Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
Add filters

Document Type
Year range
1.
Sci Rep ; 11(1): 12110, 2021 06 08.
Article in English | MEDLINE | ID: covidwho-1517640

ABSTRACT

Wearing surgical masks or other similar face coverings can reduce the emission of expiratory particles produced via breathing, talking, coughing, or sneezing. Although it is well established that some fraction of the expiratory airflow leaks around the edges of the mask, it is unclear how these leakage airflows affect the overall efficiency with which masks block emission of expiratory aerosol particles. Here, we show experimentally that the aerosol particle concentrations in the leakage airflows around a surgical mask are reduced compared to no mask wearing, with the magnitude of reduction dependent on the direction of escape (out the top, the sides, or the bottom). Because the actual leakage flowrate in each direction is difficult to measure, we use a Monte Carlo approach to estimate flow-corrected particle emission rates for particles having diameters in the range 0.5-20 µm. in all orientations. From these, we derive a flow-weighted overall number-based particle removal efficiency for the mask. The overall mask efficiency, accounting both for air that passes through the mask and for leakage flows, is reduced compared to the through-mask filtration efficiency, from 93 to 70% for talking, but from only 94-90% for coughing. These results demonstrate that leakage flows due to imperfect sealing do decrease mask efficiencies for reducing emission of expiratory particles, but even with such leakage surgical masks provide substantial control.


Subject(s)
Aerosols , Communicable Disease Control/methods , Cough , Exhalation , Filtration , Masks , Virus Diseases/prevention & control , Adolescent , Adult , COVID-19/prevention & control , Equipment Failure , Female , Humans , Male , Middle Aged , Monte Carlo Method , Particle Size , Probability , Respiration , Sneezing , Young Adult
2.
Int J Environ Res Public Health ; 18(21)2021 11 06.
Article in English | MEDLINE | ID: covidwho-1512309

ABSTRACT

This paper presents a complex and extensive experimental evaluation of fine particle emissions released by an FDM 3D printer for four of the most common printing materials (ABS, PLA, PET-G, and TPU). These thermoplastic filaments were examined at three printing temperatures within their recommended range. In addition, these measurements were extended using various types of printing nozzles, which influenced the emissions considerably. This research is based on more than a hundred individual measurements for which a standardized printing method was developed. The study presents information about differences between particular printing conditions in terms of the amount of fine particles emitted as well as the particle size distributions during printing periods. This expands existing knowledge about the emission of ultrafine particles during 3D printing, and it can help reduce the emissions of these devices to achieve cleaner and safer 3D printer operations.


Subject(s)
Air Pollution, Indoor , Particulate Matter , Air Pollution, Indoor/analysis , Particle Size , Particulate Matter/analysis , Printing, Three-Dimensional , Temperature
3.
Mater Sci Eng C Mater Biol Appl ; 116: 111260, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1452344

ABSTRACT

Polymeric nanoparticulate systems allow the encapsulation of bio-active substances, giving them protection against external agents and increasing the drug's bioavailability. The use of biocompatible and biodegradable polymers usually guarantees the harmless character of the formulation, and a controlled drug release is also assured. A relatively easy procedure to obtain polymeric formulations of bioactive agents is ionotropic gelation, which allows the synthesis of chitosan (CS) - sodium tri-polyphosphate nanoparticles (NPs) loading encapsulated proteins. In this work, Bovine serum albumin (BSA) model protein and a recombinant porcine alpha interferon variant were used to obtain nanoparticulate formulations. The internalization of the encapsulated material by cells was studied using a BSA-fluorescein system; the fluorescent conjugate was observable inside the cells after 20 h of incubation. The therapeutic CS-alpha interferon formulation showed a maximum of protein released in vitro at around 90 h. This system was found to be safe in a cytotoxicity assay, while biological activity experiments in vitro showed antiviral protection of cells in the presence of encapsulated porcine alpha interferon. In vivo experiments in pigs revealed a significant and sustained antiviral response through overexpression of the antiviral markers OAS2 and PKR. This proves the preservation of porcine alpha interferon biological activity, and also that a lasting response was obtained. This procedure is an effective and safe method to formulate drugs in nanoparticulate systems, representing a significant contribution to the search for more effective drug delivery strategies.


Subject(s)
Chitosan , Nanoparticles , Pharmaceutical Preparations , Animals , Antiviral Agents/pharmacology , Biological Availability , Cattle , Drug Carriers , Drug Delivery Systems , Interferon-alpha , Particle Size , Polymers , Swine
4.
Int J Environ Res Public Health ; 18(21)2021 10 27.
Article in English | MEDLINE | ID: covidwho-1488553

ABSTRACT

The novel coronavirus pandemic has resulted in an urgent need to study the risk of infection from aerosols generated during dental care and to conduct a review of infection controls. However, existing studies on aerosol particles related to dental treatment have mainly evaluated only the scattering range. Few studies have been conducted on the specifics of the generation of aerosol particles in clinical settings, their mechanisms and patterns of distribution throughout open or enclosed spaces, the duration that they remain suspended in air, and the amount and size of particles present. To minimize the influence of background particles, laser lights, a high-sensitivity camera, and particle counters were used in a large super clean laboratory to investigate the dynamics of aerosols generated during the operation of dental micromotors. The results indicate that aerosols tend to scatter upward immediately after generation and then gradually disperse into the surroundings. Most of the particles are less than 5 µm in size (only a few are larger), and all particles are widely distributed over the long term. Our research clearly elucidates that aerosols produced in dental care are distributed over a wide area and remain suspended for a considerable time in dental clinics before settling.


Subject(s)
COVID-19 , SARS-CoV-2 , Aerosols , Humans , Pandemics , Particle Size
5.
Int J Mol Sci ; 22(19)2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1463707

ABSTRACT

The electron density of a nanoparticle is a very important characteristic of the properties of a material. This paper describes the formation of silver nanoparticles (NPs) and the variation in the electronic state of an NP's surface upon the reduction in Ag+ ions with oxalate ions, induced by UV irradiation. The calculations were based on optical spectrophotometry data. The NPs were characterized using Transmission electron microscopy and Dynamic light scattering. As ~10 nm nanoparticles are formed, the localized surface plasmon resonance (LSPR) band increases in intensity, decreases in width, and shifts to the UV region from 402 to 383 nm. The interband transitions (IBT) band (≤250 nm) increases in intensity, with the band shape and position remaining unchanged. The change in the shape and position of the LSPR band of silver nanoparticles in the course of their formation is attributable to an increasing concentration of free electrons in the particles as a result of a reduction in Ag+ ions on the surface and electron injection by CO2- radicals. The ζ-potential of colloids increases with an increase in electron density in silver nuclei. A quantitative relationship between this shift and electron density on the surface was derived on the basis of the Mie-Drude theory. The observed blue shift (19 nm) corresponds to an approximately 10% increase in the concentration of electrons in silver nanoparticles.


Subject(s)
Electricity , Electrons , Metal Nanoparticles/chemistry , Silver/chemistry , Solutions/chemistry , Chemical Phenomena , Electrochemistry , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Transmission , Models, Theoretical , Particle Size , Surface Plasmon Resonance
6.
PLoS One ; 16(10): e0258382, 2021.
Article in English | MEDLINE | ID: covidwho-1463317

ABSTRACT

The COVID-19 global pandemic has caused millions of infections and deaths despite mitigation efforts that involve physical distancing, mask-wearing, avoiding indoor gatherings and increasing indoor ventilation. The purpose of this study was to compare ways to improve indoor ventilation and assess its effect on artificially generated aerosol counts. It was hypothesized that inbuilt kitchen vents would be more effective in reducing indoor aerosol counts than opening windows alone. A fixed amount of saline aerosol was dispersed in the experimental area using a nebulizer under constant temperature and a narrow range of humidity. A laser air quality monitor was used to record small particle counts every 30 minutes from baseline to 120 minutes for four different experimental groups for each combination of kitchen vents and windows. The results of the study demonstrate that aerosol counts were lowest with the kitchen exhaust vents on. This study suggests that liberal use of home exhaust systems like the kitchen vents could achieve significantly more air exchange than open windows alone and may present an effective solution to improving indoor ventilation, especially during the colder months when people tend to congregate indoors in closed spaces. There were no safety concerns involved when conducting this experiment.


Subject(s)
Air Pollution, Indoor , COVID-19 , SARS-CoV-2 , Ventilation , COVID-19/epidemiology , COVID-19/transmission , Environmental Monitoring , Humans , Particle Size
7.
Sci Rep ; 11(1): 19910, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1462025

ABSTRACT

Face masks are a primary preventive measure against airborne pathogens. Thus, they have become one of the keys to controlling the spread of the COVID-19 virus. Common examples, including N95 masks, surgical masks, and face coverings, are passive devices that minimize the spread of suspended pathogens by inserting an aerosol-filtering barrier between the user's nasal and oral cavities and the environment. However, the filtering process does not adapt to changing pathogen levels or other environmental factors, which reduces its effectiveness in real-world scenarios. This paper addresses the limitations of passive masks by proposing ADAPT, a smart IoT-enabled "active mask". This wearable device contains a real-time closed-loop control system that senses airborne particles of different sizes near the mask by using an on-board particulate matter (PM) sensor. It then intelligently mitigates the threat by using mist spray, generated by a piezoelectric actuator, to load nearby aerosol particles such that they rapidly fall to the ground. The system is controlled by an on-board micro-controller unit that collects sensor data, analyzes it, and activates the mist generator as necessary. A custom smartphone application enables the user to remotely control the device and also receive real-time alerts related to recharging, refilling, and/or decontamination of the mask before reuse. Experimental results on a working prototype confirm that aerosol clouds rapidly fall to the ground when the mask is activated, thus significantly reducing PM counts near the user. Also, usage of the mask significantly increases local relative humidity levels.


Subject(s)
COVID-19/prevention & control , Inhalation Exposure/prevention & control , Masks , Particulate Matter/isolation & purification , Respiratory Protective Devices , SARS-CoV-2/isolation & purification , Aerosols/isolation & purification , Air Microbiology , Equipment Design , Filtration/instrumentation , Humans , Mobile Applications , Particle Size , Smart Materials/chemistry , Smartphone
8.
IEEE Trans Neural Netw Learn Syst ; 32(10): 4278-4290, 2021 10.
Article in English | MEDLINE | ID: covidwho-1455467

ABSTRACT

This article devises a photograph-based monitoring model to estimate the real-time PM2.5 concentrations, overcoming currently popular electrochemical sensor-based PM2.5 monitoring methods' shortcomings such as low-density spatial distribution and time delay. Combining the proposed monitoring model, the photographs taken by various camera devices (e.g., surveillance camera, automobile data recorder, and mobile phone) can widely monitor PM2.5 concentration in megacities. This is beneficial to offering helpful decision-making information for atmospheric forecast and control, thus reducing the epidemic of COVID-19. To specify, the proposed model fuses Information Abundance measurement and Wide and Deep learning, dubbed as IAWD, for PM2.5 monitoring. First, our model extracts two categories of features in a newly proposed DS transform space to measure the information abundance (IA) of a given photograph since the growth of PM2.5 concentration decreases its IA. Second, to simultaneously possess the advantages of memorization and generalization, a new wide and deep neural network is devised to learn a nonlinear mapping between the above-mentioned extracted features and the groundtruth PM2.5 concentration. Experiments on two recently established datasets totally including more than 100 000 photographs demonstrate the effectiveness of our extracted features and the superiority of our proposed IAWD model as compared to state-of-the-art relevant computing techniques.


Subject(s)
Deep Learning , Environmental Monitoring/methods , Particle Size , Algorithms , COVID-19/prevention & control , Databases, Factual , Humans , Nonlinear Dynamics , Particulate Matter , Photography , SARS-CoV-2
9.
Sci Rep ; 11(1): 19888, 2021 10 06.
Article in English | MEDLINE | ID: covidwho-1454817

ABSTRACT

To cope with the shortage of filtering facepiece respirators (FFRs) during the coronavirus (COVID-19) pandemic, healthcare institutions were forced to reuse FFRs after applying different decontamination methods including gamma-irradiation (GIR). The aim of this study was to evaluate the effect of GIR on the filtration efficiency (FE) of FFRs and on SARS-CoV-2 detection. The FE of 2 FFRs types (KN95 and N95-3 M masks) was assessed at different particle sizes (0.3-5 µm) following GIR (0-15 kGy) delivered at either typical (1.65 kGy/h) or low (0.5088 kGy/h) dose rates. The detection of two SARS-CoV-2 RNA genes (E and RdRp4) following GIR (0-50 kGy) was carried out using RT-qPCR assay. Both masks showed an overall significant (P < 0.001) reduction in FE with increased GIR doses. No significant differences were observed between GIR dose rates on FE. The GIR exhibited significant increases (P ≤ 0.001) in the cycle threshold values (ΔCt) of both genes, with no detection following high doses. In conclusion, complete degradation of SARS-CoV-2 RNA can be achieved by high GIR (≥ 30 kGy), suggesting its potential use in FFRs decontamination. However, GIR exhibited adverse effects on FE in dose- and particle size-dependent manners, rendering its use to decontaminate FFRs debatable.


Subject(s)
COVID-19/virology , Decontamination/methods , Masks , SARS-CoV-2/isolation & purification , Ventilators, Mechanical , COVID-19/prevention & control , COVID-19/transmission , Filtration , Gamma Rays , Humans , Particle Size
10.
Sci Rep ; 11(1): 19403, 2021 09 30.
Article in English | MEDLINE | ID: covidwho-1447324

ABSTRACT

The ongoing worldwide outbreak of COVID-19 has set personal protective equipment in the spotlight. A significant number of countries impose the use of facemasks in public spaces and encourage it in the private sphere. Even in countries where relatively high vaccination rates are achieved at present, breakthrough infections have been frequently reported and usage of facemasks in certain settings has been recommended again. Alternative solutions, including community masks fabricated using various materials, such as cotton or jersey, have emerged alongside facemasks following long-established standards (e.g., EN 149, EN 14683). In the present work, we present a computational model to calculate the ability of different types of facemasks to reduce the exposure to virus-laden respiratory particles, with a focus on the relative importance of the filtration properties and the fitting on the wearer's face. The model considers the facemask and the associated leakage, the transport of respiratory particles and their accumulation around the emitter, as well as the fraction of the inhaled particles deposited in the respiratory system. Different levels of leakages are considered to represent the diversity of fittings likely to be found among a population of non-trained users. The leakage prevails over the filtration performance of a facemask in determining the exposure level, and the ability of a face protection to limit leakages needs to be taken into account to accurately estimate the provided protection. Filtering facepieces (FFP) provide a better protection efficiency than surgical and community masks due to their higher filtration efficiency and their ability to provide a better fit and thus reduce the leakages. However, an improperly-fitted FFP mask loses a critical fraction of its protection efficiency, which may drop below the protection level provided by properly-worn surgical and community masks.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Filtration/instrumentation , Masks/standards , SARS-CoV-2 , Aerosols , Air Microbiology , COVID-19/virology , Disease Transmission, Infectious/prevention & control , Filtration/standards , Humans , Inhalation Exposure/prevention & control , Models, Theoretical , Particle Size
11.
Int J Pharm ; 608: 121122, 2021 Oct 25.
Article in English | MEDLINE | ID: covidwho-1433361

ABSTRACT

Herein, we demonstrated the development and characterization of a dry powder inhaler (DPI) formulation of edoxaban (EDX); and investigated the in-vitro anticoagulation effect for the management of pulmonary or cerebral coagulopathy associated with COVID-19 infection. The formulations were prepared by mixing the inhalable micronized drug with a large carrier lactose and dispersibility enhancers, leucine, and magnesium stearate. The drug-excipient interaction was studied using X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) methods. The drug and excipients showed no physical inter particulate interaction. The in-vitro drug aerosolization from the developed formulation was determined by a Twin Stage Impinger (TSI) at a flow rate of 60 ± 5 L /min. The amount of drug deposition was quantified by an established HPLC-UV method. The fine particle fraction (FPF) of EDX API from drug alone formulation was 7%, whereas the formulations with excipients increased dramatically to almost 7-folds up to 47%. The developed DPI formulation of EDX showed a promising in-vitro anticoagulation effect at a very low concentration. This novel DPI formulation of EDX could be a potential and effective inhalation therapy for managing pulmonary venous thromboembolism (VTE) associated with COVID-19 infection. Further studies are warranted to investigate the toxicity and clinical application of the inhaled EDX DPI formulation.


Subject(s)
Blood Coagulation Disorders/drug therapy , COVID-19 , Dry Powder Inhalers , Pyridines/administration & dosage , Thiazoles/administration & dosage , Administration, Inhalation , Aerosols , Blood Coagulation Disorders/virology , COVID-19/complications , Humans , Particle Size , Powders
12.
West J Emerg Med ; 22(5): 1045-1050, 2021 Aug 17.
Article in English | MEDLINE | ID: covidwho-1405508

ABSTRACT

INTRODUCTION: The coronavirus 2019 (COVID-19) pandemic has reinforced the importance of facial protection against droplet transmission of diseases. Healthcare workers wear personal protection equipment (PPE), including face shields and masks. Plastic face shields may have advantages over regular medical masks. Although many designs of face shields exist, there is a paucity of evidence regarding the efficacy of shield designs against droplet transmissions. There is even less published evidence comparing various face shields. Due to the urgency of the pandemic and the health and safety of healthcare workers, we aimed to study the efficacy of various face shields against droplet transmission. METHODS: We simulated droplet transmission via coughing using a heavy-duty chemical spray bottle filled with fluorescein. A standard-adult sized mannequin head was used. The mannequin head wore various face shields and was positioned to face the spray bottle at either a 0°, 45°, or 90° angle. The spray bottle was positioned at and sprayed from 30 centimeters (cm), 60 cm, or 90 cm away from the head. These steps were repeated for all face shields used. Control was a mannequin that wore no PPE. A basic mask was also tested. We collected data for particle count, total area of particle distribution, average particle size, and percentage area covered by particles. We analyzed percent covered by particles using a repeated measures mixed-model regression with Tukey-Kramer pairwise comparison. RESULTS: We used least square means to estimate the percentage area covered by particles. Wearing PPE regardless of the design reduced particle transmission to the mannequin compared to the control. The LCG mask had the lowest square means of 0.06 of all face-shield designs analyzed. Tukey-Kramer pairwise comparison showed that all PPEs had a decrease in particle contamination compared to the control. LCG shield was found to have the least contamination compared to all other masks (P < 0.05). CONCLUSION: Results suggest the importance of wearing a protective covering against droplet transmission. The LCG shield was found to decrease facial contamination by droplets the most of any tested protective equipment.


Subject(s)
Aerosols/analysis , COVID-19/prevention & control , Infection Control , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Inhalation Exposure/prevention & control , Masks/statistics & numerical data , Personal Protective Equipment/statistics & numerical data , COVID-19/epidemiology , Cough , Delivery of Health Care , Humans , Manikins , Masks/standards , Particle Size , Personal Protective Equipment/standards , SARS-CoV-2
13.
Comput Biol Med ; 138: 104858, 2021 11.
Article in English | MEDLINE | ID: covidwho-1400212

ABSTRACT

This study presents a series of numerical simulations for airflow field and particle dispersion and deposition around a mannequin inside a ventilated room. A 3-D airway system of a volunteer subject with a large respiratory system was reconstructed from the nostril inlet to the end of the tracheobronchial tree 4th generation and was integrated into a standing mannequin at the center of a room. The room ventilation system supplied air through a diffuser and expelled air via a damper in three modes. The airflow field was first evaluated by solving the governing equations and the k-ω SST transitional turbulence model using the Ansys-Fluent software. Then spherical particles with various diameters were released into the room, and their trajectories were evaluated using the Lagrangian approach. Aspiration fraction and particle deposition for inhalation flow rates of 15 and 30 L/min were analyzed using a modified discrete random walk (DRW) stochastic model using a user-defined function (UDF) coupled to the Ansys-Fluent discrete phase model. For the first ventilation mode, a recirculation flow region formed behind the mannequin that led the airflow streamlines to the breathing zone. A recirculation flow formed in front of the face for the second ventilation mode that led the airflow streamlines out of the mannequin breathing zone. For the third mode, however, there was no strong recirculation flow zone around the mannequin. Simulation results showed that the aspiration fraction in the first ventilation mode was higher than the other modes. In addition, the regional deposition rates and deposition patterns of particles inside the respiratory system were presented for each region. Accordingly, most large particles were trapped in the nasal passage; however, some large particles penetrated deeper into the airway due to the large airway size. For the higher breathing rate, the percentage of large escaped particles from the lobe branches dropped by a factor of 7 compared to the lower breathing rate.


Subject(s)
Manikins , Respiration , Bronchi , Computer Simulation , Humans , Particle Size
14.
Sensors (Basel) ; 21(17)2021 Sep 06.
Article in English | MEDLINE | ID: covidwho-1390742

ABSTRACT

Respirable particulate matter air pollution is positively associated with SARS-CoV-2 mortality. Real-time and accurate monitoring of particle concentration changes is the first step to prevent and control air pollution from inhalable particles. In this research, a new light scattering instrument has been developed to detect the mass concentration of inhalable particles. This instrument couples the forward small-angle single particle counting method with the lateral group particle photometry method in a single device. The mass concentration of four sizes of inhalable particles in the environment can be detected simultaneously in a large area in real-time without using a particle impactor. Different from the traditional light scattering instrument, this new optical instrument can detect darker particles with strong light absorption, and the measurement results mainly depend on the particle size and ignore the properties of the particles. Comparative experiments have shown that the instrument can detect particles with different properties by simply calibrating the environmental density parameters, and the measurement results have good stability and accuracy.


Subject(s)
Air Pollutants , COVID-19 , Air Pollutants/analysis , Environmental Monitoring , Humans , Particle Size , Photometry , SARS-CoV-2
15.
Clin Otolaryngol ; 46(6): 1368-1378, 2021 11.
Article in English | MEDLINE | ID: covidwho-1388232

ABSTRACT

OBJECTIVES: As we pass the anniversary of the declaration of a global pandemic by the World Health Organisation, it invites us to reflect upon the inescapable changes that coronavirus has wrought upon ENT and, in particular, rhinological practice. As it remains unclear when we will emerge from the shadow of COVID-19, a critical analysis of the evidence base on both the assessment and mitigation of risk is vital for ENT departments worldwide. This article presents a systematic review of the literature examining articles which consider either the quantification of risk or strategies to mitigate risk specifically in the setting of rhinological surgery. DESIGN: Systematic literature review. RESULTS: The literature search yielded a total of 3406 returns with 24 articles meeting eligibility criteria. A narrative synthesis stratified results into two broad themes: (1) those which made an assessment as to the aerosolisation of droplets during sinus surgery, further sub-divided into work which considered macroscopically visible droplets and that which considered smaller particles; (2) and those studies which examined the mitigation of this risk. CONCLUSION: Studies considering the aerosolisation of both droplets and smaller particles suggest endonasal surgery carries significant risk. While results both highlight a range of innovative adjunctive strategies and support suction as an important intervention to reduce aerosolisation, appropriate use of personal protective equipment (PPE) should be considered mandatory for all healthcare professionals involved in rhinological surgery. Studies have demonstrated that close adherence to PPE use is effective in preventing COVID-19 infection.


Subject(s)
Aerosols , COVID-19/prevention & control , Infection Control/methods , Nose Diseases/surgery , Operating Rooms , COVID-19/epidemiology , Humans , Pandemics , Particle Size , Personal Protective Equipment , SARS-CoV-2
18.
ACS Nano ; 14(6): 7651-7658, 2020 06 23.
Article in English | MEDLINE | ID: covidwho-1387149

ABSTRACT

Layered systems of commonly available fabric materials can be used by the public and healthcare providers in face masks to reduce the risk of inhaling viruses with protection that is about equivalent to or better than the filtration and adsorption offered by 5-layer N95 respirators. Over 70 different common fabric combinations and masks were evaluated under steady-state, forced convection air flux with pulsed aerosols that simulate forceful respiration. The aerosols contain fluorescent virus-like nanoparticles to track transmission through materials that greatly assist the accuracy of detection, thus avoiding artifacts including pore flooding and the loss of aerosol due to evaporation and droplet breakup. Effective materials comprise both absorbent, hydrophilic layers and barrier, hydrophobic layers. Although the hydrophobic layers can adhere virus-like nanoparticles, they may also repel droplets from adjacent absorbent layers and prevent wicking transport across the fabric system. Effective designs are noted with absorbent layers comprising terry cloth towel, quilting cotton, and flannel. Effective designs are noted with barrier layers comprising nonwoven polypropylene, polyester, and polyaramid.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Masks , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Textiles , Aerosols , Air Microbiology , Betacoronavirus/ultrastructure , COVID-19 , Coronavirus Infections/transmission , Filtration , Humans , In Vitro Techniques , Masks/supply & distribution , Nanoparticles/ultrastructure , Particle Size , Permeability , Pneumonia, Viral/transmission , SARS-CoV-2 , Water
19.
J Phys Chem B ; 124(33): 7093-7101, 2020 08 20.
Article in English | MEDLINE | ID: covidwho-1387109

ABSTRACT

For estimating the infection risk from virus-containing airborne droplets, it is crucial to consider the interplay of all relevant physical-chemical effects that affect droplet evaporation and sedimentation times. For droplet radii in the range 70 nm < R < 60 µm, evaporation can be described in the stagnant-flow approximation and is diffusion-limited. Analytical equations are presented for the droplet evaporation rate, the time-dependent droplet size, and the sedimentation time, including evaporation cooling and solute osmotic-pressure effects. Evaporation makes the time for initially large droplets to sediment much longer and thus significantly increases the viral air load. Using recent estimates for SARS-CoV-2 concentrations in sputum and droplet production rates while speaking, a single infected person that constantly speaks without a mouth cover produces a total steady-state air load of more than 104 virions at a given time. In a midsize closed room, this leads to a viral inhalation frequency of at least 2.5 per minute. Low relative humidity, as encountered in airliners and inside buildings in the winter, accelerates evaporation and thus keeps initially larger droplets suspended in air. Typical air-exchange rates decrease the viral air load from droplets with an initial radius larger than 20 µm only moderately.


Subject(s)
Betacoronavirus , Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Speech , Aerosols , Air Microbiology , Algorithms , COVID-19 , Diffusion , Humans , Pandemics , Particle Size , Risk Assessment , SARS-CoV-2 , Water
20.
Med Hypotheses ; 146: 110396, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1386308

ABSTRACT

We have reviewed a considerable amount of recent scientific papers relating inflammation caused by air pollution with chronic and severe medical conditions. Furthermore, there are evidences relating organ inflammation caused by not only outdoor long-term but also short-term inhaled radioisotopes contained in high polluted air or in household natural radioactive background aerosols, in addition to SARS-COV-2 attached to bioaerosols, which are related with a worst evolution of severe acute respiratory syndrome patients. Reactive oxygen species (ROS) production induced by the interaction with environmental ionizing radiation contained in pollution is pointed out as a critical mechanism that predispose mainly to elder population, but not excluding young subjects, presenting previous chronic conditions of lung inflammation or neuroinflammation, which can lead to the most serious consequences.


Subject(s)
Air Pollution, Radioactive/adverse effects , COVID-19/etiology , Climate Change , Inflammation/etiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , SARS-CoV-2/pathogenicity , Aerosols , Air Microbiology , COVID-19/mortality , Causality , Humans , Inflammasomes/metabolism , Inflammasomes/radiation effects , Models, Biological , Nervous System Diseases/etiology , Pandemics , Particle Size , Particulate Matter/adverse effects , Pneumonia/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...