Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Spectrochim Acta A Mol Biomol Spectrosc ; 276: 121188, 2022 Aug 05.
Article in English | MEDLINE | ID: covidwho-1768515


Remdesivir was approved by the Food and Drug Administration for the treatment of COVID -19 in hospitalized adult and pediatric patients. Application of computational calculations for choosing the sensitive reagent in spectrophotometric quantitative analysis is very limited. Computational and theoretical studies were used for choosing the best acid dye for selective visible spectrophotometric quantitative analysis of remdesivir. The calculations were performed using Gaussian 03 software with the density functional theory method using B3LYP/6-31G(d) basis set. The theoretical studies revealed that bromophenol blue is a better match for remdesivir than other acid dyes due to the higher calculated interaction energy. The proposed method was based on the reaction of remdesivir with the computationally selected acid dye bromophenol blue to form a yellow ion-pair complex. The spectra showed absorption peaks at 418 nm. Various factors affecting the reaction were optimized. The method was successfully applied for the determination of remdesivir in the pharmaceutical preparation with good accuracy and precision. Beer's law was observed in the concentration range of 2-12 µg/mL of remdesivir. The proposed reaction was used as a basis for the spectrophotometric determination of remdesivir in pure form and in the pharmaceutical preparation.

COVID-19 , Coloring Agents , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Bromphenol Blue/analysis , COVID-19/drug therapy , Child , Humans , Indicators and Reagents , Pharmaceutical Preparations/analysis , United States
J Med Toxicol ; 17(4): 397-410, 2021 10.
Article in English | MEDLINE | ID: covidwho-1359970


During the current global COVID-19 pandemic and opioid epidemic, wastewater-based epidemiology (WBE) has emerged as a powerful tool for monitoring public health trends by analysis of biomarkers including drugs, chemicals, and pathogens. Wastewater surveillance downstream at wastewater treatment plants provides large-scale population and regional-scale aggregation while upstream surveillance monitors locations at the neighborhood level with more precise geographic analysis. WBE can provide insights into dynamic drug consumption trends as well as environmental and toxicological contaminants. Applications of WBE include monitoring policy changes with cannabinoid legalization, tracking emerging illicit drugs, and early warning systems for potent fentanyl analogues along with the resurging wave of stimulants (e.g., methamphetamine, cocaine). Beyond drug consumption, WBE can also be used to monitor pharmaceuticals and their metabolites, including antidepressants and antipsychotics. In this manuscript, we describe the basic tenets and techniques of WBE, review its current application among drugs of abuse, and propose methods to scale and develop both monitoring and early warning systems with respect to measurement of illicit drugs and pharmaceuticals. We propose new frontiers in toxicological research with wastewater surveillance including assessment of medication assisted treatment of opioid use disorder (e.g., buprenorphine, methadone) in the context of other social burdens like COVID-19 disease.

Biomarkers/analysis , Illicit Drugs/analysis , Pharmaceutical Preparations/analysis , Substance Abuse Detection/methods , Waste Water/chemistry , Wastewater-Based Epidemiological Monitoring , Water Pollutants, Chemical/analysis , COVID-19/epidemiology , Humans , Pandemics , SARS-CoV-2 , Substance-Related Disorders/epidemiology
Int J Mol Sci ; 22(14)2021 Jul 14.
Article in English | MEDLINE | ID: covidwho-1323261


Good health, of vital importance in order to carry out our daily routine, consists of both physical and mental health. Tyrosine (Tyr) deficiency as well as its excess are issues that can affect mental health and can generate disorders such as depression, anxiety, or stress. Tyr is the amino acid (AA) responsible for maintaining good mental health, and for this reason, the present research presents the development of new electrochemical sensors modified with polypyrrole (PPy) doped with different doping agents such as potassium hexacyanoferrate (II) (FeCN), sodium nitroprusside (NP), and sodium dodecyl sulfate (SDS) for a selective and sensitive detection of Tyr. The development of the sensors was carried out by chronoamperometry (CA) and the electrochemical characterization was carried out by cyclic voltammetry (CV). The detection limits (LOD) obtained with each modified sensor were 8.2 × 10-8 M in the case of PPy /FeCN-SPCE, 4.3 × 10-7 M in the case of PPy/NP-SPCE, and of 3.51 × 10-7 M in the case of PPy/SDS-SPCE, thus demonstrating a good sensitivity of these sensors detecting L-Tyr. The validation of sensors was carried out through quantification of L-Tyr from three pharmaceutical products by the standard addition method with recoveries in the range 99.92-103.97%. Thus, the sensors present adequate selectivity and can be used in the pharmaceutical and medical fields.

Carbon/chemistry , Electrodes , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/chemistry , Polymers/chemistry , Pyrroles/chemistry , Tyrosine/analysis , Electrochemical Techniques