Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 180
Filter
1.
Vet Q ; 40(1): 243-249, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-2315258

ABSTRACT

Several cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection transmitted from human owners to their dogs have recently been reported. The first ever case of SARS-CoV-2 transmission from a human owner to a domestic cat was confirmed on March 27, 2020. A tiger from a zoo in New York, USA, was also reportedly infected with SARS-CoV-2. It is believed that SARS-CoV-2 was transmitted to tigers from their caretakers, who were previously infected with this virus. On May 25, 2020, the Dutch Minister of Agriculture, Nature and Food Quality reported that two employees were infected with SARS-CoV-2 transmitted from minks. These reports have influenced us to perform a comparative analysis among angiotensin-converting enzyme 2 (ACE2) homologous proteins for verifying the conservation of specific protein regions. One of the most conserved peptides is represented by the peptide "353-KGDFR-357 (H. sapiens ACE2 residue numbering), which is located on the surface of the ACE2 molecule and participates in the binding of SARS-CoV-2 spike receptor binding domain (RBD). Multiple sequence alignments of the ACE2 proteins by ClustalW, whereas the three-dimensional structure of its binding region for the spike glycoprotein of SARS-CoV-2 was assessed by means of Spanner, a structural homology modeling pipeline method. In addition, evolutionary phylogenetic tree analysis by ETE3 was used. ACE2 works as a receptor for the SARS-CoV-2 spike glycoprotein between humans, dogs, cats, tigers, minks, and other animals, except for snakes. The three-dimensional structure of the KGDFR hosting protein region involved in direct interactions with SARS-CoV-2 spike RBD of the mink ACE2 appears to form a loop structurally related to the human ACE2 corresponding protein loop, despite of the reduced available protein length (401 residues of the mink ACE2 available sequence vs 805 residues of the human ACE2). The multiple sequence alignments of the ACE2 proteins shows high homology and complete conservation of the five amino acid residues: 353-KGDFR-357 with humans, dogs, cats, tigers, minks, and other animals, except for snakes. Where the information revealed from our examinations can support precision vaccine design and the discovery of antiviral therapeutics, which will accelerate the development of medical countermeasures, the World Health Organization recently reported on the possible risks of reciprocal infections regarding SARS-CoV-2 transmission from animals to humans.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/transmission , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/transmission , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/genetics , COVID-19 , Cats , Coronavirus Infections/prevention & control , Dogs , Humans , Mink , Pandemics/prevention & control , Peptidyl-Dipeptidase A/chemistry , Phylogeny , Pneumonia, Viral/prevention & control , Receptors, Virus/chemistry , Receptors, Virus/genetics , SARS-CoV-2 , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry , Tigers
2.
Cell Commun Signal ; 21(1): 110, 2023 05 15.
Article in English | MEDLINE | ID: covidwho-2315856

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by a new member of the Coronaviridae family known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are structural and non-structural proteins (NSPs) in the genome of this virus. S, M, H, and E proteins are structural proteins, and NSPs include accessory and replicase proteins. The structural and NSP components of SARS-CoV-2 play an important role in its infectivity, and some of them may be important in the pathogenesis of chronic diseases, including cancer, coagulation disorders, neurodegenerative disorders, and cardiovascular diseases. The SARS-CoV-2 proteins interact with targets such as angiotensin-converting enzyme 2 (ACE2) receptor. In addition, SARS-CoV-2 can stimulate pathological intracellular signaling pathways by triggering transcription factor hypoxia-inducible factor-1 (HIF-1), neuropilin-1 (NRP-1), CD147, and Eph receptors, which play important roles in the progression of neurodegenerative diseases like Alzheimer's disease, epilepsy, and multiple sclerosis, and multiple cancers such as glioblastoma, lung malignancies, and leukemias. Several compounds such as polyphenols, doxazosin, baricitinib, and ruxolitinib could inhibit these interactions. It has been demonstrated that the SARS-CoV-2 spike protein has a stronger affinity for human ACE2 than the spike protein of SARS-CoV, leading the current study to hypothesize that the newly produced variant Omicron receptor-binding domain (RBD) binds to human ACE2 more strongly than the primary strain. SARS and Middle East respiratory syndrome (MERS) viruses against structural and NSPs have become resistant to previous vaccines. Therefore, the review of recent studies and the performance of current vaccines and their effects on COVID-19 and related diseases has become a vital need to deal with the current conditions. This review examines the potential role of these SARS-CoV-2 proteins in the initiation of chronic diseases, and it is anticipated that these proteins could serve as components of an effective vaccine or treatment for COVID-19 and related diseases. Video Abstract.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , COVID-19 Drug Treatment , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Protein Binding
3.
Lancet Microbe ; 4(5): e369-e378, 2023 05.
Article in English | MEDLINE | ID: covidwho-2306406

ABSTRACT

Extensive immune evasion of SARS-CoV-2 rendered therapeutic antibodies ineffective in the COVID-19 pandemic. Propagating SARS-CoV-2 variants are characterised by immune evasion capacity through key amino acid mutations, but can still bind human angiotensin-converting enzyme 2 (ACE2) through the spike protein and are, thus, sensitive to ACE2-mimicking decoys as inhibitors. In this Review, we examine advances in the development of ACE2 derivatives from the past 3 years, including the recombinant ACE2 proteins, ACE2-loaded extracellular vesicles, ACE2-mimicking antibodies, and peptide or mini-protein mimetics of ACE2. Several ACE2 derivatives are granted potent neutralisation efficacy against SARS-CoV-2 variants that rival or surpass endogenous antibodies by various auxiliary techniques such as chemical modification and practical recombinant design. The derivatives also represent enhanced production efficiency and improved bioavailability. In addition to these derivatives of ACE2, new effective therapeutics against SARS-CoV-2 variants are expected to be developed.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/chemistry , Antibodies, Viral , Recombinant Proteins/genetics
4.
Chem Biol Interact ; 374: 110380, 2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2272148

ABSTRACT

The SARS-CoV-2 pandemic still poses a threat to the global health as the virus continues spreading in most countries. Therefore, the identification of molecules capable of inhibiting the binding between the ACE2 receptor and the SARS-CoV-2 spike protein is of paramount importance. Recently, two DNA aptamers were designed with the aim to inhibit the interaction between the ACE2 receptor and the spike protein of SARS-CoV-2. Indeed, the two molecules interact with the ACE2 receptor in the region around the K353 residue, preventing its binding of the spike protein. If on the one hand this inhibition process hinders the entry of the virus into the host cell, it could lead to a series of side effects, both in physiological and pathological conditions, preventing the correct functioning of the ACE2 receptor. Here, we discuss through a computational study the possible effect of these two very promising DNA aptamers, investigating all possible interactions between ACE2 and its experimentally known molecular partners. Our in silico predictions show that some of the 10 known molecular partners of ACE2 could interact, physiologically or pathologically, in a region adjacent to the K353 residue. Thus, the curative action of the proposed DNA aptamers could recruit ACE2 from its biological functions.


Subject(s)
Aptamers, Nucleotide , COVID-19 , Humans , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Aptamers, Nucleotide/pharmacology , Aptamers, Nucleotide/metabolism , Protein Binding , Peptidyl-Dipeptidase A/chemistry
5.
Adv Mater ; 35(25): e2300575, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2286154

ABSTRACT

The angiotensin-converting enzyme 2 (ACE2), as a functional receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is essential for assessing potential hosts and treatments. However, many studies are based on its truncated version but not full-length structure. Indeed, a single transmembrane (TM) helix presents in the full-length ACE2, influencing its interaction with SARS-CoV-2. Therefore, synthesis of the full-length ACE2 is an urgent requirement. Here, cell-free membrane protein synthesis systems (CFMPSs) are constructed for full-length membrane proteins. MscL is screened as a model among ten membrane proteins based on their expression and solubility. Next, CFMPSs are constructed and optimized based on natural vesicles, vesicles with four membrane proteins removed or two chaperonins added, and 37 types of nanodiscs. They all increase membrane protein solubility to over 50%. Finally, the full-length ACE2 of 21 species are successfully expressed with yields between 0.4 and 0.9 mg mL-1 . The definite functional differences from the truncated version suggest that the TM region affects ACE2's structure and function. CFMPSs can be extended to more membrane proteins, paving the way for further applications.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2 , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Membrane Proteins , Lipids
6.
J Chromatogr A ; 1693: 463903, 2023 Mar 29.
Article in English | MEDLINE | ID: covidwho-2285996

ABSTRACT

Patients have different responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and these may be life-threatening for critically ill patients. Screening components that act on host cell receptors, especially multi-receptor components, is challenging. The in-line combination of dual-targeted cell membrane chromatography and a liquid chromatography-mass spectroscopy (LC-MS) system for analyzing angiotensin-converting enzyme 2 (ACE2) and cluster of differentiation 147 (CD147) receptors based on SNAP-tag technology provides a comprehensive solution for screening multiple components in complex samples acting on the two receptors. The selectivity and applicability of the system were validated with encouraging results. Under the optimized conditions, this method was used to screen for antiviral components in Citrus aurantium extracts. The results showed that 25 µmol /L of the active ingredient could inhibit virus entry into cells. Hesperidin, neohesperidin, nobiletin, and tangeretin were identified as antiviral components. In vitro pseudovirus assays and macromolecular cell membrane chromatography further verified the interaction of these four components with host-virus receptors, showing good effects on some or all of the pseudoviruses and host receptors. In conclusion, the in-line dual-targeted cell membrane chromatography LC-MS system developed in this study can be used for the comprehensive screening of antiviral components in complex samples. It also provides new insight into small-molecule drug-receptor and macromolecular-protein-receptor interactions.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2 , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Cell Membrane/metabolism , Antiviral Agents/pharmacology
7.
Sheng Wu Gong Cheng Xue Bao ; 38(9): 3173-3193, 2022 Sep 25.
Article in Chinese | MEDLINE | ID: covidwho-2254670

ABSTRACT

Coronavirus disease (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), with strong contagiousness, high susceptibility and long incubation period. cell entry by SARS-CoV-2 requires the binding between the receptor-binding domain of the viral spike protein and the cellular angiotensin-converting enzyme 2 (ACE2). Here, we briefly reviewed the mechanisms underlying the interaction between SARS-CoV-2 and ACE2, and summarized the latest research progress on SARS-CoV-2 neutralizing monoclonal antibodies and nanobodies, so as to better understand the development process and drug research direction of COVID-19. This review may facilitate understanding the development of neutralizing antibody drugs for emerging infectious diseases, especially for COVID-19.


Subject(s)
COVID-19 , Single-Domain Antibodies , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Humans , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
8.
Biomacromolecules ; 24(1): 141-149, 2023 01 09.
Article in English | MEDLINE | ID: covidwho-2185444

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has threatened the stability of global healthcare, which is becoming an endemic issue. Despite the development of various treatment strategies to fight COVID-19, the currently available treatment options have shown varied efficacy. Herein, we have developed an avidity-based SARS-CoV-2 antagonist using dendrimer-peptide conjugates (DPCs) for effective COVID-19 treatment. Two different peptide fragments obtained from angiotensin-converting enzyme 2 (ACE2) were integrated into a single sequence, followed by the conjugation to poly(amidoamine) (PAMAM) dendrimers. We hypothesized that the strong multivalent binding avidity endowed by dendrimers would help peptides effectively block the interaction between SARS-CoV-2 and ACE2, and this antagonist effect would be dependent upon the generation (size) of the dendrimers. To assess this, binding kinetics of the DPCs prepared from generation 4 (G4) and G7 PAMAM dendrimers to spike protein of SARS-CoV-2 were quantitatively measured using surface plasmon resonance. The larger dendrimer-based DPCs exhibited significantly enhanced binding strength by 3 orders of magnitude compared to the free peptides, whereas the smaller one showed a 12.8-fold increase only. An in vitro assay using SARS-CoV-2-mimicking microbeads also showed the improved SARS-CoV-2 blockade efficiency of the G7-peptide conjugates compared to G4. In addition, the interaction between the DPCs and SARS-CoV-2 was analyzed using molecular dynamics (MD) simulation, providing an insight into how the dendrimer-mediated multivalent binding effect can enhance the SARS-CoV-2 blockade. Our findings demonstrate that the DPCs having strong binding to SARS-CoV-2 effectively block the interaction between ACE2 and SARS-CoV-2, providing a potential as a high-affinity drug delivery system to direct anti-COVID payloads to the virus.


Subject(s)
COVID-19 , Dendrimers , Humans , Angiotensin-Converting Enzyme 2/metabolism , COVID-19 Drug Treatment , Dendrimers/pharmacology , Peptides/pharmacology , Peptides/metabolism , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
9.
Front Public Health ; 10: 1050034, 2022.
Article in English | MEDLINE | ID: covidwho-2163194

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen that causes coronavirus disease 2019 (COVID-19), infects humans through a strong interaction between the viral spike protein (S-protein) and angiotensin converting enzyme 2 (ACE2) receptors on the cell surface. The infection of host lung cells by SARS-CoV-2 leads to clinical symptoms in patients. However, ACE2 expression is not restricted to the lungs; altered receptors have been found in the nasal and oral mucosa, vessel, brain, pancreas, gastrointestinal tract, kidney, and heart. The future of COVID-19 is uncertain, however, new viral variants are likely to emerge. The SARS-CoV-2 Omicron variant has a total of 50 gene mutations compared with the original virus; 15 of which occur in the receptor binding domain (RBD). The RBD of the viral S-protein binds to the human ACE2 receptor for viral entry. Mutations of the ACE2-RBD interface enhance tight binding by increasing hydrogen bond interactions and expanding the accessible surface area. Extracorporeal membrane oxygenation, hyperbaric oxygen, and aggressive dialysis for the treatment of COVID-19 have shown various degrees of clinical success. The use of decoy receptors based on the ACE2 receptor as a broadly potent neutralizer of SARS-CoV-2 variants has potential as a therapeutic mechanism. Drugs such as 3E8 could block binding of the S1-subunit to ACE2 and restrict the infection of ACE2-expressing cells by a variety of coronaviruses. Here, we discuss the development of ACE2-targeted strategies for the treatment and prevention of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/therapy , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism
10.
Biomolecules ; 12(11)2022 11 10.
Article in English | MEDLINE | ID: covidwho-2109922

ABSTRACT

With its fast-paced mutagenesis, the SARS-CoV-2 Omicron variant has threatened many societies worldwide. Strategies for predicting mutagenesis such as the computational prediction of SARS-CoV-2 structural diversity and its interaction with the human receptor will greatly benefit our understanding of the virus and help develop therapeutics against it. We aim to use protein structure prediction algorithms along with molecular docking to study the effects of various mutations in the Receptor Binding Domain (RBD) of the SARS-CoV-2 and its key interactions with the angiotensin-converting enzyme 2 (ACE-2) receptor. The RBD structures of the naturally occurring variants of SARS-CoV-2 were generated from the WUHAN-Hu-1 using the trRosetta algorithm. Docking (HADDOCK) and binding analysis (PRODIGY) between the predicted RBD sequences and ACE-2 highlighted key interactions at the Receptor-Binding Motif (RBM). Further mutagenesis at conserved residues in the Original, Delta, and Omicron variants (P499S and T500R) demonstrated stronger binding and interactions with the ACE-2 receptor. The predicted T500R mutation underwent some preliminary tests in vitro for its binding and transmissibility in cells; the results correlate with the in-silico analysis. In summary, we suggest conserved residues P499 and T500 as potential mutation sites that could increase the binding affinity and yet do not exist in nature. This work demonstrates the use of the trRosetta algorithm to predict protein structure and future mutations at the RBM of SARS-CoV-2, followed by experimental testing for further efficacy verification. It is important to understand the protein structure and folding to help develop potential therapeutics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Spike Glycoprotein, Coronavirus/chemistry , Molecular Docking Simulation , Peptidyl-Dipeptidase A/chemistry , Receptors, Virus , Protein Binding , Mutation , Protein Folding
11.
Biomolecules ; 12(11)2022 10 31.
Article in English | MEDLINE | ID: covidwho-2099330

ABSTRACT

After the SARS-CoV-2 Wuhan variant that gave rise to the pandemic, other variants named Delta, Omicron, and Omicron-2 sequentially became prevalent, with mutations spread around the viral genome, including on the spike (S) protein; in order to understand the resultant in gains in infectivity, we interrogated in silico both the equilibrium binding and the binding pathway of the virus' receptor-binding domain (RBD) to the angiotensin-converting enzyme 2 (ACE2) receptor. We interrogated the molecular recognition between the RBD of different variants and ACE2 through supervised molecular dynamics (SuMD) and classic molecular dynamics (MD) simulations to address the effect of mutations on the possible S protein binding pathways. Our results indicate that compensation between binding pathway efficiency and stability of the complex exists for the Omicron BA.1 receptor binding domain, while Omicron BA.2's mutations putatively improved the dynamic recognition of the ACE2 receptor, suggesting an evolutionary advantage over the previous strains.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Protein Binding , Peptidyl-Dipeptidase A/chemistry , COVID-19/genetics , Receptors, Virus/genetics , Mutation
12.
ACS Infect Dis ; 8(11): 2259-2270, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2096630

ABSTRACT

SARS-CoV-2, a coronavirus strain that started a worldwide pandemic in early 2020, attaches to human cells by binding its spike (S) glycoprotein to a host receptor protein angiotensin-converting enzyme 2 (ACE2). Blocking the interaction between the S protein and ACE2 has emerged as an important strategy for preventing viral infection. We systematically developed and optimized an AlphaLISA assay to investigate binding events between ACE2 and the ectodomain of the SARS-CoV-2 S protein (S-614G: residues 1-1208 with a D614G mutation). Using S-614G permits discovering potential allosteric inhibitors that stabilize the S protein in a conformation that impedes its access to ACE2. Over 30,000 small molecules were screened in a high-throughput format for activity against S-614G and ACE2 binding using the AlphaLISA assay. A viral entry assay was used to validate hits using lentiviral particles pseudotyped with the full-length S protein of the Wuhan-1 strain. Two compounds identified in the screen, oleic acid and suramin, blocked the attachment of S-614G to ACE2 and S protein-driven cell entry into Calu-3 and ACE2-overexpressing HEK293T cells. Oleic acid inhibits S-614G binding to ACE2 far more potently than to the receptor-binding domain (RBD, residues 319-541 of SARS-CoV-2 S), potentially indicating a noncompetitive mechanism. The results indicate that using the full-length ectodomain of the S protein can be important for identifying allosteric inhibitors of ACE2 binding. The approach reported here represents a rapidly adaptable format for discovering receptor-binding inhibitors to S-proteins of future coronavirus strains.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Oleic Acid , HEK293 Cells , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism
13.
ACS Appl Bio Mater ; 5(11): 5140-5147, 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2096625

ABSTRACT

Severe acute respiratory syndrome coronavirus 2's (SARS-CoV-2) rapid global spread has posed a significant threat to human health, and similar outbreaks could occur in the future. Developing effective virus inactivation technologies is critical to preventing and overcoming pandemics. The infection of SARS-CoV-2 depends on the binding of the spike glycoprotein (S) receptor binding domain (RBD) to the host cellular surface receptor angiotensin-converting enzyme 2 (ACE2). If this interaction is disrupted, SARS-CoV-2 infection could be inhibited. Magnetic nanoparticle (MNP) dispersions exposed to an alternating magnetic field (AMF) possess the unique ability for magnetically mediated energy delivery (MagMED); this localized energy delivery and associated mechanical, chemical, and thermal effects are a possible technique for inactivating viruses. This study investigates the MNPs' effect on vesicular stomatitis virus pseudoparticles containing the SARS-CoV-2 S protein when exposed to AMF or a water bath (WB) with varying target steady-state temperatures (45, 50, and 55 °C) for different exposure times (5, 15, and 30 min). In comparison to WB exposures at the same temperatures, AMF exposures resulted in significantly greater inactivation in multiple cases. This is likely due to AMF-induced localized heating and rotation of MNPs. In brief, our findings demonstrate a potential strategy for combating the SARS-CoV-2 pandemic or future ones.


Subject(s)
COVID-19 , Magnetite Nanoparticles , Humans , SARS-CoV-2 , Magnetite Nanoparticles/therapeutic use , Peptidyl-Dipeptidase A/chemistry , Magnetic Fields
14.
J Agric Food Chem ; 70(45): 14403-14413, 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2096615

ABSTRACT

COVID-19 is initiated by binding the SARS-CoV-2 spike protein to angiotensin-converting enzyme 2 (ACE2) on host cells. Food factors capable of suppressing the binding between the SARS-CoV-2 spike protein and ACE2 or reducing the ACE2 availability through ACE2 inhibitions may potentially reduce the risk of SARS-CoV-2 infection and COVID-19. In this study, the chemical compositions of clove water and ethanol extracts were investigated, along with their potentials in suppressing SARS-CoV-2 spike protein-ACE2 binding, reducing ACE2 availability, and scavenging free radicals. Thirty-four compounds were tentatively identified in the clove water and ethanol extracts, with six reported in clove for the first time. Clove water and ethanol extracts dose-dependently suppressed SARS-CoV-2 spike protein binding to ACE2 and inhibited ACE2 activity. The water extract had stronger inhibitory effects than the ethanol extract on a dry weight basis. The clove water extract also had more potent free radical scavenging activities against DPPH• and ABTS•+ (536.9 and 3525.06 µmol TE/g, respectively) than the ethanol extract (58.44 and 2298.01 µmol TE/g, respectively). In contrast, the ethanol extract had greater total phenolic content (TPC) and relative HO• scavenging capacity (HOSC) values (180.03 mg GAE/g and 2181.08 µmol TE/g, respectively) than the water extract (120.12 mg GAE/g and 1483.02 µmol TE/g, respectively). The present study demonstrated the potential of clove in reducing the risk of SARS-CoV-2 infection and COVID-19 development.


Subject(s)
COVID-19 , Syzygium , Humans , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , Syzygium/metabolism , SARS-CoV-2 , Peptidyl-Dipeptidase A/chemistry , Protein Binding , Binding Sites , Free Radicals , Water , Ethanol
15.
Chem Biol Interact ; 368: 110244, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2095126

ABSTRACT

Interactions between the human angiotensin-converting enzyme 2 (ACE2) and the RBD region of the SARS-CoV-2 Spike protein are critical for virus entry into the host cell. The objective of this work was to identify some of the most relevant SARS-CoV-2 Spike variants that emerged during the pandemic and evaluate their binding affinity with human variants of ACE2 since some ACE2 variants can enhance or reduce the affinity of the interaction between the ACE2 and S proteins. However, no information has been sought to extrapolate to different variants of SARS-CoV-2. Therefore, to understand the impact on the affinity of the interaction between ACE2 protein variants and SARS-CoV-2 protein S variants, molecular docking was used in this study to predict the effects of five mutations of ACE2 when they interact with Alpha, Beta, Delta, Omicron variants and a hypothetical variant, which present mutations in the RBD region of the SARS-CoV-2 Spike protein. Our results suggest that these variants could alter the interaction of the Spike and the human ACE2 protein, losing or creating new inter-protein contacts, enhancing viral fitness by improving binding affinity, and leading to an increase in infectivity, virulence, and transmission. This investigation highlighted that the S19P mutation of ACE2 decreases the binding affinity between the ACE2 and Spike proteins in the presence of the Beta variant and the wild-type variant of SARS-CoV-2 isolated in Wuhan-2019. The R115Q mutation of ACE2 lowers the binding affinity of these two proteins in the presence of the Beta and Delta variants. Similarly, the K26R mutation lowers the affinity of the interaction between the ACE2 and Spike proteins in the presence of the Alpha variant. This decrease in binding affinity is probably due to the lack of interaction between some of the key residues of the interaction complex between the ACE2 protein and the RBD region of the SARS-CoV-2 Spike protein. Therefore, ACE2 mutations appear in the presence of these variants, they could suggest an intrinsic resistance to COVID-19 disease. On the other hand, our results suggested that the K26R, M332L, and K341R mutations of ACE2 expressively showed the affinity between the ACE2 and Spike proteins in the Alpha, Beta, and Delta variants. Consequently, these ACE2 mutations in the presence of the Alpha, Beta, and delta variants of SARS-CoV-2 could be more infectious and virulent in human cells compared to the SARS-CoV-2 isolated in Wuhan-2019 and it could have a negative prognosis of the disease. Finally, the Omicron variant in interaction with ACE2 WT, S19P, R115Q, M332L, and K341R mutations of ACE2 showed a significant decrease in binding affinity. This could be consistent that the Omicron variant causes less severe symptoms than previous variants. On the other hand, our results suggested Omicron in the complex with K26R, the binding affinity is increased between ACE2/RBD, which could indicate a negative prognosis of the disease in people with these allelic conditions.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Molecular Docking Simulation , Mutation , Peptidyl-Dipeptidase A/chemistry , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Virulence/genetics
16.
Protein Sci ; 31(11): e4447, 2022 11.
Article in English | MEDLINE | ID: covidwho-2094239

ABSTRACT

SARS-CoV-2 infects cells by attachment to its receptor-the angiotensin converting enzyme 2 (ACE2). Regardless of the wealth of structural data, little is known about the physicochemical mechanism of interactions of the viral spike (S) protein with ACE2 and how this mechanism has evolved during the pandemic. Here, we applied experimental and computational approaches to characterize the molecular interaction of S proteins from SARS-CoV-2 variants of concern (VOC). Data on kinetics, activation-, and equilibrium thermodynamics of binding of the receptor binding domain (RBD) from VOC with ACE2 as well as data from computational protein electrostatics revealed a profound remodeling of the physicochemical characteristics of the interaction during the evolution. Thus, as compared to RBDs from Wuhan strain and other VOC, Omicron RBD presented as a unique protein in terms of conformational dynamics and types of non-covalent forces driving the complex formation with ACE2. Viral evolution resulted in a restriction of the RBD structural dynamics, and a shift to a major role of polar forces for ACE2 binding. Further, we investigated how the reshaping of the physicochemical characteristics of interaction affects the binding specificity of S proteins. Data from various binding assays revealed that SARS-CoV-2 Wuhan and Omicron RBDs manifest capacity for promiscuous recognition of unrelated human proteins, but they harbor distinct reactivity patterns. These findings might contribute for mechanistic understanding of the viral tropism and capacity to evade immune responses during evolution.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Protein Binding
17.
Mar Drugs ; 20(11)2022 Oct 23.
Article in English | MEDLINE | ID: covidwho-2081922

ABSTRACT

Severe acute respiratory syndrome-Coronavirus 2 (SARS-CoV-2) can infect various human organs, including the respiratory, circulatory, nervous, and gastrointestinal ones. The virus is internalized into human cells by binding to the human angiotensin-converting enzyme 2 (ACE2) receptor through its spike protein (S-glycoprotein). As S-glycoprotein is required for the attachment and entry into the human target cells, it is the primary mediator of SARS-CoV-2 infectivity. Currently, this glycoprotein has received considerable attention as a key component for the development of antiviral vaccines or biologics against SARS-CoV-2. Moreover, since the ACE2 receptor constitutes the main entry route for the SARS-CoV-2 virus, its soluble form could be considered as a promising approach for the treatment of coronavirus disease 2019 infection (COVID-19). Both S-glycoprotein and ACE2 are highly glycosylated molecules containing 22 and 7 consensus N-glycosylation sites, respectively. The N-glycan structures attached to these specific sites are required for the folding, conformation, recycling, and biological activity of both glycoproteins. Thus far, recombinant S-glycoprotein and ACE2 have been produced primarily in mammalian cells, which is an expensive process. Therefore, benefiting from a cheaper cell-based biofactory would be a good value added to the development of cost-effective recombinant vaccines and biopharmaceuticals directed against COVID-19. To this end, efficient protein synthesis machinery and the ability to properly impose post-translational modifications make microalgae an eco-friendly platform for the production of pharmaceutical glycoproteins. Notably, several microalgae (e.g., Chlamydomonas reinhardtii, Dunaliella bardawil, and Chlorella species) are already approved by the U.S. Food and Drug Administration (FDA) as safe human food. Because microalgal cells contain a rigid cell wall that could act as a natural encapsulation to protect the recombinant proteins from the aggressive environment of the stomach, this feature could be used for the rapid production and edible targeted delivery of S-glycoprotein and soluble ACE2 for the treatment/inhibition of SARS-CoV-2. Herein, we have reviewed the pathogenesis mechanism of SARS-CoV-2 and then highlighted the potential of microalgae for the treatment/inhibition of COVID-19 infection.


Subject(s)
COVID-19 Drug Treatment , Chlorella , Microalgae , Animals , Humans , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Spike Glycoprotein, Coronavirus/metabolism , Microalgae/metabolism , Chlorella/metabolism , Peptidyl-Dipeptidase A/chemistry , Protein Binding , Glycoproteins/metabolism , Mammals/metabolism
18.
Biochemistry ; 61(20): 2188-2197, 2022 Oct 18.
Article in English | MEDLINE | ID: covidwho-2050236

ABSTRACT

The receptor binding domain(s) (RBD) of spike (S) proteins of SARS-CoV-1 and SARS-CoV-2 (severe acute respiratory syndrome coronavirus) undergoes closed to open transition to engage with host ACE2 receptors. In this study, using multi atomistic (equilibrium) and targeted (non-equilibrium) molecular dynamics simulations, we have compared energetics of RBD opening pathways in full-length (modeled from cryo-EM structures) S proteins of SARS-CoV-1 and SARS-CoV-2. Our data indicate that amino acid variations at the RBD interaction interface can culminate into distinct free energy landscapes of RBD opening in these S proteins. We further report that mutations in the S protein of SARS-CoV-2 variants of concern can reduce the protein-protein interaction affinity of RBD(s) with its neighboring domains and could favor its opening to access ACE2 receptors. The findings can also aid in predicting the impact of future mutations on the rate of S protein opening for rapid host receptor scanning.


Subject(s)
SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Amino Acids/metabolism , Angiotensin-Converting Enzyme 2/genetics , Binding Sites , COVID-19/genetics , Mutation , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry
19.
Structure ; 30(10): 1367-1368, 2022 10 06.
Article in English | MEDLINE | ID: covidwho-2049939

ABSTRACT

In this issue of Structure, Lan and colleagues seek to identify regions on the ACE2 receptor and coronavirus spikes that are essential for the viral attachment. They achieve it through a detailed comparative analysis of the binding of coronaviruses NL63, SARS-CoV, and several SARS-CoV-2 variants with human and horse ACE2.


Subject(s)
COVID-19 , Coronavirus NL63, Human , Angiotensin-Converting Enzyme 2 , Animals , Horses , Humans , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2
20.
Protein Sci ; 31(11): e4451, 2022 11.
Article in English | MEDLINE | ID: covidwho-2047915

ABSTRACT

In most severe cases, SARS-CoV-2-induced autoimmune reactions have been associated with hemolytic complications. Hemolysis-derived heme from ruptured red blood cells has been shown to trigger a variety of fatal proinflammatory and procoagulant effects, which might deteriorate the progression of COVID-19. In addition, the virus itself can induce proinflammatory signals via the accessory protein 7a. Direct heme binding to the SARS-CoV-2 protein 7a ectodomain and other COVID-19-related proteins has been suggested earlier. Here, we report the experimental analysis of heme binding to the viral proteins spike glycoprotein, protein 7a as well as the host protein ACE2. Thus, protein 7a chemical synthesis was established, including an in-depth analysis of the three different disulfide-bonded isomers. Surface plasmon resonance spectroscopy and in silico studies confirm a transient, biphasic binding behavior, and heme-binding affinities in the nano- to low micromolar range. These results confirm the presence of the earlier identified heme-binding motifs and emphasize the relevance for consideration of labile heme in preexisting or SARS-CoV-2-induced hemolytic conditions in COVID-19 patients.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2 , Viral Proteins/metabolism , Heme , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL