Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Signal Transduct Target Ther ; 5(1): 218, 2020 10 03.
Article in English | MEDLINE | ID: covidwho-1387198

Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Cardiac Glycosides/pharmacology , Gene Expression Regulation/drug effects , Host-Pathogen Interactions/drug effects , Animals , Antiviral Agents/chemistry , Betacoronavirus/pathogenicity , Biological Products/chemistry , Biological Products/pharmacology , Bufanolides/chemistry , Bufanolides/pharmacology , COVID-19 , Cardiac Glycosides/chemistry , Cell Survival/drug effects , Chlorocebus aethiops , Chloroquine/chemistry , Chloroquine/pharmacology , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Digoxin/chemistry , Digoxin/pharmacology , High-Throughput Screening Assays , Host-Pathogen Interactions/genetics , Humans , Janus Kinases/antagonists & inhibitors , Janus Kinases/genetics , Janus Kinases/metabolism , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , NF-E2-Related Factor 2/antagonists & inhibitors , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , NF-kappa B/metabolism , Pandemics , Phenanthrenes/chemistry , Phenanthrenes/pharmacology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , SARS-CoV-2 , Signal Transduction , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Vero Cells , Virus Replication/drug effects
2.
Int J Biol Macromol ; 188: 137-146, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1345340

ABSTRACT

COVID-19 is a disease caused by SARS-CoV-2, which has led to more than 4 million deaths worldwide. As a result, there is a worldwide effort to develop specific drugs for targeting COVID-19. Papain-like protease (PLpro) is an attractive drug target because it has multiple essential functions involved in processing viral proteins, including viral genome replication and removal of post-translational ubiquitination modifications. Here, we established two assays for screening PLpro inhibitors according to protease and anti-ISGylation activities, respectively. Application of the two screening techniques to the library of clinically approved drugs led to the discovery of tanshinone IIA sulfonate sodium and chloroxine with their IC50 values of lower than 10 µM. These two compounds were found to directly interact with PLpro and their molecular mechanisms of binding were illustrated by docking and molecular dynamics simulations. The results highlight the usefulness of the two developed screening techniques for locating PLpro inhibitors.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Coronavirus Protease Inhibitors/pharmacology , Drug Repositioning , SARS-CoV-2/enzymology , Antiviral Agents/chemistry , Binding Sites , Chloroquinolinols/chemistry , Chloroquinolinols/pharmacology , Coronavirus Papain-Like Proteases/genetics , Coronavirus Papain-Like Proteases/isolation & purification , Coronavirus Protease Inhibitors/chemistry , High-Throughput Screening Assays/methods , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Phenanthrenes/chemistry , Phenanthrenes/pharmacology , SARS-CoV-2/drug effects
3.
Biochem J ; 478(13): 2517-2531, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1290988

ABSTRACT

The COVID-19 pandemic has emerged as the biggest life-threatening disease of this century. Whilst vaccination should provide a long-term solution, this is pitted against the constant threat of mutations in the virus rendering the current vaccines less effective. Consequently, small molecule antiviral agents would be extremely useful to complement the vaccination program. The causative agent of COVID-19 is a novel coronavirus, SARS-CoV-2, which encodes at least nine enzymatic activities that all have drug targeting potential. The papain-like protease (PLpro) contained in the nsp3 protein generates viral non-structural proteins from a polyprotein precursor, and cleaves ubiquitin and ISG protein conjugates. Here we describe the expression and purification of PLpro. We developed a protease assay that was used to screen a custom compound library from which we identified dihydrotanshinone I and Ro 08-2750 as compounds that inhibit PLpro in protease and isopeptidase assays and also inhibit viral replication in cell culture-based assays.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Drug Evaluation, Preclinical , SARS-CoV-2/enzymology , Small Molecule Libraries/pharmacology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Aniline Compounds/pharmacology , Animals , Benzamides/pharmacology , Chlorocebus aethiops , Coronavirus Papain-Like Proteases/genetics , Coronavirus Papain-Like Proteases/isolation & purification , Coronavirus Papain-Like Proteases/metabolism , Drug Synergism , Enzyme Assays , Flavins/pharmacology , Fluorescence Resonance Energy Transfer , Furans/pharmacology , High-Throughput Screening Assays , Inhibitory Concentration 50 , Naphthalenes/pharmacology , Phenanthrenes/pharmacology , Quinones/pharmacology , Reproducibility of Results , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , Small Molecule Libraries/chemistry , Vero Cells , Virus Replication/drug effects
4.
Phytother Res ; 34(10): 2471-2492, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-864251

ABSTRACT

Several corona viral infections have created serious threats in the last couple of decades claiming the death of thousands of human beings. Recently, corona viral epidemic raised the issue of developing effective antiviral agents at the earliest to prevent further losses. Natural products have always played a crucial role in drug development process against various diseases, which resulted in screening of such agents to combat emergent mutants of corona virus. This review focuses on those natural compounds that showed promising results against corona viruses. Although inhibition of viral replication is often considered as a general mechanism for antiviral activity of most of the natural products, studies have shown that some natural products can interact with key viral proteins that are associated with virulence. In this context, some of the natural products have antiviral activity in the nanomolar concentration (e.g., lycorine, homoharringtonine, silvestrol, ouabain, tylophorine, and 7-methoxycryptopleurine) and could be leads for further drug development on their own or as a template for drug design. In addition, a good number of natural products with anti-corona virus activity are the major constituents of some common dietary supplements, which can be exploited to improve the immunity of the general population in certain epidemics.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/virology , Coronavirus/drug effects , Plant Extracts/pharmacology , Alkaloids/pharmacology , Animals , Biological Products/pharmacology , Coronavirus/metabolism , Coronavirus/pathogenicity , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Drug Development , Humans , Indolizines/pharmacology , Ouabain/pharmacology , Phenanthrenes/pharmacology , Quinolizines/pharmacology , Triterpenes/pharmacology , Viral Proteins/metabolism , Virus Replication/drug effects
5.
Med Hypotheses ; 144: 109905, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-598356

ABSTRACT

COVID-19 has become disastrous for world and spread all over. Researchers all around the globe are working to discover a drug to cure from COVID-19. RNA dependent RNA polymerase plays a key role in SARS-CoV-2 replication and thus it could be a potential target for SARS-CoV-2. This study revealed that Protopine, Allocryptopine and (±) 6- Acetonyldihydrochelerythrine could be potential RdRp inhibitors of SARS-CoV-2.


Subject(s)
Argemone/chemistry , Benzophenanthridines/pharmacology , Berberine Alkaloids/pharmacology , COVID-19/drug therapy , Plant Extracts/therapeutic use , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Antiviral Agents/pharmacology , Computer Simulation , Drug Repositioning , Humans , Molecular Conformation , Molecular Docking Simulation , Phenanthrenes/pharmacology , Phytochemicals/pharmacology , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...