Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
BMC Anesthesiol ; 21(1): 115, 2021 04 14.
Article in English | MEDLINE | ID: covidwho-1182027

ABSTRACT

BACKGROUND: The current coronavirus infectious disease 2019 (COVID-19) pandemic has caused unexpected pressure on medical supplies, interrupting supply chains and increasing prices. The supply of antiviral filters which form an essential part of the ventilator circuit have been affected by these issues. Three-dimensional (3D) printing may provide a solution to some of these issues. METHODS: We designed and tested 3D printed heat and moisture exchange (HME) and antiviral casing. For each casing we tested two different filter materials derived from a sediment water filter cartridge or 1.5-µm glass fiber filter paper. A polyurethane sponge was used for the HME. Each design was tested for circuit leak, circuit compliance, peak inspiratory pressure and casing integrity using methylene blue dye. RESULTS: We designed, produced, and tested two different types of antiviral filters with six different internal configurations. Overall, we tested 10 modified filter designs and compared them with the original commercial filter. Except for the combination of 1.5-µm filter paper and 5 mm sponge peak inspiratory pressure and circuit compliance of the filters produced were within the operating limits of the ventilator. All In addition, all filters passed the dye test. CONCLUSIONS: Our filter may be of particular importance to those working in low middle-income countries unable to compete with stronger economies. Our design relies on products available outside the healthcare supply chain, much of which can be purchased in grocery stores, hardware stores, or industrial and academic institutions. We hope that these HMEs and viral filters may be beneficial to clinicians who face critical supply chain issues during the COVID-19 pandemic.


Subject(s)
Printing, Three-Dimensional , Ultrafiltration/instrumentation , Ventilators, Mechanical , Viruses , COVID-19/therapy , Coloring Agents , Equipment Design , Feasibility Studies , Humans , Pandemics , Paper , Peak Expiratory Flow Rate , Polyurethanes , Reproducibility of Results , Surgical Sponges
2.
PLoS One ; 16(3): e0247635, 2021.
Article in English | MEDLINE | ID: covidwho-1154075

ABSTRACT

BACKGROUND: COVID-19 is characterized by a rapid change in the patient's condition, with major changes occurring over a few days. We aimed to develop and evaluate an emergency system for monitoring patients with COVID-19, which may be useful in hospitals where more severe patients stay in their homes. METHODOLOGY/PRINCIPAL FINDINGS: The system consists of the home-based patient unit, which is set up around the patient and the hospital unit, which enables the medical staff to telemonitor the patient's condition and help to send medical recommendations. The home unit allows the data transmission from the patient to the hospital, which is performed using a cell phone application. The hospital unit includes a virtual instrument developed in LabVIEW® environment that can provide a real-time monitoring of the oxygen saturation (SpO2), beats per minute (BPM), body temperature (BT), and peak expiratory flow (PEF). Abnormal events may be fast and automatically identified. After the design details are described, the system is validated by a 30-day home monitoring study in 12 controls and 12 patients with COVID-19 presenting asymptomatic to mild disease. Patients presented reduced SpO2 (p<0.0001) and increased BPM values (p<0.0001). Three patients (25%) presented PEF values between 50 and 80% of the predicted. Three of the 12 monitored patients presented events of desaturation (SpO2<92%). The experimental results were in close agreement with the involved pathophysiology, providing clear evidence that the proposed system can be a useful tool for the remote monitoring of patients with COVID-19. CONCLUSIONS: An emergency system for home monitoring of patients with COVID-19 was developed in the current study. The proposed system allowed us to quickly respond to early abnormalities in these patients. This system may contribute to conserving hospital resources for those most in need while simultaneously enabling early recognition of patients under acute deterioration, requiring urgent assessment.


Subject(s)
COVID-19/pathology , Home Care Services , Monitoring, Physiologic/methods , Adult , Asymptomatic Diseases/nursing , Body Temperature , COVID-19/virology , Case-Control Studies , Female , Heart Rate , Humans , Male , Middle Aged , Mobile Applications , Oximetry , Peak Expiratory Flow Rate/physiology , SARS-CoV-2/isolation & purification
3.
Can Respir J ; 2021: 6692409, 2021.
Article in English | MEDLINE | ID: covidwho-1093889

ABSTRACT

We aimed to investigate changes in pulmonary function and computed tomography (CT) findings in patients with coronavirus disease 2019 (COVID-19) during the recovery period. COVID-19 patients underwent symptom assessment, pulmonary function tests, and high-resolution chest CT 6 months after discharge from the hospital. Of the 54 patients enrolled, 31 and 23 were in the moderate and severe group, respectively. The main symptoms 6 months after discharge were fatigue and exertional dyspnea, experienced by 24.1% and 18.5% of patients, respectively, followed by smell and taste dysfunction (9.3%) and cough (5.6%). One patient dropped out of the pulmonary function tests. Of the remaining 54 patients, 41.5% had pulmonary dysfunction. Specifically, 7.5% presented with restrictive ventilatory dysfunction (forced vital capacity <80% of the predicted value), 18.9% presented with small airway dysfunction, and 32.1% presented with pulmonary diffusion impairment (diffusing capacity for carbon monoxide <80% of the predicted value). Of the 54 patients enrolled, six patients dropped out of the chest CT tests. Eleven of the remaining 48 patients presented with abnormal lung CT findings 6 months after discharge. Patients with residual lung lesions were more common in the severe group (52.6%) than in the moderate group (3.4%); a higher proportion of patients had involvement of both lungs (42.1% vs. 3.4%) in the severe group. The residual lung lesions were mainly ground-glass opacities (20.8%) and linear opacities (14.6%). Semiquantitative visual scoring of the CT findings revealed significantly higher scores in the left, right, and both lungs in the severe group than in the moderate group. COVID-19 patients 6 months after discharge mostly presented with fatigue and exertional dyspnea, and their pulmonary dysfunction was mostly characterized by pulmonary diffusion impairment. As revealed by chest CT, the severe group had a higher prevalence of residual lesions than the moderate group, and the residual lesions mostly manifested as ground-glass opacities and linear opacities.


Subject(s)
COVID-19/physiopathology , Dyspnea/physiopathology , Fatigue/physiopathology , Lung/physiopathology , Adult , Aged , COVID-19/diagnostic imaging , Cough/physiopathology , Female , Follow-Up Studies , Forced Expiratory Volume , Humans , Lung/diagnostic imaging , Male , Middle Aged , Olfaction Disorders/physiopathology , Peak Expiratory Flow Rate , Pulmonary Diffusing Capacity , Recovery of Function , Respiratory Function Tests , SARS-CoV-2 , Severity of Illness Index , Taste Disorders/physiopathology , Tomography, X-Ray Computed , Vital Capacity
4.
Chest ; 158(6): 2502-2510, 2020 12.
Article in English | MEDLINE | ID: covidwho-956971

ABSTRACT

To reduce the spread of the severe acute respiratory syndrome coronavirus 2, many pulmonary function testing (PFT) laboratories have been closed or have significantly reduced their testing capacity. Because these mitigation strategies may be necessary for the next 6 to 18 months to prevent recurrent peaks in disease prevalence, fewer objective measurements of lung function will alter the diagnosis and care of patients with chronic respiratory diseases. PFT, which includes spirometry, lung volume, and diffusion capacity measurement, is essential to the diagnosis and management of patients with asthma, COPD, and other chronic lung conditions. Both traditional and innovative alternatives to conventional testing must now be explored. These may include peak expiratory flow devices, electronic portable spirometers, portable exhaled nitric oxide measurement, airwave oscillometry devices, and novel digital health tools such as smartphone microphone spirometers and mobile health technologies along with integration of machine learning approaches. The adoption of some novel approaches may not merely replace but could improve existing management strategies and alter common diagnostic paradigms. With these options comes important technical, privacy, ethical, financial, and medicolegal barriers that must be addressed. However, the coronavirus disease 19 pandemic also presents a unique opportunity to augment conventional testing by including innovative and emerging approaches to measuring lung function remotely in patients with respiratory disease. The benefits of such an approach have the potential to enhance respiratory care and empower patient self-management well beyond the current global pandemic.


Subject(s)
COVID-19 , Delivery of Health Care/methods , Lung Diseases/diagnosis , Lung Diseases/therapy , Respiratory Function Tests/instrumentation , Respiratory Function Tests/methods , Asthma/diagnosis , Asthma/physiopathology , Asthma/therapy , Breath Tests/instrumentation , Breath Tests/methods , Chronic Disease , Cystic Fibrosis/diagnosis , Cystic Fibrosis/therapy , Humans , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/therapy , Inventions , Lung Diseases/physiopathology , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/therapy , Lung Volume Measurements , Machine Learning , Oscillometry/instrumentation , Oscillometry/methods , Peak Expiratory Flow Rate , Pulmonary Diffusing Capacity/instrumentation , Pulmonary Diffusing Capacity/methods , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/therapy , Self-Management , Smartphone , Spirometry/instrumentation , Spirometry/methods
5.
Ann Palliat Med ; 9(5): 3447-3452, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-854831

ABSTRACT

BACKGROUND: The aim of this study was to investigate the pulmonary function of patients with 2019 novel coronavirus (COVID-19)-induced pneumonia. METHODS: A retrospective analysis of 137 patients with COVID-19-induced pneumonia who were discharged from the Enze Hospital, Taizhou Enze Medical Center (Group) from January 31 2020 to March 11 2020 was conducted. Follow-up occurred 2 weeks after hospital discharge, during which patients underwent a pulmonary function test. RESULTS: Of the 137 patients who underwent a pulmonary function test 2 weeks after discharge, 51.8% were male, and the mean age was 47 years. Only 19.7% of the patients were identified as having severe COVID-19-induced pneumonia. The pulmonary function tests showed that for a small number of patients the forced expiratory volume in one second/forced vital capacity ratio (FEV1/FVC)/% values were <70%, and the mean forced inspiratory volume (IVC) and FVC values were 2.4±0.7 and 3.2±0.8 L, respectively. In severe cases, 88.9% of patients had an IVC <80% of the predicted value, and 55.6% of patients had an FVC <80% of the predicted value. The proportion of patients with maximum expiratory flow rate at 25%, 50% and 75% of the vital capacity (MEF25, MEF50, and MEF75) values <70% were 55.6%, 40.7%, and 25.9%, respectively. In the non-severe group, 79.1% of patients had an IVC <80% of the predicted value, and 16.4% of patients had an FVC <80% of the predicted value. The mean MEF25, MEF50, and MEF75 <70% values were 57.3%, 30%, and 13.6%, respectively. CONCLUSIONS: Our results demonstrated that the pulmonary function of patients with COVID-19-induced pneumonia predominantly manifested as restrictive ventilation disorder and small airway obstruction, which was increased in critically ill patients.


Subject(s)
Coronavirus Infections/physiopathology , Lung/physiopathology , Pneumonia, Viral/physiopathology , Respiratory Function Tests , Adult , Betacoronavirus , COVID-19 , Critical Illness , Female , Follow-Up Studies , Forced Expiratory Volume , Humans , Inspiratory Capacity , Male , Maximal Expiratory Flow Rate , Middle Aged , Pandemics , Peak Expiratory Flow Rate , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Vital Capacity
SELECTION OF CITATIONS
SEARCH DETAIL