Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Korean Med Sci ; 36(36): e255, 2021 Sep 13.
Article in English | MEDLINE | ID: covidwho-1406816

ABSTRACT

BACKGROUND: Since the declaration of the coronavirus disease 2019 (COVID-19) pandemic, COVID-19 has affected the responses of emergency medical service (EMS) systems to cases of out-of-hospital cardiac arrest (OHCA). The purpose of this study was to identify the impact of the COVID-19 pandemic on EMS responses to and outcomes of adult OHCA in an area of South Korea. METHODS: This was a retrospective observational study of adult OHCA patients attended by EMS providers comparing the EMS responses to and outcomes of adult OHCA during the COVID-19 pandemic to those during the pre-COVID-19 period. Propensity score matching was used to compare the survival rates, and logistic regression analysis was used to assess the impact of the COVID-19 pandemic on the survival of OHCA patients. RESULTS: A total of 891 patients in the pre-COVID-19 group and 1,063 patients in the COVID-19 group were included in the final analysis. During the COVID-19 period, the EMS call time was shifted to a later time period (16:00-24:00, P < 0.001), and the presence of an initial shockable rhythm was increased (pre-COVID-19 vs. COVID-19, 7.97% vs. 11.95%, P = 0.004). The number of tracheal intubations decreased (5.27% vs. 1.22%, P < 0.001), and the use of mechanical chest compression devices (30.53% vs. 44.59%, P < 0.001) and EMS response time (median [quartile 1-quartile 3], 7 [5-10] vs. 8 [6-11], P < 0.001) increased. After propensity score matching, the survival at admission rate (22.52% vs. 18.24%, P = 0.025), survival to discharge rate (7.77% vs. 5.52%, P = 0.056), and favorable neurological outcome (5.97% vs. 3.49%, P < 0.001) decreased. In the propensity score matching analysis of the impact of COVID-19, odds ratios of 0.768 (95% confidence interval [CI], 0.592-0.995) for survival at admission and 0.693 (95% CI, 0.446-1.077) for survival to discharge were found. CONCLUSION: During the COVID-19 period, there were significant changes in the EMS responses to OHCA. These changes are considered to be partly due to social distancing measures. As a result, the proportion of patients with an initial shockable rhythm in the COVID-19 period was greater than that in the pre-COVID-19 period, but the final survival rate and favorable neurological outcome were lower.


Subject(s)
COVID-19/epidemiology , Emergency Medical Services , Out-of-Hospital Cardiac Arrest/mortality , SARS-CoV-2 , Aged , Aged, 80 and over , Female , Humans , Logistic Models , Male , Middle Aged , Out-of-Hospital Cardiac Arrest/complications , Propensity Score , Republic of Korea/epidemiology , Retrospective Studies
2.
Emerg Med J ; 38(9): 679-684, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1311172

ABSTRACT

BACKGROUND: Emergency medical service (EMS) personnel have high COVID-19 risk during resuscitation. The resuscitation protocol for patients with out-of-hospital cardiac arrest (OHCA) was modified in response to the COVID-19 pandemic. However, how the adjustments in the EMS system affected patients with OHCA remains unclear. METHODS: We analysed data from the Taichung OHCA registry system. We compared OHCA outcomes and rescue records for 622 cases during the COVID-19 outbreak period (1 February to 30 April 2020) with those recorded for 570 cases during the same period in 2019. RESULTS: The two periods did not differ significantly with respect to patient age, patient sex, the presence of witnesses or OHCA location. Bystander cardiopulmonary resuscitation and defibrillation with automated external defibrillators were more common in 2020 (52.81% vs 65.76%, p<0.001%, and 23.51% vs 31.67%, p=0.001, respectively). The EMS response time was longer during the COVID-19 pandemic (445.8±210.2 s in 2020 vs 389.7±201.8 s in 2019, p<0.001). The rate of prehospital return of spontaneous circulation was lower in 2020 (6.49% vs 2.57%, p=0.001); 2019 and 2020 had similar rates of survival discharge (5.96% vs 4.98%). However, significantly fewer cases had favourable neurological function in 2020 (4.21% vs 2.09%, p=0.035). CONCLUSION: EMS response time for patients with OHCA was prolonged during the COVID-19 pandemic. Early advanced life support by EMS personnel remains crucial for patients with OHCA.


Subject(s)
COVID-19/transmission , Cardiopulmonary Resuscitation/statistics & numerical data , Emergency Medical Services/statistics & numerical data , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Out-of-Hospital Cardiac Arrest/therapy , Adult , Aged , Aged, 80 and over , COVID-19/complications , COVID-19/epidemiology , COVID-19/virology , Cardiopulmonary Resuscitation/standards , Emergency Medical Services/standards , Emergency Medical Technicians/standards , Emergency Medical Technicians/statistics & numerical data , Female , Humans , Male , Middle Aged , Out-of-Hospital Cardiac Arrest/complications , Out-of-Hospital Cardiac Arrest/epidemiology , Pandemics/prevention & control , Practice Guidelines as Topic , Registries/statistics & numerical data , Retrospective Studies , SARS-CoV-2/pathogenicity , Taiwan/epidemiology , Time-to-Treatment/standards , Time-to-Treatment/statistics & numerical data , Young Adult
3.
Emerg Med J ; 38(9): 673-678, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1287247

ABSTRACT

AIM: Cardiopulmonary resuscitation (CPR) is an emergency procedure where interpersonal distance cannot be maintained. There are and will always be outbreaks of infection from airborne diseases. Our objective was to assess the potential risk of airborne virus transmission during CPR in open-air conditions. METHODS: We performed advanced high-fidelity three-dimensional modelling and simulations to predict airborne transmission during out-of-hospital hands-only CPR. The computational model considers complex fluid dynamics and heat transfer phenomena such as aerosol evaporation, breakup, coalescence, turbulence, and local interactions between the aerosol and the surrounding fluid. Furthermore, we incorporated the effects of the wind speed/direction, the air temperature and relative humidity on the transport of contaminated saliva particles emitted from a victim during a resuscitation process based on an Airborne Infection Risk (AIR) Index. RESULTS: The results reveal low-risk conditions that include wind direction and high relative humidity and temperature. High-risk situations include wind directed to the rescuer, low humidity and temperature. Combinations of other conditions have an intermediate AIR Index and risk for the rescue team. CONCLUSIONS: The fluid dynamics, simulation-based AIR Index provides a classification of the risk of contagion by victim's aerosol in the case of hands-only CPR considering environmental factors such as wind speed and direction, relative humidity and temperature. Therefore, we recommend that rescuers perform a quick assessment of their airborne infectious risk before starting CPR in the open air and positioning themselves to avoid wind directed to their faces.


Subject(s)
COVID-19/transmission , Cardiopulmonary Resuscitation/adverse effects , Models, Biological , Out-of-Hospital Cardiac Arrest/therapy , SARS-CoV-2/pathogenicity , Aerosols/adverse effects , COVID-19/complications , COVID-19/virology , Cardiopulmonary Resuscitation/standards , Computer Simulation , Guidelines as Topic , Humans , Humidity , Hydrodynamics , Out-of-Hospital Cardiac Arrest/complications , Personal Protective Equipment/standards , Risk Assessment/methods , Risk Assessment/statistics & numerical data , Temperature , Wind
4.
N Engl J Med ; 384(24): 2283-2294, 2021 06 17.
Article in English | MEDLINE | ID: covidwho-1275997

ABSTRACT

BACKGROUND: Targeted temperature management is recommended for patients after cardiac arrest, but the supporting evidence is of low certainty. METHODS: In an open-label trial with blinded assessment of outcomes, we randomly assigned 1900 adults with coma who had had an out-of-hospital cardiac arrest of presumed cardiac or unknown cause to undergo targeted hypothermia at 33°C, followed by controlled rewarming, or targeted normothermia with early treatment of fever (body temperature, ≥37.8°C). The primary outcome was death from any cause at 6 months. Secondary outcomes included functional outcome at 6 months as assessed with the modified Rankin scale. Prespecified subgroups were defined according to sex, age, initial cardiac rhythm, time to return of spontaneous circulation, and presence or absence of shock on admission. Prespecified adverse events were pneumonia, sepsis, bleeding, arrhythmia resulting in hemodynamic compromise, and skin complications related to the temperature management device. RESULTS: A total of 1850 patients were evaluated for the primary outcome. At 6 months, 465 of 925 patients (50%) in the hypothermia group had died, as compared with 446 of 925 (48%) in the normothermia group (relative risk with hypothermia, 1.04; 95% confidence interval [CI], 0.94 to 1.14; P = 0.37). Of the 1747 patients in whom the functional outcome was assessed, 488 of 881 (55%) in the hypothermia group had moderately severe disability or worse (modified Rankin scale score ≥4), as compared with 479 of 866 (55%) in the normothermia group (relative risk with hypothermia, 1.00; 95% CI, 0.92 to 1.09). Outcomes were consistent in the prespecified subgroups. Arrhythmia resulting in hemodynamic compromise was more common in the hypothermia group than in the normothermia group (24% vs. 17%, P<0.001). The incidence of other adverse events did not differ significantly between the two groups. CONCLUSIONS: In patients with coma after out-of-hospital cardiac arrest, targeted hypothermia did not lead to a lower incidence of death by 6 months than targeted normothermia. (Funded by the Swedish Research Council and others; TTM2 ClinicalTrials.gov number, NCT02908308.).


Subject(s)
Fever/therapy , Hypothermia, Induced , Out-of-Hospital Cardiac Arrest/therapy , Aged , Body Temperature , Cardiopulmonary Resuscitation/methods , Coma/etiology , Coma/therapy , Female , Fever/etiology , Humans , Hypothermia, Induced/adverse effects , Kaplan-Meier Estimate , Male , Middle Aged , Out-of-Hospital Cardiac Arrest/complications , Out-of-Hospital Cardiac Arrest/mortality , Single-Blind Method , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL