Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
J Inorg Biochem ; 231: 111777, 2022 06.
Article in English | MEDLINE | ID: covidwho-1873158

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic is currently the major challenge to global public health. Two proteases, papain-like protease (PLpro) and the 3-chymotrypsin-like protease (3CLpro or Mpro), are indispensable for SARS-CoV-2 replication, making them attractive targets for antiviral therapy development. Here we screened a panel of essential metal ions using a proteolytic assay and identified that zinc gluconate, a widely-used zinc supplement, strongly inhibited the proteolytic activities of the two proteases in vitro. Biochemical and crystallographic data reveal that zinc gluconate exhibited the inhibitory function via binding to the protease catalytic site residues. We further show that treatment of zinc gluconate in combination with a small molecule ionophore hinokitiol, could lead to elevated intracellular Zn2+ level and thereby significantly impaired the two protease activities in cellulo. Particularly, this approach could also be applied to rescue SARS-CoV-2 infected mammalian cells, indicative of potential application to combat coronavirus infections. Our studies provide the direct experimental evidence that elevated intracellular zinc concentration directly inhibits SARS-CoV-2 replication and suggest the potential benefits to use the zinc supplements for coronavirus disease 2019 (COVID-19) treatment.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , Gluconates , Mammals/metabolism , Monoterpenes , Peptide Hydrolases/metabolism , Tropolone/analogs & derivatives , Zinc/pharmacology
2.
Cells ; 11(11)2022 May 31.
Article in English | MEDLINE | ID: covidwho-1869483

ABSTRACT

Infections with a new corona virus in 2019 lead to the definition of a new disease known as Corona Virus Disease 2019 (COVID-19). The sever cases of COVID-19 and the main cause of death due to virus infection are attributed to respiratory distress. This is associated with the formation of pulmonary oedema that impairs blood oxygenation and hypoxemia as main symptoms of respiratory distress. An important player for the maintenance of a defined liquid environment in lungs needed for normal lung function is the epithelial sodium channel (ENaC). The present article reviews the implications of SARS-CoV-2 infections from the perspective of impaired function of ENaC. The rationale for this perspective is derived from the recognition that viral spike protein and ENaC share a common proteolytic cleavage site. This cleavage site is utilized by the protease furin, that is essential for ENaC activity. Furin cleavage of spike 'activates' the virus protein to enable binding to host cell membrane receptors and initiate cell infection. Based on the importance of proteolytic cleavage for ENaC function and activation of spike, it seems feasible to assume that virus infections are associated with impaired ENaC activity. This is further supported by symptoms of COVID-19 that are reminiscent of impaired ENaC function in the respiratory tract.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Epithelial Sodium Channels/metabolism , Furin/metabolism , Homeostasis , Humans , Lung/metabolism , Peptide Hydrolases/metabolism , SARS-CoV-2 , Viral Proteins/metabolism
3.
Biophys Chem ; 287: 106829, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1850725

ABSTRACT

The viral main protease (Mpro) from a novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a key enzyme essential for viral replication and has become an attractive target for antiviral drug development. The Mpro forms a functional dimer and exhibits a pH-dependent enzyme activity and dimerization. Here, we report a molecular dynamics (MD) investigation to gain insights into the structural stability of the enzyme dimer at neutral and acidic pH. Our data shows larger changes in structure of the protein with the acidic pH than that with the neutral pH. Structural analysis of MD trajectories reveals a substantial increase in intersubunit separation, the loss of domain contacts, binding free energy and interaction energy of the dimer which implies the protein instability and tendency of dimer dissociation at acidic pH. The loss in the interaction energy is mainly driven by electrostatic interactions. We have identified the intersubunit hydrogen-bonding residues involved in the decreased dimer stability. These findings may be helpful for rational drug design and target evaluation against COVID-19.


Subject(s)
COVID-19 , Coronavirus 3C Proteases , Antiviral Agents/chemistry , Cysteine Endopeptidases/chemistry , Humans , Hydrogen-Ion Concentration , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases/metabolism , Protease Inhibitors , SARS-CoV-2
4.
Drug Metab Dispos ; 50(5): 576-590, 2022 05.
Article in English | MEDLINE | ID: covidwho-1832315

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3C-like protease inhibitor PF-07321332 (nirmatrelvir), in combination with ritonavir (Paxlovid), was recently granted emergency use authorization by multiple regulatory agencies for the treatment of coronavirus disease 2019 (COVID-19) in adults and pediatric patients. Disposition studies on nirmatrelvir in animals and in human reagents, which were used to support clinical studies, are described herein. Plasma clearance was moderate in rats (27.2 ml/min per kg) and monkeys (17.1 ml/min per kg), resulting in half-lives of 5.1 and 0.8 hours, respectively. The corresponding oral bioavailability was moderate in rats (34%-50%) and low in monkeys (8.5%), primarily due to oxidative metabolism along the gastrointestinal tract in this species. Nirmatrelvir demonstrated moderate plasma protein binding in rats, monkeys, and humans with mean unbound fractions ranging from 0.310 to 0.478. The metabolism of nirmatrelvir was qualitatively similar in liver microsomes and hepatocytes from rats, monkeys, and humans; prominent metabolites arose via cytochrome P450 (CYP450)-mediated oxidations on the P1 pyrrolidinone ring, P2 6,6-dimethyl-3-azabicyclo[3.1.0]hexane, and the tertiary-butyl group at the P3 position. Reaction phenotyping studies in human liver microsomes revealed that CYP3A4 was primarily responsible (fraction metabolized = 0.99) for the oxidative metabolism of nirmatrelvir. Minor clearance mechanisms involving renal and biliary excretion of unchanged nirmatrelvir were also noted in animals and in sandwich-cultured human hepatocytes. Nirmatrelvir was a reversible and time-dependent inhibitor as well as inducer of CYP3A activity in vitro. First-in-human pharmacokinetic studies have demonstrated a considerable boost in the oral systemic exposure of nirmatrelvir upon coadministration with the CYP3A4 inhibitor ritonavir, consistent with the predominant role of CYP3A4 in nirmatrelvir metabolism. SIGNIFICANCE STATEMENT: The manuscript describes the preclinical disposition, metabolism, and drug-drug interaction potential of PF-07321332 (nirmatrelvir), an orally active peptidomimetic-based inhibitor of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3CL protease, which has been granted emergency use authorization by multiple regulatory agencies around the globe for the treatment of coronavirus disease 2019 (COVID-19) in COVID-19-positive adults and pediatric patients who are at high risk for progression to severe COVID-19, including hospitalization or death.


Subject(s)
COVID-19 , SARS-CoV-2 , Administration, Oral , Animals , COVID-19/drug therapy , Child , Cytochrome P-450 CYP3A/metabolism , Haplorhini , Humans , Lactams , Leucine , Microsomes, Liver/metabolism , Nitriles , Peptide Hydrolases/metabolism , Proline , Rats , Ritonavir/metabolism
5.
Virol Sin ; 37(3): 437-444, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1815255

ABSTRACT

The coronavirus 3C-like (3CL) protease, a cysteine protease, plays an important role in viral infection and immune escape. However, there is still a lack of effective tools for determining the cleavage sites of the 3CL protease. This study systematically investigated the diversity of the cleavage sites of the coronavirus 3CL protease on the viral polyprotein, and found that the cleavage motif were highly conserved for viruses in the genera of Alphacoronavirus, Betacoronavirus and Gammacoronavirus. Strong residue preferences were observed at the neighboring positions of the cleavage sites. A random forest (RF) model was built to predict the cleavage sites of the coronavirus 3CL protease based on the representation of residues in cleavage motifs by amino acid indexes, and the model achieved an AUC of 0.96 in cross-validations. The RF model was further tested on an independent test dataset which were composed of cleavage sites on 99 proteins from multiple coronavirus hosts. It achieved an AUC of 0.95 and predicted correctly 80% of the cleavage sites. Then, 1,352 human proteins were predicted to be cleaved by the 3CL protease by the RF model. These proteins were enriched in several GO terms related to the cytoskeleton, such as the microtubule, actin and tubulin. Finally, a webserver named 3CLP was built to predict the cleavage sites of the coronavirus 3CL protease based on the RF model. Overall, the study provides an effective tool for identifying cleavage sites of the 3CL protease and provides insights into the molecular mechanism underlying the pathogenicity of coronaviruses.


Subject(s)
Coronavirus Infections , Coronavirus , Algorithms , Coronavirus/metabolism , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Humans , Machine Learning , Peptide Hydrolases/metabolism , Protease Inhibitors , Viral Proteins/metabolism
6.
Cells ; 11(8)2022 04 13.
Article in English | MEDLINE | ID: covidwho-1798904

ABSTRACT

Autophagy plays a key role in eliminating and recycling cellular components in response to stress, including starvation. Dysregulation of autophagy is observed in various diseases, including neurodegenerative diseases, cancer, and diabetes. Autophagy is tightly regulated by autophagy-related (ATG) proteins. Autophagy-related 4 (ATG4) is the sole cysteine protease, and four homologs (ATG4A-D) have been identified in mammals. These proteins have two domains: catalytic and short fingers. ATG4 facilitates autophagy by promoting autophagosome maturation through reversible lipidation and delipidation of seven autophagy-related 8 (ATG8) homologs, including microtubule-associated protein 1-light chain 3 (LC3) and GABA type A receptor-associated protein (GABARAP). Each ATG4 homolog shows a preference for a specific ATG8 homolog. Post-translational modifications of ATG4, including phosphorylation/dephosphorylation, O-GlcNAcylation, oxidation, S-nitrosylation, ubiquitination, and proteolytic cleavage, regulate its activity and ATG8 processing, thus modulating its autophagic activity. We reviewed recent advances in our understanding of the effect of post-translational modification on the regulation, activity, and function of ATG4, the main protease that controls autophagy.


Subject(s)
Autophagy , Microtubule-Associated Proteins , Animals , Autophagy/physiology , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Proteins/metabolism , Mammals/metabolism , Microtubule-Associated Proteins/metabolism , Peptide Hydrolases/metabolism , Protein Processing, Post-Translational
7.
J Virol ; 96(8): e0201321, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1779314

ABSTRACT

The high mutation rate of COVID-19 and the prevalence of multiple variants strongly support the need for pharmacological options to complement vaccine strategies. One region that appears highly conserved among different genera of coronaviruses is the substrate-binding site of the main protease (Mpro or 3CLpro), making it an attractive target for the development of broad-spectrum drugs for multiple coronaviruses. PF-07321332, developed by Pfizer, is the first orally administered inhibitor targeting the main protease of SARS-CoV-2, which also has shown potency against other coronaviruses. Here, we report three crystal structures of the main protease of SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome (MERS)-CoV bound to the inhibitor PF-07321332. The structures reveal a ligand-binding site that is conserved among SARS-CoV-2, SARS-CoV, and MERS-CoV, providing insights into the mechanism of inhibition of viral replication. The long and narrow cavity in the cleft between domains I and II of the main protease harbors multiple inhibitor-binding sites, where PF-07321332 occupies subsites S1, S2, and S4 and appears more restricted than other inhibitors. A detailed analysis of these structures illuminated key structural determinants essential for inhibition and elucidated the binding mode of action of the main proteases from different coronaviruses. Given the importance of the main protease for the treatment of SARS-CoV-2 infection, insights derived from this study should accelerate the design of safer and more effective antivirals. IMPORTANCE The current pandemic of multiple variants has created an urgent need for effective inhibitors of SARS-CoV-2 to complement vaccine strategies. PF-07321332, developed by Pfizer, is the first orally administered coronavirus-specific main protease inhibitor approved by the FDA. We solved the crystal structures of the main protease of SARS-CoV-2, SARS-CoV, and MERS-CoV that bound to the PF-07321332, suggesting PF-07321332 is a broad-spectrum inhibitor for coronaviruses. Structures of the main protease inhibitor complexes present an opportunity to discover safer and more effective inhibitors for COVID-19.


Subject(s)
Lactams , Leucine , Nitriles , Peptide Hydrolases , Proline , Antiviral Agents/chemistry , Antiviral Agents/metabolism , COVID-19/drug therapy , Humans , Lactams/chemistry , Lactams/metabolism , Leucine/chemistry , Leucine/metabolism , Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/enzymology , Nitriles/chemistry , Nitriles/metabolism , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Proline/chemistry , Proline/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , SARS Virus/chemistry , SARS Virus/enzymology , SARS-CoV-2/chemistry , SARS-CoV-2/enzymology
8.
Comput Biol Med ; 145: 105468, 2022 06.
Article in English | MEDLINE | ID: covidwho-1763672

ABSTRACT

The ongoing COVID-19 pandemic has affected millions of people worldwide and caused substantial socio-economic losses. Few successful vaccine candidates have been approved against SARS-CoV-2; however, their therapeutic efficacy against the mutated strains of the virus remains questionable. Furthermore, the limited supply of vaccines and promising antiviral drugs have created havoc in the present scenario. Plant-based phytochemicals (bioactive molecules) are promising because of their low side effects and high therapeutic value. In this study, we aimed to screen for suitable phytochemicals with higher therapeutic value using the two most crucial proteins of SARS-CoV-2, the RNA-dependent RNA polymerase (RdRp) and main protease (Mpro). We used computational tools such as molecular docking and steered molecular dynamics simulations to gain insights into the different types of interactions and estimated the relative binding forces between the phytochemicals and their respective targets. To the best of our knowledge, this is the first report that not only involves a search for a therapeutic bioactive molecule but also sheds light on the mechanisms underlying target inhibition in terms of calculations of force and work needed to extractthe ligand from the pocket of its target. The complexes showing higher binding forces were subjected to 200 ns molecular dynamic simulations to check the stability of the ligand inside the binding pocket. Our results suggested that isoskimmiwallin and terflavin A are potential inhibitors of RdRp, whereas isoquercitrin and isoorientin are the lead molecules against Mpro. Collectively, our findings could potentially aid in the development of novel therapeutics against COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/drug therapy , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Peptide Hydrolases/metabolism , Phytochemicals/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , RNA-Dependent RNA Polymerase
9.
Molecules ; 27(6)2022 Mar 16.
Article in English | MEDLINE | ID: covidwho-1742559

ABSTRACT

The persistency of COVID-19 in the world and the continuous rise of its variants demand new treatments to complement vaccines. Computational chemistry can assist in the identification of moieties able to lead to new drugs to fight the disease. Fullerenes and carbon nanomaterials can interact with proteins and are considered promising antiviral agents. Here, we propose the possibility to repurpose fullerenes to clog the active site of the SARS-CoV-2 protease, Mpro. Through the use of docking, molecular dynamics, and energy decomposition techniques, it is shown that C60 has a substantial binding energy to the main protease of the SARS-CoV-2 virus, Mpro, higher than masitinib, a known inhibitor of the protein. Furthermore, we suggest the use of C70 as an innovative scaffold for the inhibition of SARS-CoV-2 Mpro. At odds with masitinib, both C60 and C70 interact more strongly with SARS-CoV-2 Mpro when different protonation states of the catalytic dyad are considered. The binding of fullerenes to Mpro is due to shape complementarity, i.e., vdW interactions, and is aspecific. As such, it is not sensitive to mutations that can eliminate or invert the charges of the amino acids composing the binding pocket. Fullerenic cages should therefore be more effective against the SARS-CoV-2 virus than the available inhibitors such as masinitib, where the electrostatic term plays a crucial role in the binding.


Subject(s)
COVID-19 , Fullerenes , COVID-19/drug therapy , Catalytic Domain , Cysteine Endopeptidases/chemistry , Drug Repositioning , Fullerenes/pharmacology , Humans , Peptide Hydrolases/metabolism , SARS-CoV-2 , Viral Proteins/metabolism
10.
Rev Esp Quimioter ; 35(3): 236-240, 2022 Jun.
Article in Spanish | MEDLINE | ID: covidwho-1698934

ABSTRACT

All coronavirus, including SARS-CoV-2, encode two proteases needed for the processing of PP1A and PP1AB polyproteins. The main protease 3CL (chemotripsine-like) gives rise to the formation of NSP11/16 proteins. The 3CL protease has been constituted as one of the possible therapeutic targets for the development of antiviral drugs against SARS-COV-2 due to its highly conserved sequence and structure among all coronaviruses. During the SARS-COV-1 pandemic, a hydroxymethyl ketone derivative (PF-00835231) was identified with an intense inhibitory activity against the 3CL protease. Subsequent chemical modifications gave rise to derivative PF-07321332 (nirmatrelvir) which has shown a high antiviral efficacy against SARS-COV-2. The company's data indicate that it is capable of reducing 89% the risk of hospitalization and death of patients infected with hardly adverse effects. Its effectiveness improves if it is administered orally in the first 24-48 hours and the duration of treatment has been established between 3-5 days. The commercial form has been associated with the antiviral ritonavir that has shown the metabolism of nirmatrelvir, lengthening its average life. This antiviral would be effective against current and future viral variants, since 3CL is not modified in them. The FDA approved this antiviral in November 2021 and EMA is in the final evaluation phase.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Drug Combinations , Humans , Indoles , Lactams , Leucine , Nitriles , Peptide Hydrolases/metabolism , Proline , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Pyrrolidinones , Ritonavir/therapeutic use
11.
PLoS Pathog ; 18(2): e1010265, 2022 02.
Article in English | MEDLINE | ID: covidwho-1686115

ABSTRACT

Efforts to define serological correlates of protection against COVID-19 have been hampered by the lack of a simple, scalable, standardised assay for SARS-CoV-2 infection and antibody neutralisation. Plaque assays remain the gold standard, but are impractical for high-throughput screening. In this study, we show that expression of viral proteases may be used to quantitate infected cells. Our assays exploit the cleavage of specific oligopeptide linkers, leading to the activation of cell-based optical biosensors. First, we characterise these biosensors using recombinant SARS-CoV-2 proteases. Next, we confirm their ability to detect viral protease expression during replication of authentic virus. Finally, we generate reporter cells stably expressing an optimised luciferase-based biosensor, enabling viral infection to be measured within 24 h in a 96- or 384-well plate format, including variants of concern. We have therefore developed a luminescent SARS-CoV-2 reporter cell line, and demonstrated its utility for the relative quantitation of infectious virus and titration of neutralising antibodies.


Subject(s)
Biosensing Techniques/methods , COVID-19 Testing/methods , COVID-19/virology , Luminescent Measurements/methods , Peptide Hydrolases/analysis , SARS-CoV-2/enzymology , Viral Proteins/analysis , COVID-19/diagnosis , Cell Line , Humans , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
12.
Bioorg Med Chem ; 48: 116412, 2021 10 15.
Article in English | MEDLINE | ID: covidwho-1620516

ABSTRACT

Peptides can be inhibitors and substrates of proteases. The present study describes the inhibitor- vs. substrate-like properties of peptidic ligands of dengue protease which were designed to provide insight into their binding modes. Of particular interest was the localization of the cleavable peptide bond and the placement of hydrophobic elements in the binding site. The findings provide clues for the design of covalent inhibitors in which electrophilic functional groups bind to the catalytic serine, and in addition for the development of inhibitors that are less basic than the natural substrate and therefore have an improved pharmacokinetic profile. We observed a tendency of basic elements to favor a substrate-like binding mode, whereas hydrophobic elements decrease or eliminate enzymatic cleavage. This indicates a necessity to include basic elements which closely mimic the natural substrates into covalent inhibitors, posing a challenge from the chemical and pharmacokinetic perspective. However, hydrophobic elements may offer opportunities to develop non-covalent inhibitors with a favorable ADME profile and potentially improved target-binding kinetics.


Subject(s)
Peptide Hydrolases/metabolism , Peptides/pharmacology , Protease Inhibitors/pharmacology , Chromatography, Liquid , Dose-Response Relationship, Drug , HIV/enzymology , Hepacivirus/enzymology , Hydrophobic and Hydrophilic Interactions , Ligands , Mass Spectrometry , Molecular Structure , Peptides/chemical synthesis , Peptides/chemistry , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Structure-Activity Relationship , Substrate Specificity
13.
Sci Rep ; 10(1): 22200, 2020 12 17.
Article in English | MEDLINE | ID: covidwho-1493197

ABSTRACT

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is responsible for the novel coronavirus disease 2019 (COVID-19). An appealing antiviral drug target is the coronavirus 3C-like protease (3CLpro) that is responsible for the processing of the viral polyproteins and liberation of functional proteins essential for the maturation and infectivity of the virus. In this study, multiple thermal analytical techniques have been implemented to acquire the thermodynamic parameters of 3CLpro at different buffer conditions. 3CLpro exhibited relatively high thermodynamic stabilities over a wide pH range; however, the protease was found to be less stable in the presence of salts. Divalent metal cations reduced the thermodynamic stability of 3CLpro more than monovalent cations; however, altering the ionic strength of the buffer solution did not alter the stability of 3CLpro. Furthermore, the most stable thermal kinetic stability of 3CLpro was recorded at pH 7.5, with the highest enthalpy of activation calculated from the slope of Eyring plot. The biochemical and biophysical properties of 3CLpro explored here may improve the solubility and stability of 3CLpro for optimum conditions for the setup of an enzymatic assay for the screening of inhibitors to be used as lead candidates in the discovery of drugs and design of antiviral therapeutics against COVID-19.


Subject(s)
COVID-19/virology , Chymases/metabolism , Coronavirus 3C Proteases/metabolism , Peptide Hydrolases/metabolism , SARS-CoV-2/metabolism , Antiviral Agents/therapeutic use , Humans , Hydrogen-Ion Concentration , Protease Inhibitors/therapeutic use , Thermodynamics
14.
Molecules ; 26(21)2021 Oct 30.
Article in English | MEDLINE | ID: covidwho-1488678

ABSTRACT

Papain-like protease is an essential enzyme in the proteolytic processing required for the replication of SARS-CoV-2. Accordingly, such an enzyme is an important target for the development of anti-SARS-CoV-2 agents which may reduce the mortality associated with outbreaks of SARS-CoV-2. A set of 69 semi-synthesized molecules that exhibited the structural features of SARS-CoV-2 papain-like protease inhibitors (PLPI) were docked against the coronavirus papain-like protease (PLpro) enzyme (PDB ID: (4OW0). Docking studies showed that derivatives 34 and 58 were better than the co-crystallized ligand while derivatives 17, 28, 31, 40, 41, 43, 47, 54, and 65 exhibited good binding modes and binding free energies. The pharmacokinetic profiling study was conducted according to the four principles of the Lipinski rules and excluded derivative 31. Furthermore, ADMET and toxicity studies showed that derivatives 28, 34, and 47 have the potential to be drugs and have been demonstrated as safe when assessed via seven toxicity models. Finally, comparing the molecular orbital energies and the molecular electrostatic potential maps of 28, 34, and 47 against the co-crystallized ligand in a DFT study indicated that 28 is the most promising candidate to interact with the target receptor (PLpro).


Subject(s)
Coronavirus Papain-Like Proteases/metabolism , SARS-CoV-2/drug effects , Virus Replication/drug effects , Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/metabolism , Computer Simulation , Coronavirus Papain-Like Proteases/drug effects , Drug Evaluation, Preclinical/methods , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Papain/metabolism , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity
15.
Biochim Biophys Acta Rev Cancer ; 1876(2): 188641, 2021 12.
Article in English | MEDLINE | ID: covidwho-1474353

ABSTRACT

Aminopeptidase N (APN/CD13) is a multifunctional glycoprotein that acts as a peptidase, receptor, and signalling molecule in a tissue-dependent manner. The activities of APN have been implicated in the progression of many cancers, pointing toward significant therapeutic potential for cancer treatment. However, despite the tumour-specific functions of this protein that have been uncovered, the ubiquitous nature of its expression in normal tissues as generally reported remains a limitation to the potential utility of APN as a target for cancer therapeutics and drug discovery. With this in mind, we have extensively explored the literature, and present a comprehensive review that for the first-time provides evidence to support the suggestion that tumour-expressed APN may in fact be unique in structure, function, substrate specificity and activity, contrary to its nature in normal tissues. The review also focuses on the biology of APN, and its "moonlighting" functional roles in both normal physiology and cancer development. Several APN-targeting approaches that have been explored over recent decades as therapeutic strategies in cancer treatment, including APN-targeting agents reported both in preclinical and clinical studies, are also extensively discussed. This review concludes by posing critical questions about APN that remain unanswered and unexplored, hence providing opportunities for further research.


Subject(s)
CD13 Antigens/metabolism , Neoplasms/physiopathology , Peptide Hydrolases/metabolism , Humans
16.
Proteins ; 90(5): 1081-1089, 2022 May.
Article in English | MEDLINE | ID: covidwho-1460267

ABSTRACT

Since the beginning of the COVID-19 pandemic, scientists across the globe are racing to find a cure for the highly contagious infectious disease caused by the SARS-CoV-2 virus. Despite many promising ongoing progress, there are currently no FDA approved drug to treat infected patients. Recently, the crowdsourcing of drug discovery for inhibiting the main protease (Mpro) of SARS-CoV-2 have yielded a plenty of drug fragments resolved inside the active site of Mpro via the crystallography method. Following the principle of fragment-based drug design (FBDD), we are motivated to design a potent drug candidate (named B19) by merging three fragments JFM, U0P, and HWH. Through extensive all-atom molecular dynamics simulation and molecular docking, we found that B19 among all designed ones is most stable inside the Mpro's active site and the binding free energy of B19 is comparable to or even a little better than that of a native protein ligand processed by Mpro. Our promising results suggest that B19 and its derivatives can potentially be efficacious drug candidates for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Endopeptidases/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use
17.
Molecules ; 26(18)2021 Sep 21.
Article in English | MEDLINE | ID: covidwho-1430927

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which initially appeared in Wuhan, China, in December 2019. Elderly individuals and those with comorbid conditions may be more vulnerable to this disease. Consequently, several research laboratories continue to focus on developing drugs to treat this infection because this disease has developed into a global pandemic with an extremely limited number of specific treatments available. Natural herbal remedies have long been used to treat illnesses in a variety of cultures. Modern medicine has achieved success due to the effectiveness of traditional medicines, which are derived from medicinal plants. The objective of this study was to determine whether components of natural origin from Iranian medicinal plants have an antiviral effect that can prevent humans from this coronavirus infection using the most reliable molecular docking method; in our case, we focused on the main protease (Mpro) and a receptor-binding domain (RBD). The results of molecular docking showed that among 169 molecules of natural origin from common Iranian medicinal plants, 20 molecules (chelidimerine, rutin, fumariline, catechin gallate, adlumidine, astragalin, somniferine, etc.) can be proposed as inhibitors against this coronavirus based on the binding free energy and type of interactions between these molecules and the studied proteins. Moreover, a molecular dynamics simulation study revealed that the chelidimerine-Mpro and somniferine-RBD complexes were stable for up to 50 ns below 0.5 nm. Our results provide valuable insights into this mechanism, which sheds light on future structure-based designs of high-potency inhibitors for SARS-CoV-2.


Subject(s)
COVID-19/drug therapy , Phytochemicals/therapeutic use , Viral Protease Inhibitors/chemistry , Antiviral Agents/pharmacology , Computer Simulation , Humans , Iran , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Phytochemicals/metabolism , Plants, Medicinal/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Binding , Receptors, Virus/chemistry , Receptors, Virus/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Thermodynamics , Viral Protease Inhibitors/metabolism , Viral Protease Inhibitors/pharmacology
18.
Cell Rep ; 36(13): 109754, 2021 09 28.
Article in English | MEDLINE | ID: covidwho-1401298

ABSTRACT

The SARS-CoV-2 papain-like protease (PLpro) is a target for antiviral drug development. It is essential for processing viral polyproteins for replication and functions in host immune evasion by cleaving ubiquitin (Ub) and ubiquitin-like protein (Ubl) conjugates. While highly conserved, SARS-CoV-2 and SARS-CoV PLpro have contrasting Ub/Ubl substrate preferences. Using a combination of structural analyses and functional assays, we identify a molecular sensor within the S1 Ub-binding site of PLpro that serves as a key determinant of substrate specificity. Variations within the S1 sensor specifically alter cleavage of Ub substrates but not of the Ubl interferon-stimulated gene 15 protein (ISG15). Significantly, a variant of concern associated with immune evasion carries a mutation in the S1 sensor that enhances PLpro activity on Ub substrates. Collectively, our data identify the S1 sensor region as a potential hotspot of variability that could alter host antiviral immune responses to newly emerging SARS-CoV-2 lineages.


Subject(s)
Coronavirus Papain-Like Proteases/metabolism , Coronavirus Papain-Like Proteases/ultrastructure , SARS-CoV-2/genetics , Amino Acid Sequence/genetics , Binding Sites/genetics , COVID-19/genetics , COVID-19/metabolism , Coronavirus Papain-Like Proteases/genetics , HEK293 Cells , Humans , Papain/chemistry , Papain/metabolism , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Protein Binding/genetics , SARS-CoV-2/metabolism , Substrate Specificity/genetics , Ubiquitin/metabolism , Ubiquitins/metabolism , Viral Proteins/metabolism
19.
Nat Microbiol ; 6(10): 1219-1232, 2021 10.
Article in English | MEDLINE | ID: covidwho-1392860

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has claimed millions of lives and caused a global economic crisis. No effective antiviral drugs are currently available to treat infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The medical need imposed by the pandemic has spurred unprecedented research efforts to study coronavirus biology. Every virus depends on cellular host factors and pathways for successful replication. These proviral host factors represent attractive targets for antiviral therapy as they are genetically more stable than viral targets and may be shared among related viruses. The application of various 'omics' technologies has led to the rapid discovery of proviral host factors that are required for the completion of the SARS-CoV-2 life cycle. In this Review, we summarize insights into the proviral host factors that are required for SARS-CoV-2 infection that were mainly obtained using functional genetic and interactome screens. We discuss cellular processes that are important for the SARS-CoV-2 life cycle, as well as parallels with non-coronaviruses. Finally, we highlight host factors that could be targeted by clinically approved molecules and molecules in clinical trials as potential antiviral therapies for COVID-19.


Subject(s)
COVID-19/metabolism , SARS-CoV-2/physiology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/virology , Host-Pathogen Interactions/drug effects , Humans , Peptide Hydrolases/metabolism , RNA, Viral/metabolism , Receptors, Virus/metabolism , SARS-CoV-2/drug effects , Viral Proteins/metabolism , Virus Internalization/drug effects , Virus Replication/drug effects
20.
Infect Genet Evol ; 89: 104729, 2021 04.
Article in English | MEDLINE | ID: covidwho-1386287

ABSTRACT

In recent years, a total of seven human pathogenic coronaviruses (HCoVs) strains were identified, i.e., SARS-CoV, SARS-CoV-2, MERS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1. Here, we performed an analysis of the protease recognition sites and antigenic variation of the S-protein of these HCoVs. We showed tissue-specific expression pattern, functions, and a number of recognition sites of proteases in S-proteins from seven strains of HCoVs. In the case of SARS-CoV-2, we found two new protease recognition sites, each of calpain-2, pepsin-A, and caspase-8, and one new protease recognition site each of caspase-6, caspase-3, and furin. Our antigenic mapping study of the S-protein of these HCoVs showed that the SARS-CoV-2 virus strain has the most potent antigenic epitopes (highest antigenicity score with maximum numbers of epitope regions). Additionally, the other six strains of HCoVs show common antigenic epitopes (both B-cell and T-cell), with low antigenicity scores compared to SARS-CoV-2. We suggest that the molecular evolution of structural proteins of human CoV can be classified, such as (i) HCoV-NL63 and HCoV-229E, (ii) SARS-CoV-2, and SARS-CoV and (iii) HCoV-OC43 and HCoV-HKU1. In conclusion, we can presume that our study might help to prepare the interventions for the possible HCoVs outbreaks in the future.


Subject(s)
Coronavirus/metabolism , Peptide Hydrolases/metabolism , Phylogeny , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Antigenic Variation , Binding Sites , Coronavirus/classification , Coronavirus/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Humans , SARS-CoV-2/classification , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL