Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Biol Sci ; 18(12): 4744-4755, 2022.
Article in English | MEDLINE | ID: covidwho-1954694

ABSTRACT

Viruses exploit the host lipid metabolism machinery to achieve efficient replication. We herein characterize the lipids profile reprogramming in vitro and in vivo using liquid chromatography-mass spectrometry-based untargeted lipidomics. The lipidome of SARS-CoV-2-infected Caco-2 cells was markedly different from that of mock-infected samples, with most of the changes involving downregulation of ceramides. In COVID-19 patients' plasma samples, a total of 54 lipids belonging to 12 lipid classes that were significantly perturbed compared to non-infected control subjects' plasma samples were identified. Among these 12 lipid classes, ether-linked phosphatidylcholines, ether-linked phosphatidylethanolamines, phosphatidylcholines, and ceramides were the four most perturbed. Pathway analysis revealed that the glycerophospholipid, sphingolipid, and ether lipid metabolisms pathway were the most significantly perturbed host pathways. Phosphatidic acid phosphatases (PAP) were involved in all three pathways and PAP-1 deficiency significantly suppressed SARS-CoV-2 replication. siRNA knockdown of LPIN2 and LPIN3 resulted in significant reduction of SARS-CoV-2 load. In summary, these findings characterized the host lipidomic changes upon SARS-CoV-2 infection and identified PAP-1 as a potential target for intervention for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Caco-2 Cells , Ceramides , Ethers , Glycerophospholipids , Humans , Lipid Metabolism , Phosphatidate Phosphatase/genetics , Phosphatidate Phosphatase/metabolism , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/metabolism
2.
Int J Mol Sci ; 23(5)2022 Feb 23.
Article in English | MEDLINE | ID: covidwho-1736941

ABSTRACT

The fourth enzymatic reaction in the de novo pyrimidine biosynthesis, the oxidation of dihydroorotate to orotate, is catalyzed by dihydroorotate dehydrogenase (DHODH). Enzymes belonging to the DHODH Class II are membrane-bound proteins that use ubiquinones as their electron acceptors. We have designed this study to understand the interaction of an N-terminally truncated human DHODH (HsΔ29DHODH) and the DHODH from Escherichia coli (EcDHODH) with ubiquinone (Q10) in supported lipid membranes using neutron reflectometry (NR). NR has allowed us to determine in situ, under solution conditions, how the enzymes bind to lipid membranes and to unambiguously resolve the location of Q10. Q10 is exclusively located at the center of all of the lipid bilayers investigated, and upon binding, both of the DHODHs penetrate into the hydrophobic region of the outer lipid leaflet towards the Q10. We therefore show that the interaction between the soluble enzymes and the membrane-embedded Q10 is mediated by enzyme penetration. We can also show that EcDHODH binds more efficiently to the surface of simple bilayers consisting of 1-palmitoyl, 2-oleoyl phosphatidylcholine, and tetraoleoyl cardiolipin than HsΔ29DHODH, but does not penetrate into the lipids to the same degree. Our results also highlight the importance of Q10, as well as lipid composition, on enzyme binding.


Subject(s)
/chemistry , Escherichia coli/enzymology , Lipid Bilayers/metabolism , Ubiquinone/metabolism , Cardiolipins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Phosphatidylcholines/metabolism , Protein Conformation , Protein Domains
3.
Biochemistry ; 60(8): 559-562, 2021 03 02.
Article in English | MEDLINE | ID: covidwho-1078275

ABSTRACT

Membrane fusion is an important step for the entry of the lipid-sheathed viruses into the host cells. The fusion process is being carried out by fusion proteins present in the viral envelope. The class I virus contains a 20-25 amino acid sequence at its N-terminal of the fusion domain, which is instrumental in fusion and is called as a "fusion peptide". However, severe acute respiratory syndrome (SARS) coronaviruses contain more than one fusion peptide sequences. We have shown that the internal fusion peptide 1 (IFP1) of SARS-CoV-2 is far more efficient than its N-terminal counterpart (FP) to induce hemifusion between small unilamellar vesicles. Moreover, the ability of IFP1 to induce hemifusion formation increases dramatically with growing cholesterol content in the membrane. Interestingly, IFP1 is capable of inducing hemifusion but fails to open the pore.


Subject(s)
Cholesterol/metabolism , Membrane Fusion/physiology , Peptide Fragments/metabolism , SARS-CoV-2/metabolism , Amino Acid Sequence , COVID-19/genetics , COVID-19/metabolism , Cholesterol/genetics , Humans , Peptide Fragments/genetics , Phosphatidylcholines/genetics , Phosphatidylcholines/metabolism , SARS-CoV-2/genetics , Virus Internalization
4.
Biochim Biophys Acta Biomembr ; 1863(6): 183584, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1071093

ABSTRACT

This work investigates how docosahexaenoic acid (DHA) modifies the effect of Cholesterol (Chol) on the structural and dynamical properties of dipalmitoylphosphatidylcholine (DPPC) membrane. We employ low-cost and non-invasive methods: zeta potential (ZP), conductivity, density, and ultrasound velocity, complemented by molecular dynamics simulations. Our studies reveal that 30% of DHA added to the DPPC-Chol system tends to revert Chol action on a model lipid bilayer. Results obtained in this work shed light on the effect of polyunsaturated fatty acids - particularly DHA - on lipid membranes, with potential preventive applications in many diseases, e.g. neuronal as, Alzheimer's disease, and viral, as Covid-19.


Subject(s)
Cholesterol/metabolism , Docosahexaenoic Acids/metabolism , Lipid Bilayers/metabolism , Phosphatidylcholines/metabolism , Liposomes , Molecular Structure , Temperature , Ultrasonic Waves
5.
Med Hypotheses ; 144: 110262, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-753086

ABSTRACT

To date, the spread of SARS-CoV-2 infection is increasing worldwide and represents a primary healthcare emergency. Although the infection can be asymptomatic, several cases develop severe pneumonia and acute respiratory distress syndrome (ARDS) characterized by high levels of pro-inflammatory cytokines, primarily interleukin (IL)-6. Based on available data, the severity of ARDS and serum levels of IL-6 are key determinants for the prognosis. In this scenario, available in vitro and in vivo data suggested that myo-inositol is able to increase the synthesis and function of the surfactant phosphatidylinositol, acting on the phosphoinositide 3-kinase (PI3K)-regulated signaling, with amelioration of both immune system and oxygenation at the bronchoalveolar level. In addition, myo-inositol has been found able to decrease the levels of IL-6 in several experimental settings, due to an effect on the inositol-requiring enzyme 1 (IRE1)-X-box-binding protein 1 (XBP1) and on the signal transducer and activator of transcription 3 (STAT3) pathways. In this scenario, treatment with myo-inositol may be able to reduce IL-6 dependent inflammatory response and improve oxygenation in patients with severe ARDS by SARS-CoV-2. In addition, the action of myo-inositol on IRE1 endonuclease activity may also inhibit the replication of SARS-CoV-2, as was reported for the respiratory syncytial virus. Since the available data are extremely limited, if this potential therapeutic approach will be considered valid in the clinical practice, the necessary future investigations should aim to identify the best dose, administration route (oral, intravenous and/or aerosol nebulization), and cluster(s) of patients which may get beneficial effects from this treatment.


Subject(s)
COVID-19/immunology , COVID-19/therapy , Inositol/therapeutic use , Interleukin-6/blood , Surface-Active Agents/therapeutic use , COVID-19/complications , Cytokines/blood , Disease Progression , Humans , Inflammation , Lung/metabolism , Lung/virology , Phosphatidylcholines/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositols/metabolism , Prognosis , Respiratory Distress Syndrome/immunology , STAT3 Transcription Factor/metabolism , Signal Transduction , X-Box Binding Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL