Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Endocrinol Invest ; 44(12): 2675-2684, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1504521

ABSTRACT

PURPOSE: Due to relevant repercussions on reproductive medicine, we aimed to evaluate feasibility of RT-PCR as a detection method of SARS-CoV-2 RNA in seminal fluid. METHODS: A qualitative determination of the RT-PCR assays in semen was performed through different approaches: (1) efficiency of RNA extraction from sperm and seminal plasma was determined using PRM1 and PRM2 mRNA and a heterologous system as control; (2) samples obtained by diluting viral preparation from a SARS-CoV-2 panel (virus cultured in Vero E6 cell lines) were tested; (3) viral presence in different fractions of seminal fluid (whole sample, seminal plasma and post-centrifugation pellet) was evaluated. Semen samples from mild and recovered COVID-19 subjects were collected by patients referring to the Infectious Disease Department of the Policlinico Umberto I Hospital - "Sapienza" University of Rome. Control subjects were recruited at the Laboratory of Seminology-Sperm Bank "Loredana Gandini'' of the same hospital. RESULTS: The control panel using viral preparations diluted in saline and seminal fluid showed the capability to detect viral RNA presence with Ct values depending on the initial viral concentration. All tested semen samples were negative for SARS-CoV-2, regardless of the nasopharyngeal swab result or seminal fluid fraction. CONCLUSION: These preliminary data show that RT-PCR for SARS-CoV-2 RNA testing appears to be a feasible method for the molecular diagnosis of SARS-CoV-2 in seminal fluid, supported by results of the control panel. The ability to detect SARS-CoV-2 in semen is extremely important for reproductive medicine, especially in assisted reproductive technology and sperm cryopreservation.


Subject(s)
COVID-19/diagnosis , Pathology, Molecular/methods , Semen/virology , Adult , Animals , Chlorocebus aethiops , Feasibility Studies , Humans , Male , RNA, Messenger/chemistry , RNA, Viral/chemistry , Real-Time Polymerase Chain Reaction , Reproductive Techniques , Vero Cells
2.
IEEE Rev Biomed Eng ; 14: 30-47, 2021.
Article in English | MEDLINE | ID: covidwho-1501335

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To counter COVID-19 spreading, an infrastructure to provide rapid and thorough molecular diagnostics and serology testing is the cornerstone of outbreak and pandemic management. We hereby review the clinical insights with regard to using molecular tests and immunoassays in the context of COVID-19 management life cycle: the preventive phase, the preparedness phase, the response phase and the recovery phase. The spatial and temporal distribution of viral RNA, antigens and antibodies during human infection is summarized to provide a biological foundation for accurate detection of the disease. We shared the lessons learned and the obstacles encountered during real world high-volume screening programs. Clinical needs are discussed to identify existing technology gaps in these tests. Leverage technologies, such as engineered polymerases, isothermal amplification, and direct amplification from complex matrices may improve the productivity of current infrastructure, while emerging technologies like CRISPR diagnostics, visual end point detection, and PCR free methods for nucleic acid sensing may lead to at-home tests. The lessons learned, and innovations spurred from the COVID-19 pandemic could upgrade our global public health infrastructure to better combat potential outbreaks in the future.


Subject(s)
COVID-19/diagnosis , COVID-19/immunology , Immunoassay/methods , Pathology, Molecular/methods , Animals , Humans , Life Cycle Stages , Pandemics/prevention & control , SARS-CoV-2/immunology , Serologic Tests/methods
3.
Int Rev Immunol ; 40(1-2): 143-156, 2021.
Article in English | MEDLINE | ID: covidwho-1236150

ABSTRACT

The pandemic causing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has globally infected more than 50 million people and ∼1.2 million have succumbed to this deadly pathogen. With the vaccine trials still in clinical phases, mitigation of Coronavirus Disease 2019 (COVID-19) relies primarily on robust virus detection methods and subsequent quarantine measures. Hence, the importance of rapid, affordable and reproducible virus testing will serve the need to identify and treat infected subjects in a timely manner. Based on the type of diagnostic assay, the primary targets are viral genome (RNA) and encoded proteins. Currently, COVID-19 detection is performed using various molecular platforms as well as serodiagnostics that exhibit approximately 71% sensitivity. These methods encounter several limitations including sensitivity, specificity, availability of skilled expertise and instrument access. Saliva-based COVID-19 diagnostics are emerging as a superior alternative to nasal swabs because of the ease of sample collection, no interaction during sampling, and high viral titers during early stages of infection. In addition, SARS-CoV-2 is detected in the environment as aerosols associated with suspended particulate matter. Designing virus detection strategies in diverse samples will allow timely monitoring of virus spread in humans and its persistence in the environment. With the passage of time, advanced technologies are overcoming limitations associated with detection. Enhanced sensitivity and specificity of next-generation diagnostics are key features enabling improved prognostic care. In this comprehensive review, we analyze currently adopted advanced technologies and their concurrent use in the development of diagnostics for SARS-CoV-2 detection.


Subject(s)
Biosensing Techniques/methods , COVID-19 Nucleic Acid Testing/methods , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Humans , Pathology, Molecular/methods , Point-of-Care Testing , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sensitivity and Specificity , Viral Proteins/analysis
5.
Mol Biol Rep ; 48(4): 3629-3635, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1202531

ABSTRACT

PCR Single-Strand Conformation Polymorphism is a method used to identify and detect mutations and is now well known for its many applications on living beings. This paper will discuss the experimental details, limitations and sensitivity of the PCR Single-Strand Conformation Polymorphism method in relation to all existing literature available to us until today. Genomic DNA extraction, PCR amplification and Single-Strand Conformation Polymorphism conditions (concentration of polyacrylamide slab gel electrophoresis, dissociation treatment of double- stranded DNA) and comparison with PCR Restriction Fragment Length Polymorphism are presented. Since its discovery in 1989, there have been many variations, innovations, and modifications of the method, which makes it very easy, safe, fast and for this reason widely applied in clinical diagnostic, forensic medicine, biochemical, veterinary, microbiological, food and environmental laboratories. One of the possible applications of the method is the diagnosis and identification of mutations in new strains of coronaviruses, because science needs more tools to tackle the problem of this pandemic. The PCR Single-Strand Conformation Polymorphism method can be applied in many cases provided that control samples are available and the required conditions of the method are achieved.


Subject(s)
Polymerase Chain Reaction/methods , Polymorphism, Single-Stranded Conformational , Animals , Coronavirus/classification , Coronavirus/genetics , Coronavirus/isolation & purification , Humans , Molecular Typing/methods , Pathology, Molecular/methods , Polymorphism, Restriction Fragment Length , Sequence Analysis/methods
6.
Clin Chem ; 67(4): 672-683, 2021 03 31.
Article in English | MEDLINE | ID: covidwho-1165392

ABSTRACT

BACKGROUND: Infectious disease outbreaks such as the COVID-19 (coronavirus disease 2019) pandemic call for rapid response and complete screening of the suspected community population to identify potential carriers of pathogens. Central laboratories rely on time-consuming sample collection methods that are rarely available in resource-limited settings. METHODS: We present a highly automated and fully integrated mobile laboratory for fast deployment in response to infectious disease outbreaks. The mobile laboratory was equipped with a 6-axis robot arm for automated oropharyngeal swab specimen collection; virus in the collected specimen was inactivated rapidly using an infrared heating module. Nucleic acid extraction and nested isothermal amplification were performed by a "sample in, answer out" laboratory-on-a-chip system, and the result was automatically reported by the onboard information platform. Each module was evaluated using pseudovirus or clinical samples. RESULTS: The mobile laboratory was stand-alone and self-sustaining and capable of on-site specimen collection, inactivation, analysis, and reporting. The automated sampling robot arm achieved sampling efficiency comparable to manual collection. The collected samples were inactivated in as short as 12 min with efficiency comparable to a water bath without damage to nucleic acid integrity. The limit of detection of the integrated microfluidic nucleic acid analyzer reached 150 copies/mL within 45 min. Clinical evaluation of the onboard microfluidic nucleic acid analyzer demonstrated good consistency with reverse transcription quantitative PCR with a κ coefficient of 0.979. CONCLUSIONS: The mobile laboratory provides a promising solution for fast deployment of medical diagnostic resources at critical junctions of infectious disease outbreaks and facilitates local containment of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) transmission.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Laboratories , Mobile Health Units , Pathology, Molecular/methods , RNA, Viral/analysis , Adult , Automobiles , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing/instrumentation , Female , Humans , Lab-On-A-Chip Devices , Male , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Middle East Respiratory Syndrome Coronavirus/chemistry , Molecular Diagnostic Techniques/instrumentation , Molecular Diagnostic Techniques/methods , Pandemics , Pathology, Molecular/instrumentation , Robotics , SARS-CoV-2/chemistry
8.
ESMO Open ; 6(1): 100024, 2021 02.
Article in English | MEDLINE | ID: covidwho-1007937

ABSTRACT

BACKGROUND: This study evaluated the consequences in Europe of the COVID-19 outbreak on pathology laboratories orientated toward the diagnosis of thoracic diseases. MATERIALS AND METHODS: A survey was sent to 71 pathology laboratories from 21 European countries. The questionnaire requested information concerning the organization of biosafety, the clinical and molecular pathology, the biobanking, the workload, the associated research into COVID-19, and the organization of education and training during the COVID-19 crisis, from 15 March to 31 May 2020, compared with the same period in 2019. RESULTS: Questionnaires were returned from 53/71 (75%) laboratories from 18 European countries. The biosafety procedures were heterogeneous. The workload in clinical and molecular pathology decreased dramatically by 31% (range, 3%-55%) and 26% (range, 7%-62%), respectively. According to the professional category, between 28% and 41% of the staff members were not present in the laboratories but did teleworking. A total of 70% of the laboratories developed virtual meetings for the training of residents and junior pathologists. During the period of study, none of the staff members with confirmed COVID-19 became infected as a result of handling samples. CONCLUSIONS: The COVID-19 pandemic has had a strong impact on most of the European pathology laboratories included in this study. Urgent implementation of several changes to the organization of most of these laboratories, notably to better harmonize biosafety procedures, was noted at the onset of the pandemic and maintained in the event of a new wave of infection occurring in Europe.


Subject(s)
COVID-19/prevention & control , Clinical Laboratory Services/statistics & numerical data , Pathology, Clinical/statistics & numerical data , Pathology, Molecular/statistics & numerical data , Surveys and Questionnaires , Thoracic Diseases/diagnosis , Biological Specimen Banks/organization & administration , Biological Specimen Banks/statistics & numerical data , COVID-19/epidemiology , COVID-19/virology , Clinical Laboratory Services/trends , Containment of Biohazards/statistics & numerical data , Disease Outbreaks , Europe/epidemiology , Forecasting , Humans , Pandemics , Pathology, Clinical/methods , Pathology, Clinical/trends , Pathology, Molecular/methods , Pathology, Molecular/trends , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Specimen Handling/methods , Specimen Handling/statistics & numerical data , Thoracic Diseases/therapy
9.
Front Cell Infect Microbiol ; 10: 560616, 2020.
Article in English | MEDLINE | ID: covidwho-948032

ABSTRACT

A novel strain of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) disease (COVID-19) has been recently identified as an infectious disease affecting the respiratory system of humans. This disease is caused by SARS-CoV-2 that was identified in Chinese patients having severe pneumonia and flu-like symptoms. COVID-19 is a contagious disease that spreads rapidly via droplet particles arising through sneezing and coughing action of an infected person. The reports of asymptomatic carriers changed the scenario of symptom based-diagnosis in COVID-19 and intensified the need for proper diagnosis of the majority of the population to combat the rapid transmission of virus. The diagnosis of positive cases is necessary to ensure prompt care to affected people and also to curb further spread of infection in the population. Collecting samples at the right time and from the exact anatomical site is crucial for proper molecular diagnosis. After the complete genome sequence was available, China formulated RT-PCR as a primary diagnostic procedure for detecting SARS-CoV-2. Many in-house and commercial diagnostic kits have been developed or are under development that have a potential to lower the burden of diagnosis on the primary diagnostic techniques like RT-PCR. Serological based diagnosis is another broad category of testing that can detect different serum antibodies like IgG, IgM, and IgA in an infected patient. PCR-based diagnostic procedures that are commonly used for pathogen detection need sophisticated machines and assistance of a technical expert. Despite their reliable accuracy, they are not cost-effective tests, which a common man can afford, so it becomes imperative to look for other diagnostic approaches, which could be cost effective, rapid, and sensitive with consistent accuracy. To make such diagnostics available to the common man, many techniques can be exploited among, which are Point of Care (POC), also known as bed side testing, which is developing as a portable and promising tool in pathogen diagnosis. Other lateral flow assay (LFA)-based techniques like SHERLOCK, CRISPR-Cas12a (AIOD-CRISPR), and FNCAS9 editor-limited uniform detection assay (FELUDA), etc. have shown promising results in rapid detection of pathogens. Diagnosis holds a critical importance in the pandemic situation when there is no potential drug for the pathogen available in the market. This review sums up the different diagnostic approaches designed or proposed to combat the crisis of widespread diagnosis due to the sudden outbreak of a novel pathogen, SARS-CoV-2 in 2019.


Subject(s)
COVID-19/diagnosis , Pathology, Molecular/methods , SARS-CoV-2/genetics , Antibodies, Viral/blood , COVID-19/blood , COVID-19/virology , COVID-19 Nucleic Acid Testing , Humans , Point-of-Care Systems , SARS-CoV-2/classification , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification
10.
Indian J Med Microbiol ; 38(3 & 4): 385-389, 2020.
Article in English | MEDLINE | ID: covidwho-914616

ABSTRACT

Context: In the absence of effective treatment or vaccine, the current strategy for the prevention of further transmission of severe acute respiratory syndrome (SARS) CoV-2 (COVID-19) infection is early diagnosis and isolation of cases. The diagnosis of SARS-CoV-2 is done by detecting viral RNA in the nasopharyngeal and throat swabs by real-time polymerase chain reaction (PCR). Many commercial assays are now available for performing the PCR assay. Aims: The aim was to evaluate the performance of the SD Biosensor nCoV real-time detection kit with the real-time PCR kit provided by the Indian Council of Medical Research-National Institute of Virology (ICMR-NIV), Pune (NIV Protocol). Subjects and Methods: A total of 253 pairs of nasopharyngeal-oropharyngeal swabs combined in a single viral transport medium were tested for viral RNA by both the protocols. The sensitivity and specificity of the SD Biosensor were calculated considering the ICMR-NIV kit as the gold standard. Matched pairs of recorded cycle threshold values (Ct values) were compared by Pearson's correlation coefficient. Results: Concordant COVID-19 negative and positive PCR results were reported for 113 and 77 samples, respectively. The SD Biosensor kit additionally detected 62 cases, which were found negative by the NIV protocol. In all discordant positive results by the SD Biosensor kit, the average Ct values were higher than the concordant positive results. A total of forty samples tested positive for E gene by SD Biosensor and having Ct values <25 had 100% concordance with NIV protocol results and 39 samples tested positive for E gene by SD Biosensor having Ct value >32 were all found negative by the NIV protocol. Conclusions: The results highlight the need for careful evaluation of commercial kits before being deployed for screening of COVID-19 infections.


Subject(s)
Betacoronavirus/genetics , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Real-Time Polymerase Chain Reaction/methods , COVID-19 , COVID-19 Testing , Coronavirus Envelope Proteins , Early Diagnosis , Humans , Pandemics , Pathology, Molecular/methods , RNA, Viral/genetics , Reagent Kits, Diagnostic , SARS-CoV-2 , Viral Envelope Proteins/genetics
12.
ACS Infect Dis ; 6(9): 2513-2523, 2020 09 11.
Article in English | MEDLINE | ID: covidwho-713585

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a newly emerging human infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, also previously known as 2019-nCoV). Within 8 months of the outbreak, more than 10,000,000 cases of COVID-19 have been confirmed worldwide. Since human-to-human transmission occurs easily and the rate of human infection is rapidly increasing, sensitive and early diagnosis is essential to prevent a global outbreak. Recently, the World Health Organization (WHO) announced various primer-probe sets for SARS-CoV-2 developed at different institutions: China Center for Disease Control and Prevention (China CDC, China), Charité (Germany), The University of Hong Kong (HKU, Hong Kong), National Institute of Infectious Diseases in Japan (Japan NIID, Japan), National Institute of Health in Thailand (Thailand NIH, Thailand), and US CDC (USA). In this study, we compared the ability to detect SARS-CoV-2 RNA among seven primer-probe sets for the N gene and three primer-probe sets for the Orf1 gene. The results revealed that "NIID_2019-nCOV_N" from the Japan NIID and "ORF1ab" from China CDC represent a recommendable performance of RT-qPCR analysis for SARS-CoV-2 molecular diagnostics without nonspecific amplification and cross-reactivity for hCoV-229E, hCoV-OC43, and MERS-CoV RNA. Therefore, the appropriate combination of NIID_2019-nCOV_N (Japan NIID) and ORF1ab (China CDC) sets should be selected for sensitive and reliable SARS-CoV-2 molecular diagnostics.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/virology , DNA Primers/genetics , Pneumonia, Viral/virology , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Disease Outbreaks , Humans , Pandemics , Pathology, Molecular/methods , Pneumonia, Viral/diagnosis , RNA, Viral/analysis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2
13.
JCI Insight ; 5(12)2020 06 18.
Article in English | MEDLINE | ID: covidwho-215032

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of human coronavirus disease 2019 (COVID-19), emerged in Wuhan, China, in December 2019. The virus rapidly spread globally, resulting in a public health crisis including almost 5 million cases and 323,256 deaths as of May 21, 2020. Here, we describe the identification and evaluation of commercially available reagents and assays for the molecular detection of SARS-CoV-2 in infected FFPE cell pellets. We identified a suitable rabbit polyclonal anti-SARS-CoV spike protein antibody and a mouse monoclonal anti-SARS-CoV nucleocapsid protein (NP) antibody for cross-detection of the respective SARS-CoV-2 proteins by IHC and immunofluorescence assay (IFA). Next, we established RNAscope in situ hybridization (ISH) to detect SARS-CoV-2 RNA. Furthermore, we established a multiplex FISH (mFISH) to detect positive-sense SARS-CoV-2 RNA and negative-sense SARS-CoV-2 RNA (a replicative intermediate indicating viral replication). Finally, we developed a dual staining assay using IHC and ISH to detect SARS-CoV-2 antigen and RNA in the same FFPE section. It is hoped that these reagents and assays will accelerate COVID-19 pathogenesis studies in humans and in COVID-19 animal models.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/virology , Pneumonia, Viral/virology , Animals , Antibodies, Viral/immunology , Antigens, Viral/isolation & purification , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/pathology , Formaldehyde , Humans , Immunohistochemistry , In Situ Hybridization , Mice , Nucleocapsid Proteins/immunology , Pandemics , Paraffin Embedding/methods , Pathology, Molecular/methods , Pneumonia, Viral/pathology , RNA, Viral/isolation & purification , Rabbits , SARS-CoV-2 , Tissue Fixation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...