Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Int J Environ Res Public Health ; 17(17)2020 08 27.
Article in English | MEDLINE | ID: covidwho-836247

ABSTRACT

Seoul, the most populous city in South Korea, has been practicing social distancing to slow down the spread of coronavirus disease 2019 (COVID-19). Fine particulate matter (PM2.5) and other air pollutants measured in Seoul over the two 30 day periods before and after the start of social distancing are analyzed to assess the change in air quality during the period of social distancing. The 30 day mean PM2.5 concentration decreased by 10.4% in 2020, which is contrasted with an average increase of 23.7% over the corresponding periods in the previous 5 years. The PM2.5 concentration decrease was city-wide and more prominent during daytime than at nighttime. The concentrations of carbon monoxide (CO) and nitrogen dioxide (NO2) decreased by 16.9% and 16.4%, respectively. These results show that social distancing, a weaker forcing toward reduced human activity than a strict lockdown, can help lower pollutant emissions. At the same time, synoptic conditions and the decrease in aerosol optical depth over the regions to the west of Seoul support that the change in Seoul's air quality during the COVID-19 social distancing can be interpreted as having been affected by reductions in the long-range transport of air pollutants as well as local emission reductions.


Subject(s)
Air Pollution/analysis , Coronavirus Infections/epidemiology , Environmental Monitoring , Pneumonia, Viral/epidemiology , Air Pollutants/analysis , Betacoronavirus , Humans , Pandemics , Particulate Matter/analysis , Seoul
2.
BMJ Open ; 10(9): e039338, 2020 09 24.
Article in English | MEDLINE | ID: covidwho-794755

ABSTRACT

OBJECTIVES: A number of studies have shown that the airborne transmission route could spread some viruses over a distance of 2 meters from an infected person. An epidemic model based only on respiratory droplets and close contact could not fully explain the regional differences in the spread of COVID-19 in Italy. On March 16th 2020, we presented a position paper proposing a research hypothesis concerning the association between higher mortality rates due to COVID-19 observed in Northern Italy and average concentrations of PM10 exceeding a daily limit of 50 µg/m3. METHODS: To monitor the spreading of COVID-19 in Italy from February 24th to March 13th (the date of the Italian lockdown), official daily data for PM10 levels were collected from all Italian provinces between February 9th and February 29th, taking into account the maximum lag period (14 days) between the infection and diagnosis. In addition to the number of exceedances of the daily limit value of PM10, we also considered population data and daily travelling information for each province. RESULTS: Exceedance of the daily limit value of PM10 appears to be a significant predictor of infection in univariate analyses (p<0.001). Less polluted provinces had a median of 0.03 infections over 1000 residents, while the most polluted provinces showed a median of 0.26 cases. Thirty-nine out of 41 Northern Italian provinces resulted in the category with the highest PM10 levels, while 62 out of 66 Southern provinces presented low PM10 concentrations (p<0.001). In Milan, the average growth rate before the lockdown was significantly higher than in Rome (0.34 vs 0.27 per day, with a doubling time of 2.0 days vs 2.6, respectively), thus suggesting a basic reproductive number R0>6.0, comparable with the highest values estimated for China. CONCLUSION: A significant association has been found between the geographical distribution of daily PM10 exceedances and the initial spreading of COVID-19 in the 110 Italian provinces.


Subject(s)
Air Pollution , Betacoronavirus/isolation & purification , Coronavirus Infections , Disease Transmission, Infectious , Pandemics , Particulate Matter/analysis , Pneumonia, Viral , Air Pollution/analysis , Air Pollution/statistics & numerical data , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Correlation of Data , Disease Transmission, Infectious/prevention & control , Disease Transmission, Infectious/statistics & numerical data , Humans , Italy/epidemiology , Outcome Assessment, Health Care , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Public Health/methods , Public Health/statistics & numerical data , Risk Assessment/methods
3.
Sci Total Environ ; 746: 141129, 2020 Dec 01.
Article in English | MEDLINE | ID: covidwho-676570

ABSTRACT

The current changes in vehicle movement due to 'lockdown' conditions (imposed in cities worldwide in response to the COVID-19 epidemic) provide opportunities to quantify the local impact of 'controlled interventions' on air quality and establish baseline pollution concentrations in cities. Here, we present a case study from Auckland, New Zealand, an isolated Southern Hemisphere city, which is largely unaffected by long-range pollution transport or industrial sources of air pollution. In this city, traffic flows reduced by 60-80% as a result of a government-led initiative to contain the virus by limiting all transport to only essential services. In this paper, ambient pollutant concentrations of NO2, O3, BC, PM2.5, and PM10 are compared between the lockdown period and comparable periods in the historical air pollution record, while taking into account changes in the local meteorology. We show that this 'natural experiment' in source emission reductions had significant but non-linear impacts on air quality. While emission inventories and receptor modelling approaches confirm the dominance of traffic sources for NOx (86%), and BC (72%) across the city, observations suggest a consequent reduction in NO2 of only 34-57% and a reduction in BC of 55-75%. The observed reductions in PM2.5 (still likely to be dominated by traffic emissions), and PM10 (dominated by sea salt, traffic emissions to a lesser extent, and affected by seasonality) were found to be significantly less (8-17% for PM2.5 and 7-20% for PM10). The impact of this unplanned controlled intervention shows the importance of establishing accurate, local-scale emission inventories, and the potential of the local atmospheric chemistry and meteorology in limiting their accuracy.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/prevention & control , Coronavirus Infections , Pandemics , Pneumonia, Viral , Severe Acute Respiratory Syndrome , Betacoronavirus , Cities , Environmental Monitoring , Humans , New Zealand/epidemiology , Particulate Matter/analysis
4.
Sci Total Environ ; 744: 141012, 2020 Nov 20.
Article in English | MEDLINE | ID: covidwho-653939

ABSTRACT

To control the novel coronavirus disease (COVID-19) outbreak, state and local governments in the United States have implemented several mitigation efforts that resulted in lower emissions of traffic-related air pollutants. This study examined the impacts of COVID-19 mitigation measures on air pollution levels and the subsequent reductions in mortality for urban areas in 10 US states and the District of Columbia. We calculated changes in levels of particulate matter with aerodynamic diameter no larger than 2.5 µm (PM2.5) during mitigation period versus the baseline period (pre-mitigation measure) using the difference-in-difference approach and the estimated avoided total and cause-specific mortality attributable to these changes in PM2.5 by state and district. We found that PM2.5 concentration during the mitigation period decreased for most states (except for 3 states) and the capital. Decreases of average PM2.5 concentration ranged from 0.25 µg/m3 (4.3%) in Maryland to 4.20 µg/m3 (45.1%) in California. On average, PM2.5 levels across 7 states and the capital reduced by 12.8%. We estimated that PM2.5 reduction during the mitigation period lowered air pollution-related total and cause-specific deaths. An estimated 483 (95% CI: 307, 665) PM2.5-related deaths was avoided in the urban areas of California. Our findings have implications for the effects of mitigation efforts and provide insight into the mortality reductions can be achieved from reduced air pollution levels.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Coronavirus Infections , Coronavirus , Pandemics , Pneumonia, Viral , Betacoronavirus , Humans , Maryland , Particulate Matter/analysis , United States
5.
Sci Total Environ ; 743: 140758, 2020 Nov 15.
Article in English | MEDLINE | ID: covidwho-652608

ABSTRACT

The COVID-19 epidemic broke out in Wuhan, Hubei in December 2019 and in January 2020 and was later transmitted to the entire country. Quarantine measures during Chinese New Year effectively alleviated the spread of the epidemic, but they simultaneously resulted in a decline in anthropogenic emissions from industry, transportation, and import and export of goods. Herein, we present the major chemical composition of non-refractory PM2.5 (NR-PM2.5) and the concentrations of gaseous pollutants in an urban site in Shanghai before and during the quarantine period of the COVID-19 epidemic, which was Jan. 8-23 and Jan. 24-Feb. 8, respectively. The observed results show that the reduction in PM2.5 can be mainly attributed to decreasing concentrations of nitrate and primary aerosols. Nitrate accounted for 37% of NR-PM2.5 before the quarantine period when there was no emission reduction. During the quarantine period, the nitrate concentration decreased by approximately 60%, which is attributed to a reduction in the NOx concentration. Ammonium, as the main balancing cation, showed an approximately 45% simultaneous decrease in concentration. The concentrations of chloride and hydrocarbon-like organic aerosols from primary emissions also declined due to limited human activities. By contrast, sulphate and oxygenated organic aerosols showed a slight decrease in concentration, with their contributions increasing to 27% and 18%, respectively, during the quarantine period, which resulted in two pollution episodes with PM2.5 exceeding 100 µg/m3. This study provides a better understanding of the impact of quarantine measures on variations of the PM2.5 concentration and chemical compositions. Atmospheric oxidation capacities based on the oxidant (Ox = O3 + NO2) and oxidation ratios have been discussed for elucidating the source and formation of haze in an environment with lower anthropogenic emissions. With increasing contribution of secondary aerosols, lower NOx and nitrate concentrations did not completely avoid haze in Shanghai during the epidemic.


Subject(s)
Air Pollutants/analysis , Coronavirus Infections , Pandemics , Particulate Matter/analysis , Pneumonia, Viral , Aerosols/analysis , Betacoronavirus , China , Environmental Monitoring , Humans , Quarantine , Seasons
6.
Sci Total Environ ; 742: 140931, 2020 Nov 10.
Article in English | MEDLINE | ID: covidwho-641193

ABSTRACT

We investigated changes in traffic-related air pollutant concentrations in an urban area during the COVID-19 pandemic. The study was conducted in a mixed commercial-residential neighborhood in Somerville (MA, USA), where traffic is the dominant source of air pollution. Measurements were made between March 27 and May 14, 2020, coinciding with a dramatic reduction in traffic (71% drop in car and 46% drop in truck traffic) due to business shutdowns and a statewide stay-at-home advisory. Indicators of fresh vehicular emissions (ultrafine particle number concentration [PNC] and black carbon [BC]) were measured with a mobile monitoring platform on an interstate highway and major and minor roadways. Our results show that depending on road class, median PNC and BC contributions from traffic were 60-68% and 22-46% lower, respectively, during the lockdown compared to pre-pandemic conditions, and corresponding reductions in total on-road concentrations were 45-69% and 22-56%, respectively. A higher BC: PNC concentration ratio was observed during the lockdown period likely indicative of the higher fraction of diesel vehicles in the fleet during the lockdown. Overall, the scale of reductions in ultrafine particle and BC concentrations was commensurate with the reductions in traffic. This natural experiment allowed us to quantify the direct impacts of reductions in traffic emissions on neighborhood-scale air quality, which are not captured by the regional regulatory-monitoring network. These results underscore the importance of measurements of appropriate proxies for traffic emissions at relevant spatial scales. Our results are useful for exposure analysis as well as city and regional planners evaluating mitigation strategies for traffic-related air pollution.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Coronavirus Infections , Pandemics , Pneumonia, Viral , Betacoronavirus , Carbon , Cities , Environmental Monitoring , Humans , Particulate Matter/analysis , Vehicle Emissions/analysis
7.
Int J Environ Res Public Health ; 17(17)2020 08 28.
Article in English | MEDLINE | ID: covidwho-740492

ABSTRACT

Due to the suspension of traffic mobility and industrial activities during the COVID-19, particulate matter (PM) pollution has decreased in China. However, rarely have research studies discussed the spatiotemporal pattern of this change and related influencing factors at city-scale across the nation. In this research, the clustering patterns of the decline rates of PM2.5 and PM10 during the period from 20 January to 8 April in 2020, compared with the same period of 2019, were investigated using spatial autocorrelation analysis. Four meteorological factors and two socioeconomic factors, i.e., the decline of intra-city mobility intensity (dIMI) representing the effect of traffic mobility and the decline rates of the secondary industrial output values (drSIOV), were adopted in the regression analysis. Then, multi-scale geographically weighted regression (MGWR), a model allowing the particular processing scale for each independent variable, was applied for investigating the relationship between PM pollution reductions and influencing factors. For comparison, ordinary least square (OLS) regression and the classic geographically weighted regression (GWR) were also performed. The research found that there were 16% and 20% reduction of PM2.5 and PM10 concentration across China and significant PM pollution mitigation in central, east, and south regions of China. As for the regression analysis results, MGWR outperformed the other two models, with R2 of 0.711 and 0.732 for PM2.5 and PM10, respectively. The results of MGWR revealed that the two socioeconomic factors had more significant impacts than meteorological factors. It showed that the reduction of traffic mobility caused more relative declines of PM2.5 in east China (e.g., cities in Jiangsu), while it caused more relative declines of PM10 in central China (e.g., cities in Henan). The reduction of industrial operation had a strong relationship with the PM10 drop in northeast China. The results are crucial for understanding how the decline pattern of PM pollution varied spatially during the COVID-19 outbreak, and it also provides a good reference for air pollution control in the future.


Subject(s)
Air Pollutants/analysis , Coronavirus Infections/epidemiology , Environmental Monitoring , Particulate Matter/analysis , Pneumonia, Viral/epidemiology , Air Pollution/analysis , Betacoronavirus , China , Cities , Humans , Pandemics
8.
Int J Environ Res Public Health ; 17(17)2020 08 27.
Article in English | MEDLINE | ID: covidwho-738138

ABSTRACT

Seoul, the most populous city in South Korea, has been practicing social distancing to slow down the spread of coronavirus disease 2019 (COVID-19). Fine particulate matter (PM2.5) and other air pollutants measured in Seoul over the two 30 day periods before and after the start of social distancing are analyzed to assess the change in air quality during the period of social distancing. The 30 day mean PM2.5 concentration decreased by 10.4% in 2020, which is contrasted with an average increase of 23.7% over the corresponding periods in the previous 5 years. The PM2.5 concentration decrease was city-wide and more prominent during daytime than at nighttime. The concentrations of carbon monoxide (CO) and nitrogen dioxide (NO2) decreased by 16.9% and 16.4%, respectively. These results show that social distancing, a weaker forcing toward reduced human activity than a strict lockdown, can help lower pollutant emissions. At the same time, synoptic conditions and the decrease in aerosol optical depth over the regions to the west of Seoul support that the change in Seoul's air quality during the COVID-19 social distancing can be interpreted as having been affected by reductions in the long-range transport of air pollutants as well as local emission reductions.


Subject(s)
Air Pollution/analysis , Coronavirus Infections/epidemiology , Environmental Monitoring , Pneumonia, Viral/epidemiology , Air Pollutants/analysis , Betacoronavirus , Humans , Pandemics , Particulate Matter/analysis , Seoul
9.
Environ Pollut ; 266(Pt 3): 115368, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-712305

ABSTRACT

Lockdown measures to contain COVID-19 pandemic has resulted in a considerable change in air pollution worldwide. We estimate the temporal and diurnal changes of the six criteria air pollutants, including particulate matter (PM2.5 and PM10) and gaseous pollutants (NO2, O3, CO, and SO2) during lockdown (25th March - 3rd May 2020) across regions of India using the observations from 134 real-time monitoring sites of Central Pollution Control Board (CPCB). Significant reduction in PM2.5, PM10, NO2, and CO has been found in all the regions during the lockdown. SO2 showed mixed behavior, with a slight increase at some sites but a comparatively significant decrease at other locations. O3 also showed a mixed variation with a mild increase in IGP and a decrease in the South. The absolute decrease in PM2.5, PM10, and NO2 was observed during peak morning traffic hours (08-10 Hrs) and late evening (20-24 Hrs), but the percentage reduction is almost constant throughout the day. A significant decrease in day-time O3 has been found over Indo Gangetic plain (IGP) and central India, whereas night-time O3 has increased over IGP due to less O3 loss. The most significant reduction (∼40-60%) was found in PM2.5 and PM10. The highest decrease in PM was found for the north-west and IGP followed by South and central regions. A considerable reduction (∼30-70%) in NO2 was found except for a few sites in the central region. A similar pattern was observed for CO having a ∼20-40% reduction. The reduction observed for PM2.5, PM10, NO2, and enhancement in O3 was proportional to the population density. Delhi's air quality has improved with a significant reduction in primary pollutants, however, an increase in O3 was observed. The changes reported during the lockdown are combined effect of changes in the emissions, meteorology, and atmospheric chemistry that requires detailed investigations.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Coronavirus Infections , Pandemics , Pneumonia, Viral , Betacoronavirus , Environmental Monitoring , Humans , India , Particulate Matter/analysis
10.
Sci Rep ; 10(1): 13442, 2020 08 10.
Article in English | MEDLINE | ID: covidwho-709952

ABSTRACT

Delhi, a tropical Indian megacity, experiences one of the most severe air pollution in the world, linked with diverse anthropogenic and biomass burning emissions. First phase of COVID-19 lockdown in India, implemented during 25 March to 14 April 2020 resulted in a dramatic near-zeroing of various activities (e.g. traffic, industries, constructions), except the "essential services". Here, we analysed variations in the fine particulate matter (PM2.5) over the Delhi-National Capital Region. Measurements revealed large reductions (by 40-70%) in PM2.5 during the first week of lockdown (25-31 March 2020) as compared to the pre-lockdown conditions. However, O3 pollution remained high during the lockdown due to non-linear chemistry and dynamics under low aerosol loading. Notably, events of enhanced PM2.5 levels (300-400 µg m-3) were observed during night and early morning hours in the first week of April after air temperatures fell close to the dew-point (~ 15-17 °C). A haze formation mechanism is suggested through uplifting of fine particles, which is reinforced by condensation of moisture following the sunrise. The study highlights a highly complex interplay between the baseline pollution and meteorology leading to counter intuitive enhancements in pollution, besides an overall improvement in air quality during the COVID-19 lockdown in this part of the world.


Subject(s)
Air Pollutants/analysis , Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Particulate Matter/analysis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Quarantine/methods , Weather , Aerosols/analysis , Air Pollution/analysis , Cities/epidemiology , Coronavirus Infections/virology , Environmental Monitoring/methods , Humans , India/epidemiology , Ozone/analysis , Pneumonia, Viral/virology , Temperature
11.
Sci Total Environ ; 746: 141320, 2020 Dec 01.
Article in English | MEDLINE | ID: covidwho-703255

ABSTRACT

The COVID-19 pandemic has triggered an industrial and financial slowdown due to unprecedented regulations imposed with the purpose to contain the spread of the virus. Consequently, the positive effect on the environment has been witnessed. One of the most prominent evidences has been the drastic air quality improvement, as a direct consequence of lower emissions from reduced industrial activity. While several studies have demonstrated the validity of this hypothesis in mega-cities worldwide, it is still an unsubstantiated fact whether the same holds true for cities with a smaller urban extent and population. In the present study we investigate the temporal development of atmospheric constituent concentrations as retrieved concurrently from the Sentinel-5P satellite and a ground meteorological station. We focus on the period before and during the COVID-19 pandemic over the city of Hat Yai, Thailand and present the effect of the lockdown on the atmospheric quality over this average populated city (156,000 inhabitants). NO2, PM2.5 and PM10 concentrations decreased by 33.7%, 21.8% and 22.9% respectively in the first 3 weeks of the lockdown compared to the respective pre-lockdown period; O3 also decreased by 12.5% and contrary to similar studies. Monthly averages of NO2, CO and PM2.5 for the month April exhibit in 2020 the lowest values in the last decade. Sentinel-5P retrieved NO2 tropospheric concentrations, both locally over the ground station and the spatial average over the urban extent of the city, are in agreement with the reduction observed from the ground station. Numerous studies have already presented evidence of the bettering of the air quality over large metropolitan areas during the COVID-19 pandemic. In the current study we demonstrate that this holds true for Hat Yai, Thailand; we propound that the environmental benefits documented in major urban agglomerations during the lockdown may extend to medium-sized urban areas as well.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Coronavirus Infections , Pandemics , Pneumonia, Viral , Betacoronavirus , Cities , Environmental Monitoring , Humans , Particulate Matter/analysis , Thailand/epidemiology
12.
Ecotoxicol Environ Saf ; 204: 111035, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-694305

ABSTRACT

Coronavirus disease 2019 (COVID-19) was first detected in December 2019 in Wuhan, China, with 11,669,259 positive cases and 539,906 deaths globally as of July 8, 2020. The objective of the present study was to determine whether meteorological parameters and air quality affect the transmission of COVID-19, analogous to SARS. We captured data from 29 provinces, including numbers of COVID-19 cases, meteorological parameters, air quality and population flow data, between Jan 21, 2020 and Apr 3, 2020. To evaluate the transmissibility of COVID-19, the basic reproductive ratio (R0) was calculated with the maximum likelihood "removal" method, which is based on chain-binomial model, and the association between COVID-19 and air pollutants or meteorological parameters was estimated by correlation analyses. The mean estimated value of R0 was 1.79 ± 0.31 in 29 provinces, ranging from 1.08 to 2.45. The correlation between R0 and the mean relative humidity was positive, with coefficient of 0.370. In provinces with high flow, indicators such as carbon monoxide (CO) and 24-h average concentration of carbon monoxide (CO_24 h) were positively correlated with R0, while nitrogen dioxide (NO2), 24-h average concentration of nitrogen dioxide (NO2_24 h) and daily maximum temperature were inversely correlated to R0, with coefficients of 0.644, 0.661, -0.636, -0.657, -0.645, respectively. In provinces with medium flow, only the weather factors were correlated with R0, including mean/maximum/minimum air pressure and mean wind speed, with coefficients of -0.697, -0.697, -0.697 and -0.841, respectively. There was no correlation with R0 and meteorological parameters or air pollutants in provinces with low flow. Our findings suggest that higher ambient CO concentration is a risk factor for increased transmissibility of the novel coronavirus, while higher temperature and air pressure, and efficient ventilation reduce its transmissibility. The effect of meteorological parameters and air pollutants varies in different regions, and requires that these issues be considered in future modeling disease transmissibility.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Coronavirus Infections/epidemiology , Environmental Exposure/statistics & numerical data , Pneumonia, Viral/epidemiology , Air Pollution/analysis , Betacoronavirus , Carbon Monoxide/analysis , China/epidemiology , Coronavirus , Humans , Nitrogen Dioxide/analysis , Pandemics , Particulate Matter/analysis , Temperature , Weather
13.
Proc Natl Acad Sci U S A ; 117(32): 18984-18990, 2020 08 11.
Article in English | MEDLINE | ID: covidwho-691222

ABSTRACT

The lockdown response to coronavirus disease 2019 (COVID-19) has caused an unprecedented reduction in global economic and transport activity. We test the hypothesis that this has reduced tropospheric and ground-level air pollution concentrations, using satellite data and a network of >10,000 air quality stations. After accounting for the effects of meteorological variability, we find declines in the population-weighted concentration of ground-level nitrogen dioxide (NO2: 60% with 95% CI 48 to 72%), and fine particulate matter (PM2.5: 31%; 95% CI: 17 to 45%), with marginal increases in ozone (O3: 4%; 95% CI: -2 to 10%) in 34 countries during lockdown dates up until 15 May. Except for ozone, satellite measurements of the troposphere indicate much smaller reductions, highlighting the spatial variability of pollutant anomalies attributable to complex NOx chemistry and long-distance transport of fine particulate matter with a diameter less than 2.5 µm (PM2.5). By leveraging Google and Apple mobility data, we find empirical evidence for a link between global vehicle transportation declines and the reduction of ambient NO2 exposure. While the state of global lockdown is not sustainable, these findings allude to the potential for mitigating public health risk by reducing "business as usual" air pollutant emissions from economic activities. Explore trends here: https://nina.earthengine.app/view/lockdown-pollution.


Subject(s)
Air Pollution/statistics & numerical data , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Quarantine/statistics & numerical data , Air Pollutants/analysis , Atmosphere/chemistry , Coronavirus Infections/prevention & control , Humans , Nitrogen Dioxide/analysis , Ozone/analysis , Pandemics/prevention & control , Particulate Matter/analysis , Pneumonia, Viral/prevention & control , Quarantine/economics , Vehicle Emissions/analysis
14.
Environ Pollut ; 266(Pt 1): 115080, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-679962

ABSTRACT

The study objective is to contemplate the effectiveness of COVID-19 on the air pollution of Indian territory from January 2020 to April 2020. We have executed data from European Space Agency (ESA) and CPCB online portal for air quality data dissemination. The Sentinel - 5 P satellite images elucidate that the Air quality of Indian territory has been improved significantly during COVID-19. Mumbai and Delhi are one of the most populated cities. These two cities have observed a substantial decrease in Nitrogen Dioxide (40-50%) compared to the same period last year. It suggests that the emergence of COVID-19 has been proved to a necessary evil as being advantageous for mitigating air pollution on Indian territory during the lock-down. The study found a significant decline in Nitrogen Dioxide in reputed states of India, i.e., Delhi and Mumbai. Moreover, a faded track of Nitrogen Dioxide can be seen at the Maritime route in the Indian Ocean. An upsurge in the environmental quality of India will also be beneficial for its neighbor countries, i.e., China, Pakistan, Iran, and Afghanistan.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Coronavirus Infections , Pandemics , Pneumonia, Viral , Betacoronavirus , China , Cities , Environmental Monitoring , Humans , India , Indian Ocean , Iran , Pakistan , Particulate Matter/analysis
15.
Int J Environ Res Public Health ; 17(15)2020 07 22.
Article in English | MEDLINE | ID: covidwho-670512

ABSTRACT

Both domestic emissions and transported pollutants from neighboring countries affect the ambient fine particulate matter (PM2.5) concentration of Seoul, Korea. Diverse measures to control the coronavirus disease 2019 (COVID-19), such as social distancing and increased telecommuting in Korea and the stringent lockdown measures of China, may reduce domestic emissions and levels of transported pollutants, respectively. In addition, wearing a particulate-filtering respirator may have decreased the absolute PM2.5 exposure level for individuals. Therefore, this study estimated the acute health benefits of PM2.5 reduction and changes in public behavior during the COVID-19 crisis in Seoul, Korea. To calculate the mortality burden attributable to PM2.5, we obtained residents' registration data, mortality data, and air pollution monitoring data for Seoul from publicly available databases. Relative risks were derived from previous time-series studies. We used the attributable fraction to estimate the number of excessive deaths attributable to acute PM2.5 exposure during January to April, yearly, from 2016 to 2020, and the number of mortalities avoided from PM2.5 reduction and respirator use observed in 2020. The average PM2.5 concentration from January to April in 2020 (25.6 µg/m3) was the lowest in the last 5 years. At least -4.1 µg/m3 (95% CI: -7.2, -0.9) change in ambient PM2.5 in Seoul was observed in 2020 compared to the previous 4 years. Overall, 37.6 (95% CI: 32.6, 42.5) non-accidental; 7.0 (95% CI: 5.7, 8.4) cardiovascular; and 4.7 (95% CI: 3.4, 6.1) respiratory mortalities were avoided due to PM2.5 reduction in 2020. By considering the effects of particulate respirator, decreases of 102.5 (95% CI: 89.0, 115.9) non-accidental; 19.1 (95% CI: 15.6, 22.9) cardiovascular; and 12.9 (95% CI: 9.2, 16.5) respiratory mortalities were estimated. We estimated that 37 lives were saved due to the PM2.5 reduction related to COVID-19 in Seoul, Korea. The health benefit may be greater due to the popular use of particulate-filtering respirators during the COVID-19 crisis. Future studies with daily mortality data are needed to verify our study estimates.


Subject(s)
Coronavirus Infections/epidemiology , Environmental Exposure/analysis , Particulate Matter/analysis , Pneumonia, Viral/epidemiology , Betacoronavirus , Coal , Coronavirus Infections/virology , Databases, Factual , Dust , Humans , Pandemics , Particulate Matter/toxicity , Pneumonia, Viral/virology , Seoul/epidemiology
16.
Sci Total Environ ; 735: 139542, 2020 Sep 15.
Article in English | MEDLINE | ID: covidwho-665497

ABSTRACT

The effect of lockdown due to coronavirus disease (COVID-19) pandemic on air pollution in four Southern European cities (Nice, Rome, Valencia and Turin) and Wuhan (China) was quantified, with a focus on ozone (O3). Compared to the same period in 2017-2019, the daily O3 mean concentrations increased at urban stations by 24% in Nice, 14% in Rome, 27% in Turin, 2.4% in Valencia and 36% in Wuhan during the lockdown in 2020. This increase in O3 concentrations is mainly explained by an unprecedented reduction in NOx emissions leading to a lower O3 titration by NO. Strong reductions in NO2 mean concentrations were observed in all European cities, ~53% at urban stations, comparable to Wuhan (57%), and ~65% at traffic stations. NO declined even further, ~63% at urban stations and ~78% at traffic stations in Europe. Reductions in PM2.5 and PM10 at urban stations were overall much smaller both in magnitude and relative change in Europe (~8%) than in Wuhan (~42%). The PM reductions due to limiting transportation and fuel combustion in institutional and commercial buildings were partly offset by increases of PM emissions from the activities at home in some of the cities. The NOx concentrations during the lockdown were on average 49% lower than those at weekends of the previous years in all cities. The lockdown effect on O3 production was ~10% higher than the weekend effect in Southern Europe and 38% higher in Wuhan, while for PM the lockdown had the same effect as weekends in Southern Europe (~6% of difference). This study highlights the challenge of reducing the formation of secondary pollutants such as O3 even with strict measures to control primary pollutant emissions. These results are relevant for designing abatement policies of urban pollution.


Subject(s)
Air Pollution/analysis , Coronavirus Infections , Environmental Monitoring , Ozone/analysis , Pandemics , Pneumonia, Viral , Betacoronavirus , China , Cities , Europe , Humans , Nitrogen Dioxide/analysis , Particulate Matter/analysis
17.
Sci Total Environ ; 745: 141105, 2020 Nov 25.
Article in English | MEDLINE | ID: covidwho-663154

ABSTRACT

Most of the state governments in United States (U.S.) issued lockdown or business restrictions amid the COVID-19 pandemic in March 2020, which created a unique opportunity to evaluate the air quality response to reduced economic activities. Data acquired from 28 long-term air quality stations across the U.S. revealed widespread but nonuniform reductions of nitrogen dioxide (NO2) and carbon monoxide (CO) during the first phase of lockdown (March 15-April 25, 2020) relative to a pre-lockdown reference period and historical baselines established in 2017-2019. The reductions, up to 49% for NO2 and 37% for CO, are statistically significant at two thirds of the sites and tend to increase with local population density. Significant reductions of particulate matter (PM2.5 and PM10) only occurred in the Northeast and California/Nevada metropolises where NO2 declined the most, while the changes in ozone (O3) were mixed and relatively minor. These findings are consistent with lower transportation and utility demands that dominate NO2 and CO emissions, especially in major urban areas, due to the lockdown. This study provides an insight into potential public health benefits with more aggressive air quality management, which should be factored into strategies to reopen the U.S. and global economy.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Coronavirus Infections , Ozone/analysis , Pandemics , Pneumonia, Viral , Betacoronavirus , Environmental Monitoring , Humans , Nevada , Particulate Matter/analysis , United States
18.
Environ Pollut ; 266(Pt 1): 115042, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-650383

ABSTRACT

On December 31, 2019, the Chinese authorities reported to the World Health Organization (WHO) the outbreak of a new strain of coronavirus that causes a serious disease in the city of Wuhan, China. This outbreak was classified as SARS-CoV2 and is the cause of the COVID-19 disease. On March 11, 2020, the WHO declares it a Pandemic and today it is considered the greatest challenge in global health that humanity has faced since World War II and it is estimated that between 40 and 60% of the population worldwide will catch the virus. This has caused enormous challenges in countries around the world in social, economic, environmental and obviously health issues. These challenges are mainly due to the effects of the established quarantines in almost all capitals and major cities around the world, from Asia, Europe to America. However, these lockdown which began worldwide from January 23, have had a significant impact on the environment and on the air quality of cities as recently reported by NASA (National Aeronautics and Space Administration) and ESA (European Space Agency), with reductions according to them of up to 30% in some of the epicenters such as the case of Wuhan. Knowing that air pollution causes approximately 29% of lung cancer deaths, 43% of COPD deaths, and 25% of ischemic heart disease deaths, it is important to know the effects of quarantines in cities regarding air quality to take measures that favor populations and urban ecosystems when the emergency ends. Therefore, this paper describes the behavior of PM2.5 emissions particulate matter from the 50 most polluted capital cities in the world according to the WHO, measured before-after the start of the quarantine. Likewise, the impact at the local and global level of this emissions behavior, which averaged 12% of PM2.5 decrease in these cities.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Coronavirus Infections , Pandemics , Pneumonia, Viral , Asia , Betacoronavirus , China , Cities , Ecosystem , Europe , Humans , Particulate Matter/analysis
19.
Int J Environ Res Public Health ; 17(14)2020 07 14.
Article in English | MEDLINE | ID: covidwho-649803

ABSTRACT

The study described in this manuscript analyzed the effects of quarantine and social distancing policies implemented due to the Coronavirus Disease 2019 (COVID-19) pandemic on air pollution levels in four western megacities: São Paulo in Brazil; Paris in France; and Los Angeles and New York in the United States. The study investigated the levels of four air pollutants-Carbon monoxide (CO), Ozone (O3), Fine Particulate (PM2.5) and Nitrogen dioxide (NO2)-during the month of March 2020, compared to 2015-2019, in the urban air of these metropolitan areas, controlling for meteorological variables. Results indicated reductions in the levels of PM2.5, CO and NO2, with reductions of the latter two showing statistical significance. In contrast, tropospheric ozone levels increased, except in Los Angeles. The beneficial health effects of cleaner air might also help prevent deaths caused by the epidemic of COVID-19 in megacities by diminishing pressure on hospitals and health equipment. Future actions for the re-starting of non-essential economic activities in these cities should take into consideration the overall importance of health for the individual, as well as for societies.


Subject(s)
Air Pollution/analysis , Betacoronavirus/isolation & purification , Coronavirus Infections/epidemiology , Particulate Matter/analysis , Pneumonia, Viral/epidemiology , Brazil , Cities , Coronavirus Infections/virology , Humans , Los Angeles , New York City , Pandemics , Paris , Pneumonia, Viral/virology , Public Health
20.
Environ Sci Technol ; 54(16): 9917-9927, 2020 08 18.
Article in English | MEDLINE | ID: covidwho-649782

ABSTRACT

Factor analysis utilizes the covariance of compositional variables to separate sources of ambient pollutants like particulate matter (PM). However, meteorology causes concentration variations in addition to emission rate changes. Conventional positive matrix factorization (PMF) loses information from the data because of these dilution variations. By incorporating the ventilation coefficient, dispersion normalized PMF (DN-PMF) reduces the dilution effects. DN-PMF was applied to hourly speciated particulate composition data from a field campaign that included the start of the COVID-19 outbreak. DN-PMF sharpened the morning coal combustion and rush hour traffic peaks and lowered the daytime soil, aged sea salt, and waste incinerator contributions that better reflect the actual emissions. These results identified significant changes in source contributions after the COVID-19 outbreak in China. During this pandemic, secondary inorganic aerosol became the predominant PM2.5 source representing 50.5% of the mean mass. Fireworks and residential burning (32.0%), primary coal combustion emissions (13.3%), primary traffic emissions (2.1%), soil and aged sea salt (1.2%), and incinerator (0.9%) represent the other contributors. Traffic decreased dramatically (70%) compared to other sources. Soil and aged sea salt also decreased by 68%, likely from decreased traffic.


Subject(s)
Air Pollutants/analysis , Coronavirus Infections , Pandemics , Particulate Matter/analysis , Pneumonia, Viral , Betacoronavirus , China , Environmental Monitoring , Humans
SELECTION OF CITATIONS
SEARCH DETAIL