Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
2.
Virol J ; 18(1): 205, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1619949

ABSTRACT

Co-infections have a key role in virus transmission in wild reservoir hosts. We investigated the simultaneous presence of astroviruses, coronaviruses, and paramyxoviruses in bats from Madagascar, Mayotte, Mozambique, and Reunion Island. A total of 871 samples from 28 bat species representing 8 families were tested by polymerase chain reactions (PCRs) targeting the RNA-dependent RNA-polymerase genes. Overall, 2.4% of bats tested positive for the presence of at least two viruses, only on Madagascar and in Mozambique. Significant variation in the proportion of co-infections was detected among bat species, and some combinations of co-infection were more common than others. Our findings support that co-infections of the three targeted viruses occur in bats in the western Indian Ocean region, although further studies are needed to assess their epidemiological consequences.


Subject(s)
Astroviridae Infections/epidemiology , Chiroptera/virology , Coinfection/epidemiology , Coronavirus Infections/epidemiology , Paramyxoviridae Infections/epidemiology , Animals , Madagascar , Mozambique , Reunion
3.
J Infect Public Health ; 14(11): 1567-1570, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1461377

ABSTRACT

The emerging of the COVID-19 pandemic is currently challenging for the public health system globally. Beyond SARS-CoV-2 pathogenicity, co-infections with recycling respiratory pathogens, whether bacterial, viral, or fungal, might increase disease symptoms, morbidity, and mortality. In this study, we reported two COVID-19 cases in the early phase of the virus spread in Saudi Arabia with underdiagnosed respiratory viruses' co-infections, influenza B and Parainfluenza-2, detected retrospectively. Fortunately, both patients recovered and were discharged home. Underestimation of co-infection among COVID19 patients might lead to hospital stay prolongation and increases morbidity and mortality. Therefore, it is crucial to consider and screen for co-infecting pathogens among COVID-19 patients and those with risk factors.


Subject(s)
COVID-19 , Coinfection , Influenza, Human , Paramyxoviridae Infections , Coinfection/diagnosis , Coinfection/epidemiology , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Pandemics , Retrospective Studies , SARS-CoV-2 , Saudi Arabia/epidemiology
4.
Acta Med Acad ; 49(2): 130-143, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-1414828

ABSTRACT

In this review, we discuss the latest developments in research pertaining to virus-induced asthma exacerbations and consider recent advances in treatment options. Asthma is a chronic disease of the airways that continues to impose a substantial clinical burden worldwide. Asthma exacerbations, characterised by an acute deterioration in respiratory symptoms and airflow obstruction, are associated with significant morbidity and mortality. These episodes are most commonly triggered by respiratory virus infections. The mechanisms underlying the pathogenesis of virus-induced exacerbations have been the focus of extensive biomedical research. Developing a robust understanding of the interplay between respiratory viruses and the host immune response will be critical for developing more efficacious, targeted therapies for exacerbations. CONCLUSION: There has been significant recent progress in our understanding of the mechanisms underlying virus-induced airway inflammation in asthma and these advances will underpin the development of future clinical therapies.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Antiviral Agents/therapeutic use , Asthma/drug therapy , Respiratory Tract Infections/drug therapy , Virus Diseases/drug therapy , Adenovirus Infections, Human/drug therapy , Adenovirus Infections, Human/immunology , Adenovirus Infections, Human/physiopathology , Administration, Inhalation , Asthma/immunology , Asthma/physiopathology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Disease Progression , Humans , Influenza, Human/drug therapy , Influenza, Human/immunology , Influenza, Human/physiopathology , Interferon-beta/therapeutic use , Macrolides/therapeutic use , Omalizumab/therapeutic use , Paramyxoviridae Infections/drug therapy , Paramyxoviridae Infections/immunology , Paramyxoviridae Infections/physiopathology , Picornaviridae Infections/drug therapy , Picornaviridae Infections/immunology , Picornaviridae Infections/physiopathology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/physiopathology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/physiopathology , Virus Diseases/immunology , Virus Diseases/physiopathology
5.
Adv Virus Res ; 111: 1-29, 2021.
Article in English | MEDLINE | ID: covidwho-1370123

ABSTRACT

Parainfluenza viruses, members of the enveloped, negative-sense, single stranded RNA Paramyxoviridae family, impact global child health as the cause of significant lower respiratory tract infections. Parainfluenza viruses enter cells by fusing directly at the cell surface membrane. How this fusion occurs via the coordinated efforts of the two molecules that comprise the viral surface fusion complex, and how these efforts may be blocked, are the subjects of this chapter. The receptor binding protein of parainfluenza forms a complex with the fusion protein of the virus, remaining stably associated until a receptor is reached. At that point, the receptor binding protein actively triggers the fusion protein to undergo a series of transitions that ultimately lead to membrane fusion and viral entry. In recent years it has become possible to examine this remarkable process on the surface of viral particles and to begin to understand the steps in the transition of this molecular machine, using a structural biology approach. Understanding the steps in entry leads to several possible strategies to prevent fusion and inhibit infection.


Subject(s)
Paramyxoviridae Infections , Virus Internalization , Humans , Membrane Fusion , Parainfluenza Virus 3, Human , Viral Fusion Proteins/genetics
6.
Vopr Virusol ; 66(4): 259-268, 2021 09 17.
Article in Russian | MEDLINE | ID: covidwho-1431292

ABSTRACT

The virologists' attention to bats (Сhiroptera) changed in the late 20th century as the concept of emerging infections grew in popularity. Since the beginning of the COVID-19 pandemic, the number of publications on bat viruses has increased profoundly.History of the problem; biodiversity of Chiroptera and related viruses; medical and veterinary significance of some viral genera and subgenera (Lyssavirus, Henipavirus, Marburgvirus, Ebolavirus, Sarbecovirus, Merbecovirus), as well as problems of bat protection, are addressed in a concise form. Literature search was carried out in electronic databases, mainly for the period of 2000-2021. Publications in Russian that are poorly represented in English-language reviews are also included. The purpose of the review is to substantiate the importance of an interdisciplinary approach in the context of increased interest in the study of viral infections in bats. This review was written for researchers who have not previously dealt with this problem.Since the beginning of this century, the number of known virus species associated with bats has increased by an order of magnitude (>200). The families Rhabdoviridae, Coronaviridae, Paramyxoviridae are in the first ranks according to the number of findings, and the highest diversity of viruses has been established for the families Vespertilionidae, Pteropodidae, Molossidae. Interdisciplinary cooperation positively influences the efficiency, biological safety and practical significance of the ongoing research. The best results were achieved by multidisciplinary teams with good cross-training in several specialties. Many papers emphasize the need to balance health and conservation interests.The analysis of scientific publications indicates a change in research approaches in this area: from collecting individual facts within the framework of narrow specialties to a comprehensive assessment of new knowledge from ecological, evolutionary and socio-economic positions. Results of the research emphasize the need to maintain complex approaches addressing public health needs and environmental protection. The importance of bat-borne viral infections determines the necessity for correction and interdepartmental coordination of scientific research and surveillance of wildlife zoonoses in the Russian Federation.


Subject(s)
COVID-19 , Chiroptera/virology , Paramyxoviridae Infections , Paramyxoviridae , Rhabdoviridae Infections , Rhabdoviridae , SARS-CoV-2 , Zoonoses , Animals , COVID-19/epidemiology , COVID-19/transmission , Humans , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/transmission , Rhabdoviridae Infections/epidemiology , Rhabdoviridae Infections/transmission , Zoonoses/epidemiology , Zoonoses/virology
10.
Virol J ; 18(1): 104, 2021 05 29.
Article in English | MEDLINE | ID: covidwho-1257951

ABSTRACT

BACKGROUND: Human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) are leading causes of viral severe acute respiratory illnesses in childhood. Both the two viruses belong to the Pneumoviridae family and show overlapping clinical, epidemiological and transmission features. However, it is unknown whether these two viruses have similar geographic spread patterns which may inform designing and evaluating their epidemic control measures. METHODS: We conducted comparative phylogenetic and phylogeographic analyses to explore the spatial-temporal patterns of HMPV and RSV across Africa using 232 HMPV and 842 RSV attachment (G) glycoprotein gene sequences obtained from 5 countries (The Gambia, Zambia, Mali, South Africa, and Kenya) between August 2011 and January 2014. RESULTS: Phylogeographic analyses found frequently similar patterns of spread of RSV and HMPV. Viral sequences commonly clustered by region, i.e., West Africa (Mali, Gambia), East Africa (Kenya) and Southern Africa (Zambia, South Africa), and similar genotype dominance patterns were observed between neighbouring countries. Both HMPV and RSV country epidemics were characterized by co-circulation of multiple genotypes. Sequences from different African sub-regions (East, West and Southern Africa) fell into separate clusters interspersed with sequences from other countries globally. CONCLUSION: The spatial clustering patterns of viral sequences and genotype dominance patterns observed in our analysis suggests strong regional links and predominant local transmission. The geographical clustering further suggests independent introduction of HMPV and RSV variants in Africa from the global pool, and local regional diversification.


Subject(s)
Metapneumovirus , Paramyxoviridae Infections , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Africa/epidemiology , Humans , Metapneumovirus/genetics , Paramyxoviridae Infections/epidemiology , Phylogeny , Phylogeography , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus, Human/genetics , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Spatio-Temporal Analysis
12.
Medicine (Baltimore) ; 100(16): e25498, 2021 Apr 23.
Article in English | MEDLINE | ID: covidwho-1195754

ABSTRACT

ABSTRACT: We aimed to assess the respiratory virus characteristics and forecasts among young children with acute respiratory tract infection (ARTI) in west China.This retrospective study investigated the epidemic characteristics of respiratory viruses among 11,813 paediatric ARTI patient samples (mean age, 2.25 years) between March 2018 and March 2020.The ratio of boys to girls was 1.36. The 2 predominant viruses were influenza (Flu) A and respiratory syncytial virus (RSV) in both years, with Flu A accounting for 47.3% and 47.5% in the first and second years and RSV accounting for 32.7% and 24.7% of the positive samples in the first and second years, respectively. The Flu B positive rates were 10.9% and 13.1%, and those of the other 4 viruses were <7%. The most common virus was RSV in children below 5 years and Flu A in those between 5 and 10 years. Flu A and RSV demonstrated pronounced seasonality, and their infection rates increased from October. During the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic, isolation measures led to a decline in the number of ARTI cases.This study provides surveillance data of the respiratory viruses in west China. It could guide medical staff in implementing necessary prevention and management strategies before future viral outbreaks.


Subject(s)
Epidemics , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , COVID-19/epidemiology , Child , Child, Preschool , China/epidemiology , Female , Forecasting , Humans , Influenza A virus , Influenza B virus , Influenza, Human/epidemiology , Male , Paramyxoviridae Infections/epidemiology , Population Surveillance , Respiratory Syncytial Virus Infections/epidemiology , Retrospective Studies
14.
Expert Rev Anti Infect Ther ; 19(6): 787-796, 2021 06.
Article in English | MEDLINE | ID: covidwho-897029

ABSTRACT

Objectives: To compare the clinical characteristics and outcomes of patients hospitalized with respiratory syncytial virus (RSV), human metapneumovirus (hMPV), and influenza infections.Methods: This study prospectively enrolled 594 patients hospitalized with influenza-like illness (ILI) and laboratory-confirmed RSV, hMPV, or influenza infections over three consecutive influenza seasons at a tertiary hospital in China.Results: While certain clinical features were of value as predictors of infection type, none exhibited good predictive performance as a means of discriminating between these three infections (area under the receiver-operating characteristic curve < 0.70). After controlling for potential confounding variables, RSV infections in pneumonia patients were found to be associated with a 30-day mortality risk comparable to that of influenza patients [odds ratio (OR) 1.016, 95% confidence interval (CI) 0.267-3.856, p = 0.982], whereas hMPV infection was associated with a reduced risk of mortality (OR 0.144, 95% CI 0.027-0.780, p = 0.025). Among those without pneumonia, the 30-day mortality risk in patients with influenza was comparable to that in patients infected with RSV (OR 1.268, 95% CI 0.172-9.355, p = 0.816) or hMPV (OR 1.128, 95% CI 0.122-10.419, p = 0.916).Conclusion: Disease severity associated with these three types of viral infection was inconsistent when comparing patients with and without pneumonia, highlighting the importance of etiologic testing.


Subject(s)
Influenza, Human/epidemiology , Paramyxoviridae Infections/epidemiology , Pneumonia, Viral/epidemiology , Respiratory Syncytial Virus Infections/epidemiology , Aged , China , Female , Hospitalization , Humans , Influenza, Human/mortality , Male , Metapneumovirus/isolation & purification , Middle Aged , Paramyxoviridae Infections/mortality , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Prospective Studies , Respiratory Syncytial Virus Infections/mortality , Severity of Illness Index , Tertiary Care Centers
15.
Virol J ; 18(1): 40, 2021 02 18.
Article in English | MEDLINE | ID: covidwho-1092409

ABSTRACT

BACKGROUND: Acute respiratory tract infections (ARTIs) causes high amounts of morbidity and mortality worldwide every year. Human metapneumovirus (HMPV) is a major pathogen of ARTIs in children. In this study, we aimed to investigate the epidemiology and genotypic diversity of HMPV in children hospitalized with ARTIs in Beijing, China. METHODS: Hospitalized children aged < 14 years with ARTIs were enrolled from April 2017 to March 2018; nasopharyngeal aspirates were collected and subjected to real-time polymerase chain reaction tests for HMPV. HMPV-positive samples were genotyped based on a partial N gene. Whole genome sequences were determined for samples with high viral loads. RESULTS: 4.08% (52/1276) enrolled paediatric patients were identified as having HMPV infection. The epidemic season is winter and early spring, children aged ≤ 4 years were more susceptible to HMPV infection (47/52, 90.38%). The co-infection rate were 36.54% (19/52), the most common co-infected virus were influenza and respiratory syncytial virus. The main diagnoses of HMPV infection were pneumonia (29/52, 55.77%) and bronchitis (23/52, 44.23%), while the main clinical manifestations were cough, fever, rhinorrhoea, and sneeze. Among 48 HMPV-positive specimens, A2b (19/48, 39.58%) and B1 (26/48, 54.17%) were the main epidemic subtypes. Patients with HMPV genotype A infection had a higher viral load compared to genotype B patients (6.07 vs. 5.37 log10 RNA copies/ml). Five complete sequences of HMPV were obtained. This is the first report of a whole genome sequence of HMPV-B1 isolated in China. CONCLUSIONS: HMPV is an important respiratory pathogen in paediatric patients. Cases of HMPV infection could burden hospitals in the epidemic season. HMPV viral loads and genotypes have no correlation with co-infection or clinical characteristics.


Subject(s)
Genetic Variation , Genotype , Metapneumovirus/genetics , Paramyxoviridae Infections/epidemiology , Respiratory Tract Infections/epidemiology , Acute Disease/epidemiology , Adolescent , Beijing/epidemiology , Child , Child, Preschool , Coinfection/epidemiology , Coinfection/virology , Female , Hospitalization/statistics & numerical data , Humans , Infant , Male , Metapneumovirus/classification , Metapneumovirus/pathogenicity , Nasopharynx/virology , Paramyxoviridae Infections/virology , Respiratory Tract Infections/virology , Viral Load/statistics & numerical data
16.
Infect Dis (Lond) ; 53(7): 488-497, 2021 07.
Article in English | MEDLINE | ID: covidwho-1091292

ABSTRACT

BACKGROUND: The first outbreak of coronavirus disease 2019 (COVID-19) occurred in March 2020 in Europe, which is normally the peak incidence period of human metapneumovirus (HMPV) infections, implying cocirculation and potentially causing competition between them. METHODS: We investigated differences in clinical characteristics and outcomes of HMPV infections in hospitalized patients before (January 2016-28 February, 2020) and HMPV and COVID-19 during part of the COVID-19 pandemic (28 February, 2020-1 April, 2020). RESULTS: A total of 239 HMPV patients and 303 COVID-19 patients were included. Incidence of HMPV peaked in March. Despite a 324% increase in HMPV testing during the COVID-19 outbreak, incidence of HMPV remained stable. Clinical characteristics showed 25 (11%) ICU admissions and 14 (6%) deaths. History of myocardial infarction, higher age and lower BMI were independently associated with increased 30-day mortality. Clinical characteristics of HMPV-infected patients did not differ between the non-COVID-19 period and the examined COVID-19 period except for length of hospital stay (7 vs. 5 days). HMPV infection and COVID-19 shared many clinical features but HMPV was associated with female gender, elderly patients and chronic conditions (COPD and chronic heart failure). Clinical outcomes did not differ between the viruses during the COVID-19 period. CONCLUSIONS: The clinical impact of HMPV infection did not change during the COVID-19 outbreak in terms of incidence and/or disease severity; hence, HMPV and SARS-CoV-2 are probably co-circulating independently. Despite the current clinical focus on the COVID-19 pandemic, clinicians should keep in mind that HMPV-infection may mimic COVID-19 and is also associated with serious adverse outcomes.


Subject(s)
COVID-19 , Metapneumovirus , Paramyxoviridae Infections , Respiratory Tract Infections , Aged , Europe , Female , Humans , Infant , Pandemics , Paramyxoviridae Infections/epidemiology , Respiratory Tract Infections/epidemiology , SARS-CoV-2
17.
Diagn Microbiol Infect Dis ; 100(2): 115352, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1086876

ABSTRACT

The emergence of SARS-CoV-2 and subsequent COVID-19 pandemic highlights the morbidity and potential disease severity caused by respiratory viruses. To elucidate pathogen prevalence, etiology of coinfections and URIs from symptomatic adult Emergency department patients in a pre-SARS-CoV-2 environment, we evaluated specimens from four geographically diverse Emergency departments in the United States from 2013-2014 utilizing ePlex RP RUO cartridges (Genmark Diagnostics). The overall positivity was 30.1% (241/799), with 6.6% (16/241) coinfections. Noninfluenza pathogens from most to least common were rhinovirus/enterovirus, coronavirus, human metapneumovirus and RSV, respectively. Broad differences in disease prevalence and pathogen distributions were observed across geographic regions; the site with the highest detection rate (for both mono and coinfections) demonstrated the greatest pathogen diversity. A variety of respiratory pathogens and geographic variations in disease prevalence and copathogen type were observed. Further research is required to evaluate the clinical relevance of these findings, especially considering the SARS-CoV-2 pandemic and related questions regarding SARS-CoV-2 disease severity and the presence of co-infections.


Subject(s)
Coinfection/virology , Emergency Service, Hospital , Influenza, Human/complications , Respiratory Tract Infections/virology , Adolescent , Adult , Aged , Aged, 80 and over , Coronavirus Infections/complications , Coronavirus Infections/virology , Emergency Service, Hospital/statistics & numerical data , Enterovirus Infections/complications , Enterovirus Infections/virology , Female , Humans , Influenza, Human/virology , Male , Metapneumovirus , Middle Aged , Paramyxoviridae Infections/complications , Paramyxoviridae Infections/virology , Picornaviridae Infections/complications , Picornaviridae Infections/virology , Prevalence , Respiratory Tract Infections/complications , Rhinovirus , Risk Factors , United States/epidemiology , Young Adult
18.
Seizure ; 84: 69-77, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1065589

ABSTRACT

OBJECTIVE: There are limited data on the pathogen-related and host-related factors in the pathogenesis of febrile seizures (FS). We designed a controlled study to compare the role of different respiratory viruses and febrile response in FS. METHODS: In a prospective cohort study of 1899 pediatric emergency room patients aged 6 months-6 years with a positive respiratory virus multiplex PCR, we identified 225 patients with FSs. We first compared the distribution of respiratory viruses in age-stratified patients with FSs with that in other patients. In an embedded case-control study, we compared the febrile response in patients with FSs with that in the controls matched for age, season and the same respiratory virus. RESULTS: The relative risk for FS was the highest for coronavirus OC43, 229E, and NL63 infections [RR: 3.2, 95 % confidence interval (CI): 1.4-7.2) and influenza A and B [RR: 2.5, 95 % CI: 1.4-4.7] as compared to those with other respiratory viral infections. The patients with FSs had a stronger febrile response of 39.2 °C (difference: 0.8 °C, 95 % CI: 0.5-1.2) later during hospitalization after acute care than the controls matched for the same respiratory virus. CONCLUSIONS: Influenza and coronaviruses caused relatively more FS-related emergency room visits than other respiratory viruses. Furthermore, the febrile response was stronger in the patients with FSs than in the controls matched for the same respiratory virus. The results suggest that the pathomechanism of FSs includes modifiable pathogen-related and host-related factors with possible potential in the prevention of FSs.


Subject(s)
Coronavirus Infections/epidemiology , Enterovirus Infections/epidemiology , Influenza, Human/epidemiology , Paramyxoviridae Infections/epidemiology , Respiratory Tract Infections/epidemiology , Seizures, Febrile/epidemiology , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/virology , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Coronavirus 229E, Human , Coronavirus Infections/virology , Coronavirus NL63, Human , Coronavirus OC43, Human , Emergency Service, Hospital , Enterovirus Infections/virology , Female , Fever/physiopathology , Finland/epidemiology , Humans , Infant , Inflammation , Influenza A virus , Influenza B virus , Influenza, Human/virology , Male , Multiplex Polymerase Chain Reaction , Paramyxoviridae Infections/virology , Picornaviridae Infections/epidemiology , Picornaviridae Infections/virology , Prospective Studies , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/virology , Respiratory Tract Infections/physiopathology , Respiratory Tract Infections/virology , Rhinovirus , Risk , Seizures, Febrile/virology
20.
Viruses ; 13(1)2021 Jan 16.
Article in English | MEDLINE | ID: covidwho-1040132

ABSTRACT

BACKGROUND: Type-1 cryoglobulinemia (CG) is a rare disease associated with B-cell lymphoproliferative disorder. Some viral infections, such as Epstein-Barr Virus infections, are known to cause malignant lymphoproliferation, like certain B-cell lymphomas. However, their role in the pathogenesis of chronic lymphocytic leukemia (CLL) is still debatable. Here, we report a unique case of Type-1 CG associated to a CLL transformation diagnosed in the course of a human metapneumovirus (hMPV) infection. CASE PRESENTATION: A 91-year-old man was initially hospitalized for delirium. In a context of febrile rhinorrhea, the diagnosis of hMPV infection was made by molecular assay (RT-PCR) on nasopharyngeal swab. Owing to hyperlymphocytosis that developed during the course of the infection and unexplained peripheral neuropathy, a type-1 IgG Kappa CG secondary to a CLL was diagnosed. The patient was not treated for the CLL because of Binet A stage classification and his poor physical condition. CONCLUSIONS: We report the unique observation in the literature of CLL transformation and hMPV infection. We provide a mini review on the pivotal role of viruses in CLL pathophysiology.


Subject(s)
Cell Transformation, Viral , Disease Susceptibility , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/etiology , Metapneumovirus/physiology , Paramyxoviridae Infections/complications , Paramyxoviridae Infections/virology , Aged, 80 and over , Biomarkers , Clonal Evolution , Cryoglobulinemia/diagnosis , Cryoglobulinemia/etiology , Humans , Immunoglobulin G/blood , Immunoglobulin kappa-Chains/blood , Immunophenotyping , Male
SELECTION OF CITATIONS
SEARCH DETAIL