Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
BMC Public Health ; 21(1): 2109, 2021 11 17.
Article in English | MEDLINE | ID: covidwho-1523299

ABSTRACT

BACKGROUND: Chlorine dioxide has been promoted as an alternative for the prevention and treatment of COVID-19, especially in Peru, despite the lack of evidence to support its efficacy. This study aimed to evaluate the factors associated with chlorine dioxide consumption in the Peruvian population. METHODS: Analytical cross-sectional study. An adult Peruvian population was evaluated where chlorine dioxide consumption was divided into two groups according to the purpose of use: as prevention (individuals without COVID-19 history) and as treatment (individuals with COVID-19 history). The associated factors in each group were evaluated using Poisson regressions with the bootstrapping resampling method. RESULTS: Of 3610 participants included, 3213 reported no history of COVID-19, and 397 had been infected. The prevalence of chlorine dioxide consumption to prevent or treat COVID-19 was 8 and 16%, respectively. Factors either positively or negatively associated with chlorine dioxide consumption for prevention were male sex (aPR: 1.36; 95% CI: 1.09-1.71), being an adult or older adult (aPR: 0.54; 95% CI: 0.35-0.82), having a health sciences student within the family unit (aPR: 1.38; 95% CI: 1.02-1.87), using medical information as the main source of information of COVID-19 (aPR: 0.57; 95% CI: 0.40-0.80), having comorbidities for COVID-19 (aPR: 1.36; 95% CI: 1.01-1.82), considering COVID-19 dangerous and deadly (aPR: 0.57; 95% CI: 0.45-0.74), using medications (aPR: 1.59; 95% CI: 1.25-2.06) and plants to prevent COVID-19 (aPR: 1.69; 95% CI: 1.21-2.36), considering chlorine dioxide ineffective (aPR: 0.18; 95% CI: 0.18-0.24), and being uninformed of its efficacy (aPR: 0.21; 95% CI: 0.16-0.28). In addition, factors associated with chlorine dioxide consumption for treatment were considering COVID-19 dangerous and deadly (aPR: 0.56; 95% CI: 0.33-0.96), considering chlorine dioxide ineffective (aPR: 0.22; 95% CI: 0.12-0.42), and being uninformed of its efficacy (aPR: 0.15; 95% CI: 0.07-0.32). CONCLUSIONS: The prevalence of chlorine dioxide consumption to treat COVID-19 was higher than prevent. It is important to apply information strategies, prioritizing population groups with certain characteristics that are associated with a higher consumption pattern.


Subject(s)
COVID-19 , Aged , Chlorine Compounds , Cross-Sectional Studies , Humans , Male , Oxides , Peru/epidemiology , SARS-CoV-2
2.
Clin J Gastroenterol ; 14(6): 1655-1660, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1474148

ABSTRACT

COVID-19 pandemic is one of the most devastating worldwide crises in recent years. During this pandemic, people have been exposed to products that have not been proven to be safe and effective against COVID-19. We present an adult chronic consumer of chlorine dioxide, in which a fatal outcome is described. This case demonstrates that for people searching products to protect themselves from COVID-19, unregulated access to industrial disinfectants represents a dangerous alternative. To date, there is no scientific evidence to uphold the use of chlorine dioxide or chlorine derivatives as preventive or therapeutic agents against COVID-19. Researchers and general population must take into consideration the fatal possible consequences of not following communications and warnings from health authorities and government institutions.


Subject(s)
Chlorine Compounds/poisoning , Disinfectants/poisoning , Intestinal Perforation , Oxides/poisoning , Adult , COVID-19/prevention & control , Fatal Outcome , Humans , Intestinal Perforation/chemically induced , Pandemics
3.
Biocontrol Sci ; 26(3): 129-135, 2021.
Article in English | MEDLINE | ID: covidwho-1438813

ABSTRACT

The current pandemic of novel coronavirus disease (COVID-19) has highlighted the importance of disinfectants. As a raw material for next-generation disinfectants, scallop shell-derived calcium oxide (CaO) has been revealed to exhibit significant virucidal and microbicidal activities and is compatible with living tissues and the environment. This minireview summarizes recent progress in the development of disinfectants from scallop shell-CaO, focusing especially on studies of clinical and daily use applications. We describe the preparation, basic characteristics, and virucidal and microbicidal activities of scallop shell-CaO disinfectants. Furthermore, their applications in the disinfection of contaminated masks and the treatment of infected wounds are briefly introduced.


Subject(s)
Animal Shells/chemistry , Calcium Compounds/pharmacology , Disinfectants/pharmacology , Disinfection/methods , Oxides/pharmacology , Pectinidae/chemistry , Animals , Disinfection/instrumentation , Disinfection/trends , Humans
4.
Hemodial Int ; 25(4): E40-E43, 2021 10.
Article in English | MEDLINE | ID: covidwho-1258934

ABSTRACT

Chlorine dioxide has been historically used as a disinfecting agent for drinking water supplies and surfaces. Widespread use as an alternative option for prevention and treatment of COVID-19 has emerged due to a lack of specific treatment. We present the case of a 55-year-old male who developed acute kidney injury and disseminated intravascular coagulation after chlorine dioxide prophylactic ingestion, with regression after therapy with hemodialysis.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Chlorine Compounds , Humans , Male , Middle Aged , Oxides , Renal Dialysis/adverse effects , SARS-CoV-2
5.
Viruses ; 13(3)2021 03 23.
Article in English | MEDLINE | ID: covidwho-1154525

ABSTRACT

The emergent human coronavirus SARS-CoV-2 and its high infectivity rate has highlighted the strong need for new disinfection systems. Evidence has proven that airborne transmission is an important route of spreading for this virus. Therefore, this short communication introduces CLODOS Technology®, a novel strategy to disinfect contaminated surfaces. It is a product based on stable and 99% pure chlorine dioxide, already certified as a bactericide, fungicide and virucide against different pathogens. In this study, CLODOS Technology®, by direct contact or thermonebulization, showed virucidal activity against the human coronavirus HCoV-229E at non-cytotoxic doses. Different conditions such as nebulization, exposure time and product concentration have been tested to standardize and optimize this new feasible method for disinfection.


Subject(s)
Coronavirus 229E, Human/drug effects , Disinfectants/pharmacology , Disinfection/methods , Cell Line , Chlorine Compounds/analysis , Chlorine Compounds/pharmacology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Disinfectants/analysis , Disinfection/instrumentation , Humans , Nebulizers and Vaporizers , Oxides/analysis , Oxides/pharmacology
6.
Biocontrol Sci ; 26(1): 27-35, 2021.
Article in English | MEDLINE | ID: covidwho-1135023

ABSTRACT

Bioshell calcium oxide (BiSCaO) is derived from scallop shells and after heat treatment exhibits broad microbicidal activity. BiSCaO Water is a disinfectant prepared by collecting the aqueous layer after adding BiSCaO powder to water, is colorless and transparent, and has a pH of 12.8. We compared the utility of commercially available BiSCaO Water, ethanol, sodium hypochlorite, hypochlorous acid and hydrogen peroxide solutions as sterilization agents to enable the reuse of surgical and N95 face masks. The microbicidal efficacy of each disinfectant was evaluated using pieces of surgical and N95 face masks contaminated with normal bacterial flora. The results suggest that BiSCaO Water has excellent disinfection activity toward contaminated polypropylene masks and has minimal adverse effect on the structure of non-woven masks.


Subject(s)
Disinfectants , Calcium Compounds , Disinfectants/pharmacology , Disinfection , Masks , Oxides , Water
7.
Curr Pain Headache Rep ; 25(4): 21, 2021 Mar 11.
Article in English | MEDLINE | ID: covidwho-1126627

ABSTRACT

PURPOSE OF REVIEW: This review aims to provide relevant, aggregate information about a variety of disinfectants and antiseptics, along with potential utility and limitations. While not exhaustive, this review's goal is to add to the body of literature available on this topic and give interventional providers and practitioners an additional resource to consider when performing procedures. RECENT FINDINGS: In the current SARS-CoV2 epidemiological environment, infection control and costs associated with healthcare-associated infections (HAIs) are of paramount importance. Even before the onset of SARS-CoV2, HAIs affected nearly 2million patients a year in the USA and resulted in nearly 90,000 deaths, all of which resulted in a cost to hospitals ranging from US$28 billion to 45 billion. The onset SARS-CoV2, though not spread by an airborne route, has heightened infection control protocols in hospitals and, as such, cast a renewed focus on disinfectants and their utility across different settings and organisms. The aim of this review is to provide a comprehensive overview of disinfectants used in the inpatient setting.


Subject(s)
Cross Infection/prevention & control , Disinfectants , Chlorine Compounds , Ethanol , Formaldehyde , Glutaral , Humans , Hydrogen Peroxide , Iodophors , Oxides , Peracetic Acid , Phenol , Povidone-Iodine , Quaternary Ammonium Compounds , Sodium Hypochlorite , Triazines
9.
Rev Peru Med Exp Salud Publica ; 37(4): 605-610, 2020.
Article in Spanish, English | MEDLINE | ID: covidwho-1076945

ABSTRACT

OBJECTIVES: To systematically review the effectiveness and safety of chlorine dioxide solution and chlorine derivatives used in the prevention or treatment of COVID-19. METHODS: This review adheres to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) and follows the guidelines provided in the Cochrane Handbook for Systematic Reviews of Interventions. A librarian developed and executed the search strategy; it was further reviewed by two of the authors and complemented by manual search. Randomized clinical trials, quasi-experimental studies, cohort studies, case-control studies, cross-sectional studies, and case reports were included; in vitro or animal studies were excluded. Abstract and full-text screening according to pre-defined eligibility criteria were performed by two reviewers independently using web application Rayyan QCRI. Disagreements on study selection were resolved by a third reviewer. The systematic review protocol was registered in PROSPERO (CRD42020200641). RESULTS: Neither published nor pre-print studies evaluating the use of chlorine dioxide or derivatives on SARS-CoV-2 infection were identified. The only finding was an unpublished observational study registry which has no results released yet. CONCLUSIONS: To date, there are no scientific evidence to uphold the use of chlorine dioxide or derivatives as preventive or therapeutic agents against COVID-19.


Subject(s)
COVID-19/drug therapy , Chlorine Compounds/therapeutic use , Oxides/therapeutic use , COVID-19/prevention & control , COVID-19/virology , Chlorine Compounds/adverse effects , Humans , Oxides/adverse effects , Randomized Controlled Trials as Topic , Treatment Outcome
10.
J Nanobiotechnology ; 19(1): 26, 2021 Jan 19.
Article in English | MEDLINE | ID: covidwho-1067241

ABSTRACT

With the rapid advancement and progress of nanotechnology, nanomaterials with enzyme-like catalytic activity have fascinated the remarkable attention of researchers, due to their low cost, high operational stability, adjustable catalytic activity, and ease of recycling and reuse. Nanozymes can catalyze the same reactions as performed by enzymes in nature. In contrast the intrinsic shortcomings of natural enzymes such as high manufacturing cost, low operational stability, production complexity, harsh catalytic conditions and difficulties of recycling, did not limit their wide applications. The broad interest in enzymatic nanomaterial relies on their outstanding properties such as stability, high activity, and rigidity to harsh environments, long-term storage and easy preparation, which make them a convenient substitute instead of the native enzyme. These abilities make the nanozymes suitable for multiple applications in sensing and imaging, tissue engineering, environmental protection, satisfactory tumor diagnostic and therapeutic, because of distinguished properties compared with other artificial enzymes such as high biocompatibility, low toxicity, size dependent catalytic activities, large surface area for further bioconjugation or modification and also smart response to external stimuli. This review summarizes and highlights latest progress in applications of metal and metal oxide nanomaterials with enzyme/multienzyme mimicking activities. We cover the applications of sensing, cancer therapy, water treatment and anti-bacterial efficacy. We also put forward the current challenges and prospects in this research area, hoping to extension of this emerging field. In addition to therapeutic potential of nanozymes for disease prevention, their practical effects in diagnostics, to monitor the presence of SARS-CoV-2 and related biomarkers for future pandemics will be predicted.


Subject(s)
Biomimetic Materials/chemistry , Metals/chemistry , Nanomedicine/methods , Nanostructures/chemistry , Oxides/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Biocatalysis , Biomimetic Materials/therapeutic use , Biosensing Techniques/methods , Biotechnology/methods , COVID-19 Testing/methods , Environmental Monitoring/methods , Humans , Metals/therapeutic use , Nanotechnology/methods , Neoplasms/diagnosis , Neoplasms/therapy , Oxides/therapeutic use
11.
Adv Mater ; 33(8): e2005477, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1039151

ABSTRACT

Besides the pandemic caused by the coronavirus outbreak, many other pathogenic microbes also pose a devastating threat to human health, for instance, pathogenic bacteria. Due to the lack of broad-spectrum antibiotics, it is urgent to develop nonantibiotic strategies to fight bacteria. Herein, inspired by the localized "capture and killing" action of bacteriophages, a virus-like peroxidase-mimic (V-POD-M) is synthesized for efficient bacterial capture (mesoporous spiky structures) and synergistic catalytic sterilization (metal-organic-framework-derived catalytic core). Experimental and theoretical calculations show that the active compound, MoO3 , can serve as a peroxo-complex-intermediate to reduce the free energy for catalyzing H2 O2 , which mainly benefits the generation of •OH radicals. The unique virus-like spikes endow the V-POD-M with fast bacterial capture and killing abilities (nearly 100% at 16 µg mL-1 ). Furthermore, the in vivo experiments show that V-POD-M possesses similar disinfection treatment and wound skin recovery efficiencies to vancomycin. It is suggested that this inexpensive, durable, and highly reactive oxygen species (ROS) catalytic active V-POD-M provides a promising broad-spectrum therapy for nonantibiotic disinfection.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Biomimetic Materials/chemical synthesis , Oxides/chemical synthesis , Peroxidase/chemistry , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/chemistry , Biomimetic Materials/pharmacology , Catalysis , Humans , Hydrogen Peroxide/metabolism , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Molecular Dynamics Simulation , Molybdenum/pharmacology , Oxides/pharmacology , Peroxidase/metabolism , Sterilization , Vancomycin/pharmacology
12.
Physiol Int ; 107(1): 1-11, 2020 03 01.
Article in English | MEDLINE | ID: covidwho-18420

ABSTRACT

Motivation: Viruses have caused many epidemics throughout human history. The novel coronavirus [10] is just the latest example. A new viral outbreak can be unpredictable, and development of specific defense tools and countermeasures against the new virus remains time-consuming even in today's era of modern medical science and technology. In the lack of effective and specific medication or vaccination, it would be desirable to have a nonspecific protocol or substance to render the virus inactive, a substance/protocol, which could be applied whenever a new viral outbreak occurs. This is especially important in cases when the emerging new virus is as infectious as SARS-CoV-2 [4]. Aims and structure of the present communication: In this editorial, we propose to consider the possibility of developing and implementing antiviral protocols by applying high purity aqueous chlorine dioxide (ClO2) solutions. The aim of this proposal is to initiate research that could lead to the introduction of practical and effective antiviral protocols. To this end, we first discuss some important properties of the ClO2 molecule, which make it an advantageous antiviral agent, then some earlier results of ClO2 gas application against viruses will be reviewed. Finally, we hypothesize on methods to control the spread of viral infections using aqueous ClO2 solutions.


Subject(s)
Betacoronavirus , Chlorine Compounds/pharmacology , Communicable Diseases, Emerging , Coronavirus Infections , Disease Transmission, Infectious/prevention & control , Oxides/pharmacology , Pandemics , Pneumonia, Viral , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , Clinical Protocols , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Coronavirus Infections/virology , Disinfectants/pharmacology , Humans , Pandemics/prevention & control , Pharmaceutical Solutions/pharmacology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Research Design , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...