ABSTRACT
BACKGROUND: Coronavirus disease 2019 (COVID-19) has been recently declared as a global public health emergency, where the infection is caused by SARS-CoV-2. Nowadays, there is no specific treatment to cure this infection. The main protease (Mpro) of SARS-CoV-2 and SARS spike glycoprotein- human ACE2 complex have been recognized as suitable targets for treatment, including COVID-19 vaccines. OBJECTIVE: In our current study, we identified the potential of Momordica charantia as a prospective alternative and a choice in dietary food during a pandemic. MATERIALS AND METHODS: A total of 16 bioactive compounds of Momordica charantia were screened for activity against 6LU7 and 6CS2 with AutoDockVina. RESULTS: We found that momordicoside B showed the lowest binding energy compared to other compounds. In addition, kuguaglycoside A and cucurbitadienol showed better profiles for drug-like properties based on Lipinski's rule of five. CONCLUSION: Our result indicates that these molecules can be further explored as promising candidates against SARS-CoV-2 or Momordica charantia can be used as one of the best food alternatives to be consumed during the pandemic.
Subject(s)
COVID-19 Drug Treatment , Momordica charantia , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19 Vaccines , Humans , Molecular Docking Simulation , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Prospective Studies , SARS-CoV-2ABSTRACT
This study aims to investigate the binding potential of chemical compounds of Senna in comparison with the experimentally tested active phytochemicals against SARS-CoV-2 protein targets to assist in prevention of infection by exploring multiple treatment options. The entire set of phytochemicals from both the groups were subjected to advanced computational analysis that explored functional molecular descriptors from a set of known medicinal-based active therapeutics followed by MD simulations on multiple SARS-CoV-2 target proteins. Our findings manifest the importance of hydrophobic substituents in chemical structures of potential inhibitors through cross-validation with the FDA-approved anti-3CLpro drugs. Noteworthy improvement in end-point binding free energies and pharmacokinetic profiles of the proposed compounds was perceived in comparison to the control drug, vizimpro. Moreover, the identification of common drug targets namely; AKT1, PTGS1, TNF, and DPP4 between proposed active phytochemicals and Covid19 using network pharmacological analysis further substantiate the importance of medicinal scaffolds. The structural dynamics and binding affinities of phytochemical compounds xanthoangelol_E, hesperetin, and beta-sitosterol reported as highly potential against 3CLpro in cell-based and cell-free assays are consistent with the computational analysis. Whereas, the secondary metabolites such as sennosides A, B, C, D present in higher amount in Senna exhibited weak binding affinity and instability against the spike protein, helicase nsp13, RdRp nsp12, and 3CLpro. In conclusion, the results contravene fallacious efficacy claims of Senna tea interventions circulating on electronic/social media as Covid19 cure; thus emphasizing the importance of well-examined standardized data of the natural products in hand; thereby preventing unnecessary deaths under pandemic hit situations worldwide.
Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , SARS-CoV-2 , SennosidesABSTRACT
Globally, researchers are undertaking significant efforts to design and develop effective vaccines, therapeutics, and antiviral drugs to curb the spread of coronavirus disease 2019 (COVID-19). Plants have been used for the production of vaccines, monoclonal antibodies, immunomodulatory proteins, drugs, and pharmaceuticals via molecular farming/transient expression system and are considered as bioreactors or factories for their bulk production. These biological products are stable, safe, effective, easily available, and affordable. Plant molecular farming could facilitate rapid production of biologics on an industrial scale, and has the potential to fulfill emergency demands, such as in the present situation of the COVID-19 pandemic. This article aims to describe the methodology and basics of plant biopharming, in addition to its prospective applications for developing effective vaccines and antibodies to counter COVID-19.
Subject(s)
Antibodies, Viral/therapeutic use , Biological Products/therapeutic use , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Phytochemicals/therapeutic use , SARS-CoV-2 , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/immunology , Antiviral Agents/immunology , Antiviral Agents/therapeutic use , Biological Products/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Humans , Phytochemicals/immunology , Plants , SARS-CoV-2/immunology , Viral Vaccines/immunology , Viral Vaccines/therapeutic useABSTRACT
Viral infections and associated diseases are responsible for a substantial number of mortality and public health problems around the world. Each year, infectious diseases kill 3.5 million people worldwide. The current pandemic caused by COVID-19 has become the greatest health hazard to people in their lifetime. There are many antiviral drugs and vaccines available against viruses, but they have many disadvantages, too. There are numerous side effects for conventional drugs, and active mutation also creates drug resistance against various viruses. This has led scientists to search herbs as a source for the discovery of more efficient new antivirals. According to the World Health Organization (WHO), 65% of the world population is in the practice of using plants and herbs as part of treatment modality. Additionally, plants have an advantage in drug discovery based on their long-term use by humans, and a reduced toxicity and abundance of bioactive compounds can be expected as a result. In this review, we have highlighted the important viruses, their drug targets, and their replication cycle. We provide in-depth and insightful information about the most favorable plant extracts and their derived phytochemicals against viral targets. Our major conclusion is that plant extracts and their isolated pure compounds are essential sources for the current viral infections and useful for future challenges.
Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , HIV Infections/drug therapy , Hepatitis C, Chronic/drug therapy , Herpes Simplex/drug therapy , Influenza, Human/drug therapy , Phytochemicals/therapeutic use , Pneumonia, Viral/drug therapy , Antiviral Agents/chemistry , Antiviral Agents/classification , Antiviral Agents/isolation & purification , Betacoronavirus/drug effects , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Drug Discovery , HIV/drug effects , HIV/pathogenicity , HIV/physiology , HIV Infections/pathology , HIV Infections/virology , Hepacivirus/drug effects , Hepacivirus/pathogenicity , Hepacivirus/physiology , Hepatitis C, Chronic/pathology , Hepatitis C, Chronic/virology , Herpes Simplex/pathology , Herpes Simplex/virology , Humans , Influenza, Human/pathology , Influenza, Human/virology , Orthomyxoviridae/drug effects , Orthomyxoviridae/pathogenicity , Orthomyxoviridae/physiology , Pandemics , Phytochemicals/chemistry , Phytochemicals/classification , Phytochemicals/isolation & purification , Plants, Medicinal , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Simplexvirus/drug effects , Simplexvirus/pathogenicity , Simplexvirus/physiology , Virus Internalization/drug effects , Virus Replication/drug effectsABSTRACT
The COVID-19 is an acute and contagious disease characterized by pneumonia and ARDS. The disease is caused by SARS-CoV-2, which belongs to the family of Coronaviridae along with MERS-CoV and SARS-CoV-1. The virus has the positive-sense RNA as its genome encoding for ~26 proteins that work together for the virus survival, replication, and spread in the host. The virus gets transmitted through the contact of aerosol droplets from infected persons. The pathogenesis of COVID-19 is highly complex and involves suppression of host antiviral and innate immune response, induction of oxidative stress followed by hyper inflammation described as the "cytokine storm," causing the acute lung injury, tissue fibrosis, and pneumonia. Currently, several vaccines and drugs are being evaluated for their efficacy, safety, and for determination of doses for COVID-19 and this requires considerable time for their validation. Therefore, exploring the repurposing of natural compounds may provide alternatives against COVID-19. Several nutraceuticals have a proven ability of immune-boosting, antiviral, antioxidant, anti-inflammatory effects. These include Zn, vitamin D, vitamin C, curcumin, cinnamaldehyde, probiotics, selenium, lactoferrin, quercetin, etc. Grouping some of these phytonutrients in the right combination in the form of a food supplement may help to boost the immune system, prevent virus spread, preclude the disease progression to severe stage, and further suppress the hyper inflammation providing both prophylactic and therapeutic support against COVID-19.
Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/diet therapy , Coronavirus Infections/drug therapy , Drug Repositioning/methods , Phytochemicals/therapeutic use , Pneumonia, Viral/diet therapy , Pneumonia, Viral/drug therapy , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Betacoronavirus/drug effects , COVID-19 , Coronavirus Infections/pathology , Cytokine Release Syndrome/diet therapy , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/pathology , Cytokines/blood , Dietary Supplements , Humans , Inflammation/drug therapy , Oxidative Stress/physiology , Pandemics , Pneumonia, Viral/pathology , Probiotics/therapeutic use , SARS-CoV-2ABSTRACT
BACKGROUND: The aim of the present review is to provide basic knowledge regarding the treatment of Coronavirus via medicinal plants. Coronavirus (COVID-19, SARS-CoV, and MERS-CoV) as a viral pneumonia causative agent, has infected thousands of people in China and worldwide. Currently, there is no specific medicine or vaccine available that can treat or prevent this virus and this has posed a severe threat to human health; therefore, there is an urgent need to develop a novel drug or anticoronavirus vaccine. However, natural compounds to treat coronaviruses are the most effective alternative and complementary therapies due to their diverse range of biological and therapeutic properties. METHODS: We performed an open-ended, English restricted search of Scopus database, Web of Science, and Pubmed for all available literature from Jan-March, 2020, using terms related to phytochemical compounds, medicinal plants and coronavirus. RESULTS: The view on anti-coronavirus (anti-CoV) activity in the plant-derived phytochemicals and medicinal plants gives a strong base to develop a novel treatment employing these compounds for coronavirus. Various phytochemicals and medicinal plant extracts have been revised and are considered as potential anti-CoV agents for effective control of the virus and future drug development. Herein, we discuss some important plants (Scutellaria baicalensis, Psorothamnus arborescens, Glycyrrhiza radix, Glycyrrhiza uralensis, Lycoris radiate, Phyllanthus emblica, Camellia sinensis, Hyptis atrorubens Poit, Fraxinus sieboldiana, Erigeron breviscapus, Citri Reticulatae Pericarpium, Amaranthus tricolor, Phaseolus vulgaris, Rheum palmatum, Curcuma longa and Myrica cerifera) that have emerged to have broad-spectrum antiviral activity. CONCLUSION: Nigella sativa has potent anti-SARS-CoV activity and it might be a useful source for developing novel antiviral therapies for coronavirus.
Subject(s)
COVID-19 Drug Treatment , Middle East Respiratory Syndrome Coronavirus/drug effects , Phytochemicals/therapeutic use , Plants, Medicinal , SARS-CoV-2/drug effects , Severe acute respiratory syndrome-related coronavirus/drug effects , Alkaloids/isolation & purification , Alkaloids/pharmacology , Alkaloids/therapeutic use , Animals , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/epidemiology , COVID-19/immunology , Curcuma , Humans , Middle East Respiratory Syndrome Coronavirus/immunology , Nigella sativa , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/immunology , Scutellaria baicalensisABSTRACT
The exponential spread of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emphasizes the immediate need for effective antiviral drugs and vaccines that could control and prevent the spread of this pandemic. Several new and repurposed drugs are being tested for their effectiveness in the treatment regime, and the development of vaccines is underway. The availability of genome sequence information of the virus and the identification of potential targets to neutralize and eradicate the infection have enabled the search for novel as well as existing molecules to perform the desired function. However, the application of plants in the development of potential biomolecules, such as antibiotics and vaccines, is limited. Traditional medicines involving plant-based formulations have proven successful in boosting immunity and providing tolerance to virus infections. Still, in-depth studies are not available to explore the bioactive compounds of plant origin and their mechanism of action. Given this, the current opinion article conveys our thoughts and perspectives on the promising usage of plant-based biomolecules in circumventing SARS-CoV-2, and how these molecules can work synergistically with other potential drugs for treating SARS-CoV-2.