Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 1.459
Filter
1.
Elife ; 112022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2203162

ABSTRACT

The COVID-19 pandemic has resulted in a step change in the scale of sequencing data, with more genomes of SARS-CoV-2 having been sequenced than any other organism on earth. These sequences reveal key insights when represented as a phylogenetic tree, which captures the evolutionary history of the virus, and allows the identification of transmission events and the emergence of new variants. However, existing web-based tools for exploring phylogenies do not scale to the size of datasets now available for SARS-CoV-2. We have developed Taxonium, a new tool that uses WebGL to allow the exploration of trees with tens of millions of nodes in the browser for the first time. Taxonium links each node to associated metadata and supports mutation-annotated trees, which are able to capture all known genetic variation in a dataset. It can either be run entirely locally in the browser, from a server-based backend, or as a desktop application. We describe insights that analysing a tree of five million sequences can provide into SARS-CoV-2 evolution, and provide a tool at cov2tree.org for exploring a public tree of more than five million SARS-CoV-2 sequences. Taxonium can be applied to any tree, and is available at taxonium.org, with source code at github.com/theosanderson/taxonium.


Since 2020, the SARS-CoV-2 virus has infected billions of people and spread to 185 countries. The virus spreads by making new copies of its genome inside human cells and exploits the cells' machinery to synthesise viral proteins it needs to infect further cells. Each time the virus copies its genetic material there's a chance that the replication process introduces an error to the genetic sequence. Over time, these mutations accumulate which can give rise to new variants with different properties. These new variants, originating from a common ancestor, may spread faster or be able to evade immune systems that have learnt to recognise previous variants. To understand where new variants of SARS-CoV-2 come from and how related they are to each other, scientists build family trees called 'phylogenetic trees' based on similarities in the genetic sequences of different variants of the virus. Looking at these trees researchers can track how a variant spreads geographically, and also attempt to identify new worrying variants that might lead to a new wave of infections. The scale of the COVID-19 pandemic together with the global effort by clinicians and researchers to sequence SARS-CoV-2 genetic material means a library of over 13 million SARS-CoV-2 genomes now exists, making it the largest such collection for any organism. Although phylogenetic trees of viruses have been studied for a long time, exploring the SARS-CoV-2 library presents technical and practical challenges due to its sheer size. Sanderson has developed an open-source web tool called Taxonium that allows users to explore phylogenetic trees with millions of sequences. With help from collaborators at the University of California, Santa Cruz, Sanderson built a website called Cov2Tree, that uses the Taxonium platform to allow immediate access to an expansive tree of all publicly available SARS-CoV-2 sequences. Cov2Tree enables users to visualise all SARS-CoV-2 genomes in a birds-eye view akin to a 'Google Earth for virus sequences' where anyone can zoom in on a related family of viruses down to the level of individual sequences. This can be used to compare variants and follow geographic spread. Using Taxonium, scientists can explore how virus sequences are related to each other. They can also see the individual mutations that have occurred at each branch of the tree, and can search for sequences based on mutation, geographical location, or other factors. Interestingly, a trend appearing in the SARS-CoV-2 phylogenetic tree is the emergence of identical mutations at different branches of the tree without a common origin. These mutations may be a result of convergent evolution, a phenomenon that occurs when a mutation appears independently in different variants as it confers an advantage to the virus making such mutations more likely to persist. This means that scientists may be able to expect certain mutations to appear in more distantly related variants if they have appeared independently in several different variants already. Overall, Taxonium is an important tool for monitoring SARS-CoV-2 genomes, but it also has broader applications. The tool can be used to browse phylogenetic trees of other viruses and organisms. Furthermore, the Taxonium website offers a way to browse a tree of life, with images and links to Wikipedia. The SARS-CoV-2 library might be the largest now, but in the future even bigger datasets will likely be available, highlighting the importance of tools like Taxonium.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Phylogeny , SARS-CoV-2/genetics , Pandemics , COVID-19/epidemiology , Internet
2.
Front Cell Infect Microbiol ; 12: 819829, 2022.
Article in English | MEDLINE | ID: covidwho-2198682

ABSTRACT

Zika virus (ZIKV) emerged as a serious public health problem since the first major outbreak in 2007. Current ZIKV diagnostic methods can successfully identify known ZIKV but are impossible to track the origin of viruses and pathogens other than known ZIKV strains. We planned to determine the ability of Whole Genome Sequencing (WGS) in clinical epidemiology by evaluating whether it can successfully detect the origin of ZIKV in a suspected case of laboratory-acquired infection (LAI). ZIKV found in the patient sample was sequenced with nanopore sequencing technology, followed by the production of the phylogenetic tree, based on the alignment of 38 known ZIKV strains with the consensus sequence. The closest viral strain with the consensus sequence was the strain used in the laboratory, with a percent identity of 99.27%. We think WGS showed its time-effectiveness and ability to detect the difference between strains to the level of a single base. Additionally, to determine the global number of LAIs, a literature review of articles published in the last 10 years was performed, and 53 reports of 338 LAIs were found. The lack of a universal reporting system was worrisome, as in the majority of cases (81.1%), the exposure route was unknown.


Subject(s)
Nanopores , Vaccines , Zika Virus Infection , Zika Virus , Humans , Phylogeny , Whole Genome Sequencing , Zika Virus/genetics , Zika Virus Infection/epidemiology
3.
BMC Bioinformatics ; 23(1): 504, 2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2196034

ABSTRACT

BACKGROUND: Identifying polymorphism clades on phylogenetic trees could help detect punctual mutations that are associated with viral functions. With visualization tools coloring the tree, it is easy to visually find clades where most sequences have the same polymorphism state. However, with the fast accumulation of viral sequences, a computational tool to automate this process is urgently needed. RESULTS: Here, by implementing a branch-and-bound-like search method, we developed an R package named sitePath to identify polymorphism clades automatically. Based on the identified polymorphism clades, fixed and parallel mutations could be inferred. Furthermore, sitePath also integrated visualization tools to generate figures of the calculated results. In an example with the influenza A virus H3N2 dataset, the detected fixed mutations coincide with antigenic shift mutations. The highly specificity and sensitivity of sitePath in finding fixed mutations were achieved for a range of parameters and different phylogenetic tree inference software. CONCLUSIONS: The result suggests that sitePath can identify polymorphism clades per site. The clustering of sequences on a phylogenetic tree can be used to infer fixed and parallel mutations. High-quality figures of the calculated results could also be generated by sitePath.


Subject(s)
Influenza A Virus, H3N2 Subtype , Influenza, Human , Humans , Phylogeny , Influenza A Virus, H3N2 Subtype/genetics , Mutation , Software , Polymorphism, Genetic
4.
Epidemiology ; 33(6): 797-807, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2190880

ABSTRACT

BACKGROUND: Marine recruits training at Parris Island experienced an unexpectedly high rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, despite preventive measures including a supervised, 2-week, pre-entry quarantine. We characterize SARS-CoV-2 transmission in this cohort. METHODS: Between May and November 2020, we monitored 2,469 unvaccinated, mostly male, Marine recruits prospectively during basic training. If participants tested negative for SARS-CoV-2 by quantitative polymerase chain reaction (qPCR) at the end of quarantine, they were transferred to the training site in segregated companies and underwent biweekly testing for 6 weeks. We assessed the effects of coronavirus disease 2019 (COVID-19) prevention measures on other respiratory infections with passive surveillance data, performed phylogenetic analysis, and modeled transmission dynamics and testing regimens. RESULTS: Preventive measures were associated with drastically lower rates of other respiratory illnesses. However, among the trainees, 1,107 (44.8%) tested SARS-CoV-2-positive, with either mild or no symptoms. Phylogenetic analysis of viral genomes from 580 participants revealed that all cases but one were linked to five independent introductions, each characterized by accumulation of mutations across and within companies, and similar viral isolates in individuals from the same company. Variation in company transmission rates (mean reproduction number R 0 ; 5.5 [95% confidence interval [CI], 5.0, 6.1]) could be accounted for by multiple initial cases within a company and superspreader events. Simulations indicate that frequent rapid-report testing with case isolation may minimize outbreaks. CONCLUSIONS: Transmission of wild-type SARS-CoV-2 among Marine recruits was approximately twice that seen in the community. Insights from SARS-CoV-2 outbreak dynamics and mutations spread in a remote, congregate setting may inform effective mitigation strategies.


Subject(s)
COVID-19 , Disease Outbreaks , Military Personnel , COVID-19/epidemiology , COVID-19/prevention & control , Disease Outbreaks/prevention & control , Female , Humans , Male , Military Personnel/statistics & numerical data , Phylogeny , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , United States/epidemiology
6.
Euro Surveill ; 27(43)2022 10.
Article in English | MEDLINE | ID: covidwho-2154580

ABSTRACT

BackgroundTracking person-to-person SARS-CoV-2 transmission in the population is important to understand the epidemiology of community transmission and may contribute to the containment of SARS-CoV-2. Neither contact tracing nor genomic surveillance alone, however, are typically sufficient to achieve this objective.AimWe demonstrate the successful application of the integrated genomic surveillance (IGS) system of the German city of Düsseldorf for tracing SARS-CoV-2 transmission chains in the population as well as detecting and investigating travel-associated SARS-CoV-2 infection clusters.MethodsGenomic surveillance, phylogenetic analysis, and structured case interviews were integrated to elucidate two genetically defined clusters of SARS-CoV-2 isolates detected by IGS in Düsseldorf in July 2021.ResultsCluster 1 (n = 67 Düsseldorf cases) and Cluster 2 (n = 36) were detected in a surveillance dataset of 518 high-quality SARS-CoV-2 genomes from Düsseldorf (53% of total cases, sampled mid-June to July 2021). Cluster 1 could be traced back to a complex pattern of transmission in nightlife venues following a putative importation by a SARS-CoV-2-infected return traveller (IP) in late June; 28 SARS-CoV-2 cases could be epidemiologically directly linked to IP. Supported by viral genome data from Spain, Cluster 2 was shown to represent multiple independent introduction events of a viral strain circulating in Catalonia and other European countries, followed by diffuse community transmission in Düsseldorf.ConclusionIGS enabled high-resolution tracing of SARS-CoV-2 transmission in an internationally connected city during community transmission and provided infection chain-level evidence of the downstream propagation of travel-imported SARS-CoV-2 cases.


Subject(s)
COVID-19 , Communicable Diseases, Imported , Humans , SARS-CoV-2/genetics , Travel , Communicable Diseases, Imported/epidemiology , COVID-19/epidemiology , Phylogeny , Contact Tracing , Germany/epidemiology , Genomics
8.
J Med Virol ; 94(8): 3829-3839, 2022 08.
Article in English | MEDLINE | ID: covidwho-2127821

ABSTRACT

Respiratory infections are often caused by enteroviruses (EVs). The aim of this study was to identify whether certain types of EV were more likely to cause severe illness in 2016, when an increasing spread of upper respiratory infections was observed in Gothenburg, Sweden. The EV strain in 137 of 1341 nasopharyngeal samples reactive for EV by polymerase chain reaction could be typed by sequencing the viral 5'-untranslated region and VP1 regions. Phylogenetic trees were constructed. Patient records were reviewed. Hospital care was needed for 46 of 74 patients with available medical records. The majority of the patients (83) were infected with the rhinovirus (RV). The remaining 54 were infected with EV A, B, C, and D strains of 13 different types, with EV-D68 and CV-A10 being the most common (17 vs. 14). Significantly more patients with EV-D68 presented with dyspnea, both when compared with other EV types (p = 0.003) and compared to all other EV and RV infections (p = 0.04). Phylogenetic analysis of the sequences revealed the spread of both Asian and European CV-A10 strains and 12 different RV C types. This study showed an abundance of different EV types spreading during a year with increased upper respiratory increased infections. EV-D68 infections were associated with more severe disease manifestation. Other EV and RV types were more evenly distributed between hospitalized and nonhospitalized patients. The EV type CV-A10 was also found in infected patients, which warrants further studies and surveillance, as this pathogen could cause more severe disease and outbreaks of hand, foot, and mouth disease.


Subject(s)
Enterovirus D, Human , Enterovirus Infections , Enterovirus , Respiratory Tract Infections , Disease Outbreaks , Enterovirus/genetics , Humans , Infant , Phylogeny , Rhinovirus/genetics
9.
MEDICC Rev ; 24(3-4): 18-23, 2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2146581

ABSTRACT

INTRODUCTION: In November 2021, omicron-a new SARS-CoV-2 variant-was identified in South Africa and almost immediately, WHO declared it a 'variant of concern'. In view of its rapid worldwide spread and its imminent introduction in Cuba, genomic surveillance was strengthened. OBJECTIVE: Describe cases during the first eight epidemiological weeks (epiweeks) of SARS-CoV-2 infection attributable to omicron variant in Cuba by clinical and epidemiological variables. METHODS: From epiweek 48, 2021 to epiweek 4, 2022, 288 nasopharyngeal swabs were processed for sequencing of a 1836 bp fragment of the S gene. Variants were identified according to GISAID database and confirmed by phylogenetic analysis. Variants' association with clinical and epidemiological outcomes was assessed. RESULTS: The first cases of omicron variant were imported, mostly from African countries and the United States. During the period studied, omicron was detected in 83.0% (239/288) of cases processed, while the delta variant was found in 17.0% (49/288). Most persons infected with omicron were symptomatic (63.2%; 151/239) and fully vaccinated (65.3%; 156/239); severe cases and deaths occurred mainly among patients aged ≥65 years (92.9%; 13/14), and 12 of these deaths occurred in fully vaccinated persons (92.3%; 12/13). Omicron spread rapidly throughout the country (from 10% of cases in epiweek 48, 2021, to 100% by epiweek 4, 2022), displacing the formerly predominant delta variant. CONCLUSIONS: Omicron's rapid expansion in Cuba was associated with increased incidence but not with a higher case fatality rate. The relatively milder disease in those infected with this variant could be influenced by the high vaccination coverage, along with the natural immunity acquired as a consequence of previous virus infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Phylogeny , Cuba/epidemiology , COVID-19/epidemiology
10.
Indian J Public Health ; 66(Supplement): S36-S40, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2144164

ABSTRACT

Background: The incidence of breakthrough infection with the emergence of new variants of concern of SARS-CoV-2 is posing a threat, and it is pertinent to understand the role of vaccines in protecting the elderly and people with comorbidities. Objective: The present study was undertaken to understand the natural history of SARS-CoV-2 infection in a closed cohort of the elderly population in an old-age home who have received two doses of COVID-19 vaccination. The study has also undertaken genomic sequencing to identify SARS-CoV-2 variants of concern from an academic perspective. Materials and Methods: A prospective observational study was conducted from March to August 2021 among residents of 11 old-age homes in Kerala who were vaccinated with 2 doses of the COVID-19 vaccine, from 2 weeks following vaccination. Samples with a threshold cycle value of <25 were subjected to targeted sequencing of the spike protein receptor-binding domain coding region. Results: Among the 479 vaccinated individuals, 86 (17.95%) turned positive during the follow-up period. The mean duration of symptoms was 3-5 days, and no hospitalization was required. A phylogenetic analysis of the nucleotide sequences from the samples indicated B.1.617.2 lineage representing the Delta strain. Conclusion: The evidence supports maximizing the vaccine coverage among vulnerable groups to prevent hospitalization and death rate on the verge of the emergence of new variants of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Humans , Infant, Newborn , SARS-CoV-2/genetics , COVID-19 Vaccines , Phylogeny , India/epidemiology
11.
Viruses ; 14(9)2022 09 14.
Article in English | MEDLINE | ID: covidwho-2143631

ABSTRACT

In this retrospective, single-center study, we conducted an analysis of 13,699 samples from different individuals obtained from the Federal Research Center of Fundamental and Translational Medicine, from 1 April to 30 May 2020 in Novosibirsk region (population 2.8 million people). We identified 6.49% positive for SARS-CoV-2 cases out of the total number of diagnostic tests, and 42% of them were from asymptomatic people. We also detected two asymptomatic people, who had no confirmed contact with patients with COVID-19. The highest percentage of positive samples was observed in the 80+ group (16.3%), while among the children and adults it did not exceed 8%. Among all the people tested, 2423 came from a total of 80 different destinations and only 27 of them were positive for SARS-CoV-2. Out of all the positive samples, 15 were taken for SARS-CoV-2 sequencing. According to the analysis of the genome sequences, the SARS-CoV-2 variants isolated in the Novosibirsk region at the beginning of the pandemic belonged to three phylogenetic lineages according to the Pangolin classification: B.1, B.1.1, and B.1.1.129. All Novosibirsk isolates contained the D614G substitution in the Spike protein, two isolates werecharacterized by an additional M153T mutation, and one isolate wascharacterized by the L5F mutation.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/epidemiology , Child , Genome, Viral , Genomics , Humans , Mutation , Pandemics , Phylogeny , Retrospective Studies , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
12.
Dis Model Mech ; 15(9)2022 09 01.
Article in English | MEDLINE | ID: covidwho-2114125

ABSTRACT

Model organism (MO) research provides a basic understanding of biology and disease due to the evolutionary conservation of the molecular and cellular language of life. MOs have been used to identify and understand the function of orthologous genes, proteins, cells and tissues involved in biological processes, to develop and evaluate techniques and methods, and to perform whole-organism-based chemical screens to test drug efficacy and toxicity. However, a growing richness of datasets and the rising power of computation raise an important question: How do we maximize the value of MOs? In-depth discussions in over 50 virtual presentations organized by the National Institutes of Health across more than 10 weeks yielded important suggestions for improving the rigor, validation, reproducibility and translatability of MO research. The effort clarified challenges and opportunities for developing and integrating tools and resources. Maintenance of critical existing infrastructure and the implementation of suggested improvements will play important roles in maintaining productivity and facilitating the validation of animal models of human biology and disease.


Subject(s)
Biological Evolution , Animals , Humans , Phylogeny , Reproducibility of Results
13.
Viruses ; 14(11)2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2113143

ABSTRACT

This study aimed to analyze the genetic and evolutionary characteristics of the influenza A/H3N2 viruses circulating in Myanmar from 2015 to 2019. Whole genomes from 79 virus isolates were amplified using real-time polymerase chain reaction and successfully sequenced using the Illumina iSeq100 platforms. Eight individual phylogenetic trees were retrieved for each segment along with those of the World Health Organization (WHO)-recommended Southern Hemisphere vaccine strains for the respective years. Based on the WHO clades classification, the A/H3N2 strains in Myanmar from 2015 to 2019 collectively belonged to clade 3c.2. These strains were further defined based on hemagglutinin substitutions as follows: clade 3C.2a (n = 39), 3C.2a1 (n = 2), and 3C.2a1b (n = 38). Genetic analysis revealed that the Myanmar strains differed from the Southern Hemisphere vaccine strains each year, indicating that the vaccine strains did not match the circulating strains. The highest rates of nucleotide substitution were estimated for hemagglutinin (3.37 × 10-3 substitutions/site/year) and neuraminidase (2.89 × 10-3 substitutions/site/year). The lowest rate was for non-structural protein segments (4.19 × 10-5 substitutions/site/year). The substantial genetic diversity that was revealed improved phylogenetic classification. This information will be particularly relevant for improving vaccine strain selection.


Subject(s)
Influenza A virus , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/prevention & control , Influenza A Virus, H3N2 Subtype/genetics , Influenza A virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinins , Phylogeny , Myanmar/epidemiology , Sequence Analysis, DNA , Seasons
14.
Viruses ; 14(11)2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2123865

ABSTRACT

A considerable number of new SARS-CoV-2 lineages have emerged since the first COVID-19 cases were reported in Wuhan. As a few variants showed higher COVID-19 disease transmissibility and the ability to escape from immune responses, surveillance became relevant at that time. Single-nucleotide mutation PCR-based protocols were not always specific, and consequently, determination of a high number of informative sites was needed for accurate lineage identification. A detailed in silico analysis of SARS-CoV-2 sequences retrieved from GISAID database revealed the S gene 921 bp-fragment, positions 22784-23705 of SARS-CoV-2 reference genome, as the most informative fragment (30 variable sites) to determine relevant SARS-CoV-2 variants. Consequently, a method consisting of the PCR-amplification of this fragment, followed by Sanger's sequencing and a "single-click" informatic program based on a reference database, was developed and validated. PCR-fragments obtained from clinical SARS-CoV-2 samples were compared with homologous variant-sequences and the resulting phylogenetic tree allowed the identification of Alpha, Delta, Omicron, Beta, Gamma, and other variants. The data analysis procedure was automatized and simplified to the point that it did not require specific technical skills. The method is faster and cheaper than current whole-genome sequencing methods; it is available worldwide, and it may help to enhance efficient surveillance in the fight against the COVID-19 pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Phylogeny , Genome, Viral , COVID-19/diagnosis , COVID-19/epidemiology , Pandemics , Polymerase Chain Reaction
15.
Sci Rep ; 12(1): 19412, 2022 Nov 12.
Article in English | MEDLINE | ID: covidwho-2119340

ABSTRACT

Coronaviruses of the genera Gammacoronavirus and Deltacoronavirus are globally widespread and circulate primarily in wild and domestic birds. Prior studies have established frequently occurring crossover events from avian to mammalian reservoirs. However, there is limited understanding of the diversity and geographical distribution of coronaviruses among birds. In this study, the surveillance of coronaviruses in birds in Russia during 2020 revealed the presence of coronaviruses in 12% of samples from birds. Targeted NGS approach was used for the evaluation of genetic diversity based on RdRp gene. While gammacoronviruses were found in both wild birds and poultry, deltacoronaviruses were found in wild birds only and represent the first detections for Russia. A number of cases with the simultaneous detection of gamma- and deltacoronaviruses in one bird was reported. The results of this study highlight the importance of further research concerning the spread and diversity of coronaviruses among birds within and migrating throughout the territory of Russia across the globe.


Subject(s)
Coronavirus Infections , Coronavirus , Gammacoronavirus , Influenza in Birds , Animals , Deltacoronavirus , Poultry , Coronavirus/genetics , Birds , Animals, Wild , Mammals , Phylogeny
17.
J Vet Med Sci ; 84(11): 1520-1526, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2117425

ABSTRACT

The antigenic variant QX-like infectious bronchitis virus (IBV) is endemic in several countries. In Japan, the QX-like genotype is classified as the JP-III genotype based on the partial S1 gene and as the GI-19 genotype based on the complete S1 gene. This study showed that QX-like IBVs and JP-III IBVs can be identified based on the amino acid polymorphism of the S1 glycoprotein. Furthermore, genetic analysis of several IBV field strains detected in commercial broiler farms across the Kyushu area in 2020 revealed Japanese QX-like IBVs, which are highly homologous to the QX-like IBVs recently detected in China and South Korea. Herein, QX-like IBV field strains were isolated for evaluating commercial vaccine efficacy in our future studies.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Animals , Infectious bronchitis virus/genetics , Japan/epidemiology , Poultry Diseases/epidemiology , Chickens , Phylogeny , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Genotype
18.
Probl Sotsialnoi Gig Zdravookhranenniiai Istor Med ; 30(s1): 1061-1066, 2022 Dec 15.
Article in Russian | MEDLINE | ID: covidwho-2117183

ABSTRACT

An important goal of COVID-19 surveillance is to detect outbreaks using modern molecular epidemiology techniques based on methods to decode the full genome of the virus, since rapidly evolving RNA viruses, which include SARS-CoV-2, are constantly accumulating changes in their genomes. In addition to using these changes to identify the different virus lines spreading in the population, the availability of sequence information is very important. It will allow the identification of altered variants that may be more transmissible, cause more severe forms of disease, or be undetectable by existing diagnostic test systems. The global scientific community is particularly interested in changes in the spike protein (S-protein, Spike) because they are responsible for binding and penetration into the host cell, lead to false-negative results in diagnostic tests, and affect transmission rates, health outcomes, therapeutic interventions, and vaccine efficacy.Genomic surveillance uses next-generation sequencing (NGS) applications and makes data on the full genome of the virus available. These methods offer new means to detect variants that differ phenotypically or antigenically. This approach promotes earlier prediction as well as effective strategies to mitigate and contain outbreaks of SARS-CoV-2 and other new viruses long before they spread worldwide.Today, molecular typing of strains is playing an increasingly important role in this process, as it makes it possible to identify samples that share a common molecular «fingerprint¼.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Genome, Viral , Phylogeny , Moscow/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Genomics
19.
Viruses ; 14(11)2022 Nov 19.
Article in English | MEDLINE | ID: covidwho-2116191

ABSTRACT

Infectious Bronchitis (IB) is a respiratory disease caused by a highly variable Gammacoronavirus, which generates a negative impact on poultry health worldwide. GI-11 and GI-16 lineages have been identified in South America based on Infectious Bronchitis virus (IBV) partial S1 sequences. However, full genome sequence information is limited. In this study we report, for the first time, the whole-genome sequence of IBV from Colombia. Seven IBV isolates obtained during 2012 and 2013 from farms with respiratory disease compatible with IB were selected and the complete genome sequence was obtained by NGS. According to S1 sequence phylogenetic analysis, six isolates belong to lineage GI-1 and one to lineage GVI-1. When whole genome was analyzed, five isolates were related to the vaccine strain Ma5 2016 and two showed mosaic genomes. Results from complete S1 sequence analysis provides further support for the hypothesis that GVI-1, considered a geographically confined lineage in Asia, could have originated in Colombia. Complete genome information reported in this research allow a deeper understanding of the phylogenetic evolution of variants and the recombination events between strains that are circulating worldwide, contributing to the knowledge of coronavirus in Latin America and the world.


Subject(s)
Infectious bronchitis virus , Poultry Diseases , Animals , Phylogeny , Colombia/epidemiology , Poultry Diseases/prevention & control , Chickens , Genome, Viral
20.
Int J Mol Sci ; 23(22)2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2116050

ABSTRACT

MSClustering is an efficient software package for visualizing and analyzing complex networks in Cytoscape. Based on the distance matrix of a network that it takes as input, MSClustering automatically displays the minimum span clustering (MSC) of the network at various characteristic levels. To produce a view of the overall network structure, the app then organizes the multi-level results into an MSC tree. Here, we demonstrate the package's phylogenetic applications in studying the evolutionary relationships of complex systems, including 63 beta coronaviruses and 197 GPCRs. The validity of MSClustering for large systems has been verified by its clustering of 3481 enzymes. Through an experimental comparison, we show that MSClustering outperforms five different state-of-the-art methods in the efficiency and reliability of their clustering.


Subject(s)
Computational Biology , Software , Computational Biology/methods , Phylogeny , Reproducibility of Results , Cluster Analysis
SELECTION OF CITATIONS
SEARCH DETAIL