidwho-818148

ABSTRACT

Within Neurotology, special draping systems have been devised for mastoid surgery recognizing that drilling of middle ear mucosa is an aerosol generating medical procedure (AGMP) which can place surgical teams at risk of COVID-19 infection. We provide a thorough description of a barrier system utilized in our practice, along with work completed by our group to better quantify its effectiveness. Utilization of a barrier system can provide near complete bone dust and droplet containment within the surgical field and prevent contamination of other healthcare workers. As this is an early system, further adaptations and national collaborations are required to ultimately arrive at a system that seamlessly integrates into the surgical suite. While these barrier systems are new, they are timely as we face a pandemic, and can play a crucial role in safely resuming surgery.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Disease Transmission, Infectious/prevention & control , Ear Diseases/epidemiology , Mastoid/surgery , Otologic Surgical Procedures/methods , Pneumonia, Viral/epidemiology , Skull Base/surgery , COVID-19 , Comorbidity , Ear Diseases/surgery , Humans , Pandemics , Personal Protective Equipment , SARS-CoV-2
5.
Laryngoscope ; 130(11): 2693-2699, 2020 11.
Article in English | MEDLINE | ID: covidwho-680460

ABSTRACT

OBJECTIVES/HYPOTHESIS: The overall aim of this study was to evaluate personal protective equipment (PPE) that may facilitate the safe recommencement of cochlear implantation in the COVID-19 era, with the broader goal of minimizing the period of auditory deprivation in prelingually deaf children and reducing the risk of cochlear ossification in individuals following meningitis. METHODS: The study design comprised 1) an objective assessment of mastoid drilling-induced droplet spread conducted during simulated cochlear implant (CI) surgery and its mitigation via the use of a protective drape tent and 2) an evaluation of three PPE configurations by otologists while performing mastoid drilling on ex vivo temporal bones. The various PPE solutions were assessed in terms of their impact on communication, vital physiological parameters, visual acuity and fields, and acceptability to surgeons using a systematic risk-based approach. RESULTS: Droplet spread during simulated CI surgery extended over 2 m, a distance greater than previously reported. A drape tent significantly reduced droplet spread. The ensemble of a half-face mask and safety spoggles (foam lined safety goggles) had consistently superior performance across all aspects of clinical usability. All other PPE options were found to substantially restrict the visual field, making them unsafe for microsurgery. CONCLUSIONS: The results of this preclinical study indicate that the most viable solution to enable the safe conduct of CI and other mastoid surgery is a combination of a filtering facepiece (FFP3) mask or half-face respirator with safety spoggles as PPE. Prescription spoggles are an option for surgeons who need to wear corrective glasses to operate. A drape tent reduces droplet spread. A multicenter clinical trial to evaluate the effectiveness of PPE should be the next step toward safely performing CI surgery during the COVID-19 era. LEVEL OF EVIDENCE: 4 Laryngoscope, 130:2693-2699, 2020.


Subject(s)
COVID-19/prevention & control , Cochlear Implantation/instrumentation , Disease Transmission, Infectious/prevention & control , Otologic Surgical Procedures/instrumentation , Personal Protective Equipment , Aerosols , Cochlear Implantation/adverse effects , Cochlear Implantation/methods , Equipment Design , Humans , Mastoid/surgery , Occupational Exposure/prevention & control , Otologic Surgical Procedures/adverse effects , Otologic Surgical Procedures/methods , Patient Isolators/virology , SARS-CoV-2
6.
Otolaryngol Head Neck Surg ; 164(1): 67-73, 2021 01.
Article in English | MEDLINE | ID: covidwho-650363

ABSTRACT

OBJECTIVE: To investigate small-particle aerosolization from mastoidectomy relevant to potential viral transmission and to test source-control mitigation strategies. STUDY DESIGN: Cadaveric simulation. SETTING: Surgical simulation laboratory. METHODS: An optical particle size spectrometer was used to quantify 1- to 10-µm aerosols 30 cm from mastoid cortex drilling. Two barrier drapes were evaluated: OtoTent1, a drape sheet affixed to the microscope; OtoTent2, a custom-structured drape that enclosed the surgical field with specialized ports. RESULTS: Mastoid drilling without a barrier drape, with or without an aerosol-scavenging second suction, generated large amounts of 1- to 10-µm particulate. Drilling under OtoTent1 generated a high density of particles when compared with baseline environmental levels (P < .001, U = 107). By contrast, when drilling was conducted under OtoTent2, mean particle density remained at baseline. Adding a second suction inside OtoTent1 or OtoTent2 kept particle density at baseline levels. Significant aerosols were released upon removal of OtoTent1 or OtoTent2 despite a 60-second pause before drape removal after drilling (P < .001, U = 0, n = 10, 12; P < .001, U = 2, n = 12, 12, respectively). However, particle density did not increase above baseline when a second suction and a pause before removal were both employed. CONCLUSIONS: Mastoidectomy without a barrier, even when a second suction was added, generated substantial 1- to 10-µm aerosols. During drilling, large amounts of aerosols above baseline levels were detected with OtoTent1 but not OtoTent2. For both drapes, a second suction was an effective mitigation strategy during drilling. Last, the combination of a second suction and a pause before removal prevented aerosol escape during the removal of either drape.


Subject(s)
Aerosols/adverse effects , COVID-19/epidemiology , Disease Transmission, Infectious/prevention & control , Ear Diseases/surgery , Mastoidectomy/methods , Otologic Surgical Procedures/standards , Personal Protective Equipment , Cadaver , Comorbidity , Ear Diseases/epidemiology , Humans , Mastoid/surgery , Otologic Surgical Procedures/methods , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL