Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Molecules ; 27(18)2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-2043868

ABSTRACT

Traditionally, Brassica species are widely used in traditional medicine, human food, and animal feed. Recently, special attention has been dedicated to Brassica seeds as source of health-promoting phytochemicals. This review provides a summary of recent research on the Brassica seed phytochemistry, bioactivity, dietary importance, and toxicity by screening the major online scientific database sources and papers published in recent decades by Elsevier, Springer, and John Wiley. The search was conducted covering the period from January 1964 to July 2022. Phytochemically, polyphenols, glucosinolates, and their degradation products were the predominant secondary metabolites in seeds. Different extracts and their purified constituents from seeds of Brassica species have been found to possess a wide range of biological properties including antioxidant, anticancer, antimicrobial, anti-inflammatory, antidiabetic, and neuroprotective activities. These valuable functional properties of Brassica seeds are related to their richness in active compounds responsible for the prevention and treatment of various chronic diseases such as obesity, diabetes, cancer, and COVID-19. Currently, the potential properties of Brassica seeds and their components are the main focus of research, but their toxicity and health risks must also be accounted for.


Subject(s)
Anti-Infective Agents , Brassica , COVID-19 , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Brassica/chemistry , Ethnopharmacology , Glucosinolates , Humans , Hypoglycemic Agents/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytotherapy , Plant Extracts/chemistry , Seeds
2.
Int J Environ Res Public Health ; 19(18)2022 Sep 19.
Article in English | MEDLINE | ID: covidwho-2043691

ABSTRACT

The current study investigated the impact of different doses of Nigella sativa seeds on the symptoms, the cluster of differentiation profile group, and inflammatory markers of mild COVID-19 cases. METHODS: The study was a double-blind placebo-controlled clinical trial. Patients with mild and asymptomatic SARS-CoV-2 infection patients were randomly subdivided into seven subgroups: Group (GP) 1: received charcoal capsules as a control group, and GP 2: received three capsules of whole Nigella sativa seeds daily, two capsules in the morning and one in the evening; GP 3: received three capsules of whole Nigella sativa seeds every 12 h, GP 4: received five capsules in the morning and four capsules of whole Nigella sativa seeds in the evening, GP 5: received one capsule of Nigella sativa powder every 12 h; GP 6: received two capsules of Nigella sativa powder every 12 h; GP 7: received three capsules of Nigella sativa powder every 12 h; all treatment course was for ten days. Inflammatory parameters were assessed before and after interventions. RESULTS: 262 subjects were included in the final analysis. No significant difference was detected regarding age, gender, and nationality. No significant differences were detected between the inflammatory marker in all groups. The WBCs showed a significant difference between before and after the intervention. While for procalcitonin, a significant difference was demonstrated in groups 1,4, and 6. CONCLUSIONS: The current randomized clinical trial did not reveal a significant effect of ten days of treatment with various doses of Nigella sativa on symptoms, differentiation profile, and inflammatory markers of patients with COVID-19. As a natural product, the effect of Nigella sativa on disease requires weeks to manifest itself.


Subject(s)
Biological Products , COVID-19 , Nigella sativa , COVID-19/drug therapy , Charcoal , Double-Blind Method , Humans , Phytotherapy , Powders , Procalcitonin , SARS-CoV-2 , Seeds
4.
Molecules ; 27(16)2022 Aug 11.
Article in English | MEDLINE | ID: covidwho-2023934

ABSTRACT

The flora of Kazakhstan is characterized by its wide variety of different types of medicinal plants, many of which can be used on an industrial scale. The Traditional Kazakh Medicine (TKM) was developed during centuries based on the six elements of ancient Kazakh theory, associating different fields such as pharmacology, anatomy, pathology, immunology and food nursing as well as disease prevention. The endemic Artemisia L. species are potential sources of unique and new natural products and new chemical structures, displaying diverse bioactivities and leading to the development of safe and effective phytomedicines against prevailing diseases in Kazakhstan and the Central Asia region. This review provides an overview of Artemisia species from Central Asia, particularly traditional uses in folk medicine and the recent numerous phytochemical and pharmacological studies. The review is done by the methods of literature searches in well-known scientific websites (Scifinder and Pubmed) and data collection in university libraries. Furthermore, our aim is to search for promising and potentially active Artemisia species candidates, encouraging us to analyze Protein Tyrosine Phosphatase 1B (PTP1B), α-glucosidase and bacterial neuraminidase (BNA) inhibition as well as the antioxidant potentials of Artemisia plant extracts, in which endemic species have not been explored for their secondary metabolites and biological activities so far. The main result of the study was that, for the first time, the species Artemisia scopiformis Ledeb. Artemisia albicerata Krasch., Artemisia transiliensis Poljakov, Artemisia schrenkiana Ledeb., Artemisia nitrosa Weber and Artemisia albida Willd. ex Ledeb. due to their special metabolites, showed a high potential for α-glucosidase, PTP1B and BNA inhibition, which is associated with diabetes, obesity and bacterial infections. In addition, we revealed that the methanol extracts of Artemisia were a potent source of polyphenolic compounds. The total polyphenolic contents of Artemisia extracts were correlated with antioxidant potential and varied according to plant origin, the solvent of extraction and the analytical method used. Consequently, oxidative stress caused by reactive oxygen species (ROS) may be managed by the dietary intake of current Artemisia species. The antioxidant potentials of the species A. schrenkiana, A. scopaeformis, A. transiliensis and Artemisia scoparia Waldst. & Kitam. were also promising. In conclusion, the examination of details between different Artemisia species in our research has shown that plant materials are good as an antioxidant and eznyme inhibitory functional natural source.


Subject(s)
Artemisia , Antioxidants/pharmacology , Artemisia/chemistry , Ethnopharmacology , Humans , Phytochemicals/chemistry , Phytotherapy , Plant Extracts/chemistry , alpha-Glucosidases
5.
Int J Med Mushrooms ; 24(10): 1-14, 2022.
Article in English | MEDLINE | ID: covidwho-2022176

ABSTRACT

COVID-19 infection has been a key threat to the public health system globally, with an estimated 248 million cases worldwide. COVID-19 patients are subject to a higher risk of developing chronic respiratory disorders that are closely associated with long-term disability, multi-morbidity, and premature mortality. Although there have been recent advancements in respiratory treatment regimens, there has also been increased interest in the use of medicinal mushrooms in bridging the unaddressed pathways of action within the treatment algorithms. In this review, we provide a collection of medicinal mushrooms that are beneficial in promoting respiratory health and potentially reducing COVID-19 symptoms in patients who are newly diagnosed and those who have recovered. While reviewing the use of immunomodulatory pathways, which have shown promising results in tackling side effects and post-COVID syndromes, we also provide insights into how the antioxidant elements present in medicinal mushrooms help to achieve the same results, especially in the prophylactic and therapeutic management of COVID-19 infection. To date, medicinal mushrooms are regarded as a functional food, which, however, need further quality, safety, and efficacy assessments. These requirements are also highlighted in the present review to promote the future development and application of medicinal mushrooms for better respiratory health.


Subject(s)
Agaricales , COVID-19 , Phytotherapy , Humans , COVID-19/drug therapy , COVID-19/epidemiology , Pandemics
6.
Mar Drugs ; 19(8)2021 Jul 30.
Article in English | MEDLINE | ID: covidwho-1375432

ABSTRACT

Carrageenan and carrageenan oligosaccharides are red seaweed sulfated carbohydrates with well-known antiviral properties, mainly through the blocking of the viral attachment stage. They also exhibit other interesting biological properties and can be used to prepare different drug delivery systems for controlled administration. The most active forms are λ-, ι-, and κ-carrageenans, the degree and sulfation position being determined in their properties. They can be obtained from sustainable worldwide available resources and the influence of manufacturing on composition, structure, and antiviral properties should be considered. This review presents a survey of the antiviral properties of carrageenan in relation to the processing conditions, particularly those assisted by intensification technologies during the extraction stage, and discusses the possibility of further chemical modifications.


Subject(s)
Antiviral Agents/chemistry , Carrageenan/chemistry , Seaweed , Antiviral Agents/pharmacology , Aquatic Organisms , Carrageenan/pharmacology , Humans , Phytotherapy
7.
Int J Environ Res Public Health ; 19(15)2022 07 22.
Article in English | MEDLINE | ID: covidwho-1957290

ABSTRACT

Despite some preliminary studies of the available herbal medicine preparations and their curative effects on COVID-19, experts still fear that unproper use of such homemade medicines could do more harm than good to people relying on unproven alternatives of questionable efficacy. The main purpose of this study was to evaluate the safety of herbal medicines used for respiratory system disorders in the Pasvalys district during the COVID-19 pandemic in Lithuania. An archival source was also studied, looking for possible recipes for the treatment and prevention of respiratory diseases in Lithuanian traditional medicine, emphasizing the safety guidelines. The survey was conducted using the deep interview method. The respondents mentioned 60 species of medicinal plants from 29 different families used for the treatment and prevention of respiratory system disorders (for cough mostly, 51.70% of all indications). Twenty eight out of 60 plant species were not included in the European Medicines Agency monographs and only 50% of all included species were used as indicated by the European Medicines Agency for respiratory system disorders. The trends in the ethnopharmacological choices of modern consumers and the analysis of archival sources can be a great source of ideas for new herbal-based pharmaceutical preparations for COVID-19 symptoms in Lithuania considering the safety recommendations.


Subject(s)
COVID-19 , Plants, Medicinal , Respiratory Tract Diseases , COVID-19/drug therapy , COVID-19/epidemiology , Herbal Medicine , Humans , Lithuania/epidemiology , Pandemics , Pharmaceutical Preparations , Phytotherapy , Plant Preparations/therapeutic use , Respiratory System , Respiratory Tract Diseases/drug therapy , Respiratory Tract Diseases/epidemiology
8.
Infect Disord Drug Targets ; 22(5): 22-30, 2022.
Article in English | MEDLINE | ID: covidwho-1951886

ABSTRACT

BACKGROUND: Flavonoid class phytochemicals are natural compounds present in different medicinal plants, vegetables and fruits. Ginkgo biloba contains significant amounts of bioflavonoid 'bilobetin'. Bilobetin is an active phytochemical used for the treatment of human health complications due to its medicinal properties and therapeutic benefit. The purpose of this work is to collect and reviewed scientific data on bilobetin from different literature sources; highlight their biological properties, pharmacological activities and analytical aspects. METHODS: Health beneficial aspects of bilobetin have been investigated in the present work through scientific data analysis. PubMed, Google Scholar, Google, Scopus, etc. have been searched in the present work in order to collect scientific information on bilobetin. Medicinal importance and therapeutic benefit of bilobetin has been searched in the present work through these databases of bilobetin. Detailed pharmacological activities of bilobetin have been reviewed in the present work through literature data analysis of various scientific research works. However, analytical data of bilobetin were also collected and reviewed in the present reaserch. RESULTS: Literature data analysis of bilobetin in the present work revealed the medicinal properties and therapeutic potential of bilobetin mainly due to its anti-fungal, anti-inflammatory, anti-oxidant, antihyperlipidemic, and anti-proliferative activities. Literature data analysis revealed the effectiveness of bilobetin on osteoporosis, glucose metabolism, adipocytes, SARS CoV-2, Influenza A virus and human thrombin. Scientific data also revealed the importance of different analytical techniques for the isolation, separation, identification, and quantification of bilobetin. CONCLUSION: Scientific data analysis revealed biological importance and pharmacological activities of bilobetin in the health sector.


Subject(s)
Biflavonoids , COVID-19 , Plants, Medicinal , Anti-Inflammatory Agents , Antioxidants/pharmacology , Antioxidants/therapeutic use , Biflavonoids/pharmacology , Flavonoids/pharmacology , Flavonoids/therapeutic use , Humans , Phytochemicals/pharmacology , Phytotherapy , Plant Extracts/pharmacology , Plants, Medicinal/chemistry
9.
Phytother Res ; 35(11): 6148-6169, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1935724

ABSTRACT

Uncontrolled inflammatory responses or cytokine storm associated with viral infections results in deleterious consequences such as vascular leakage, severe hemorrhage, shock, immune paralysis, multi-organ failure, and even death. With the emerging new viral infections and lack of effective prophylactic vaccines, evidence-based complementary strategies that limit viral infection-mediated hyperinflammatory responses could be a promising approach to limit host tissue injury. The present review emphasizes the potentials of antiinflammatory phytochemicals in limiting hyperinflammatory injury caused by viral infections. The predominant phytochemicals along with their mechanism in limiting hyperimmune and pro-inflammatory responses under viral infection have been reviewed comprehensively. How certain phytochemicals can be effective in limiting hyper-inflammatory response indirectly by favorably modulating gut microbiota and maintaining a functional intestinal barrier has also been presented. Finally, we have discussed improved systemic bioavailability of phytochemicals, efficient delivery strategies, and safety measures for effective antiinflammatory phytotherapies, in addition to emphasizing the requirement of tightly controlled clinical studies to establish the antiinflammatory efficacy of the phytochemicals. Collectively, the review provides a scooping overview on the potentials of bioactive phytochemicals to mitigate pro-inflammatory injury associated with viral infections.


Subject(s)
Phytochemicals , Virus Diseases , Anti-Inflammatory Agents/pharmacology , Humans , Intestines , Phytochemicals/pharmacology , Phytotherapy , Virus Diseases/drug therapy , Virus Diseases/prevention & control
10.
Molecules ; 27(14)2022 Jul 08.
Article in English | MEDLINE | ID: covidwho-1928613

ABSTRACT

Medicinal plants have considerable potential as antimicrobial agents due to the presence of secondary metabolites. This comprehensive overview aims to summarize the classification, morphology, and ethnobotanical uses of Euphorbia neriifolia L. and its derived phytochemicals with the recent updates on the pharmacological properties against emerging infectious diseases, mainly focusing on bacterial, viral, fungal, and parasitic infections. The data were collected from electronic databases, including Google Scholar, PubMed, Semantic Scholar, ScienceDirect, and SpringerLink by utilizing several keywords like 'Euphorbia neriifolia', 'phytoconstituents', 'traditional uses', 'ethnopharmacological uses', 'infectious diseases', 'molecular mechanisms', 'COVID-19', 'bacterial infection', 'viral infection', etc. The results related to the antimicrobial actions of these plant extracts and their derived phytochemicals were carefully reviewed and summarized. Euphol, monohydroxy triterpene, nerifoliol, taraxerol, ß-amyrin, glut-5-(10)-en-1-one, neriifolione, and cycloartenol are the leading secondary metabolites reported in phytochemical investigations. These chemicals have been shown to possess a wide spectrum of biological functions. Different extracts of E. neriifolia exerted antimicrobial activities against various pathogens to different extents. Moreover, major phytoconstituents present in this plant, such as quercetin, rutin, friedelin, taraxerol, epitaraxerol, taraxeryl acetate, 3ß-friedelanol, 3ß-acetoxy friedelane, 3ß-simiarenol, afzelin, 24-methylene cycloarenol, ingenol triacetate, and ß-amyrin, showed significant antimicrobial activities against various pathogens that are responsible for emerging infectious diseases. This plant and the phytoconstituents, such as flavonoids, monoterpenoids, diterpenoids, triterpenoids, and alkaloids, have been found to have significant antimicrobial properties. The current evidence suggests that they might be used as leads in the development of more effective drugs to treat emerging infectious diseases, including the 2019 coronavirus disease (COVID-19).


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Euphorbia , COVID-19/drug therapy , Communicable Diseases, Emerging/drug therapy , Ethnobotany , Ethnopharmacology , Humans , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytotherapy , Plant Extracts/pharmacology
11.
Stud Health Technol Inform ; 295: 366-369, 2022 Jun 29.
Article in English | MEDLINE | ID: covidwho-1924038

ABSTRACT

In this study, we addressed the alternative medications that have been targeted in the clinical trials (CTs) to be evidenced as an adjuvant treatment against COVID-19. Based on the outcomes from CTs, we found that dietary supplements such as Lactoferrin, and Probiotics (as SivoMixx) can play a role enhancing the immunity thus can be used as prophylactics against COVID-19 infection. Vitamin D was proven as an effective adjuvant treatment against COVID-19, while Vitamin C role is uncertain and needs more investigation. Herbals such as Guduchi Ghan Vati can be used as prophylactic, while Resveratrol can be used to reduce the hospitalization risk of COVID-19 patients. On the contrary, there were no clinical improvements demonstrated when using Cannabidiol. This study is a part of a two-phase research study. In the first phase, we gathered evidence-based information on alternative therapeutics for COVID-19 that are under CT. In the second phase, we plan to build a mobile health application that will provide evidence based alternative therapy information to health consumers.


Subject(s)
COVID-19 , Complementary Therapies , Ascorbic Acid , COVID-19/drug therapy , Clinical Trials as Topic , Dietary Supplements , Humans , Phytotherapy , Resveratrol/therapeutic use , SARS-CoV-2 , Vitamin D/therapeutic use
13.
Cells ; 11(12)2022 06 11.
Article in English | MEDLINE | ID: covidwho-1887166

ABSTRACT

COVID-19 infection causes complications, even in people who have had a mild course of the disease. The most dangerous seem to be neurological ailments: anxiety, depression, mixed anxiety-depressive (MAD) syndromes, and irreversible dementia. These conditions can negatively affect the respiratory system, circulatory system, and heart functioning. We believe that phytotherapy can be helpful in all of these conditions. Clinical trials confirm this possibility. The work presents plant materials (Valeriana officinalis, Melissa officinalis, Passiflora incarnata, Piper methysticum, Humulus lupulus, Ballota nigra, Hypericum perforatum, Rhodiola rosea, Lavandula officinalis, Paullinia cupana, Ginkgo biloba, Murraya koenigii, Crataegus monogyna and oxyacantha, Hedera helix, Polygala senega, Pelargonium sidoides, Lichen islandicus, Plantago lanceolata) and their dominant compounds (valeranon, valtrate, apigenin, citronellal, isovitexin, isoorientin, methysticin, humulone, farnesene, acteoside, hypericin, hyperforin, biapigenin, rosavidin, salidroside, linalool acetate, linalool, caffeine, ginkgolide, bilobalide, mihanimbine, epicatechin, hederacoside C,α-hederine, presegenin, umckalin, 6,7,8-trixydroxybenzopyranone disulfate, fumaroprotocetric acid, protolichesteric acid, aucubin, acteoside) responsible for their activity. It also shows the possibility of reducing post-COVID-19 neurological, respiratory, and cardiovascular complications, which can affect the functioning of the nervous system.


Subject(s)
COVID-19 , Cardiovascular System , Hypericum , Plants, Medicinal , COVID-19/complications , COVID-19/drug therapy , Humans , Phytotherapy , Plants, Medicinal/chemistry
14.
Arch Pharm (Weinheim) ; 355(10): e2200188, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1877557

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is linked with inflammatory disorders and the development of oxidative stress in extreme cases. Therefore, anti-inflammatory and antioxidant drugs may alleviate these complications. Ginkgo biloba L. folium extract (EGb) is a herbal medicine containing various active constituents. This review aims to provide a critical discussion on the potential role of EGb in the management of coronavirus disease 2019 (COVID-19). The antiviral effect of EGb is mediated by different mechanisms, including blocking SARS-CoV-2 3-chymotrypsin-like protease that provides trans-variant effectiveness. Moreover, EGb impedes the development of pulmonary inflammatory disorders through the diminution of neutrophil elastase activity, the release of proinflammatory cytokines, platelet aggregation, and thrombosis. Thus, EGb can attenuate the acute lung injury and acute respiratory distress syndrome in COVID-19. In conclusion, EGb offers the potential of being used as adjuvant antiviral and symptomatic therapy. Nanosystems enabling targeted delivery, personalization, and booster of effects provide the opportunity for the use of EGb in modern phytotherapy.


Subject(s)
COVID-19 , Ginkgo biloba , Antioxidants/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Chymases , Cytokines , Humans , Leukocyte Elastase , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , SARS-CoV-2 , Structure-Activity Relationship
15.
Int J Environ Res Public Health ; 19(7)2022 03 29.
Article in English | MEDLINE | ID: covidwho-1841370

ABSTRACT

The documentation of ethnopharmaceutical knowledge has always been important for the preservation of countries' cultural, social, and economic identity. The COVID-19 pandemic with the collapse of healthcare, which has left the individual health to self-care, has also forced us to look back at ethnopharmacology from a practical point of view. This is the first study in Lithuania, dedicated entirely to ethnopharmaceuticals used for skin diseases and cosmetics, and the first study to analyse ethnopharmacology as a Lithuanian phenomenon during the ongoing COVID-19 pandemic. The main purpose of this study was to collect and evaluate ethnopharmaceutical knowledge regarding skin diseases and cosmetics in Siauliai District, Lithuania during the COVID-19 pandemic from July 2020 to October 2021. This study surveyed 50 respondents; the survey was conducted using the deep interview method. The respondents mentioned 67 species of medicinal plants from 37 different families used for skin diseases (64.18%), cosmetics (13.44%) and cosmeceuticals (22.38%). Of the 67 plant species, 43 (64%) were not included in the European Medicines Agency monographs and only 14 species (21%) of all included species were used with European Medicines Agency approved medical indications for skin diseases. In terms of public health, the safety of "self-treatment" and recovery rituals for skin diseases are no less important than ethnopharmacological knowledge and its application, this being especially relevant during the COVID-19 pandemic.


Subject(s)
COVID-19 , Cosmetics , Skin Diseases , COVID-19/drug therapy , COVID-19/epidemiology , Cosmetics/therapeutic use , Ethnopharmacology , Health Knowledge, Attitudes, Practice , Humans , Lithuania/epidemiology , Pandemics , Phytotherapy , Skin Diseases/drug therapy , Skin Diseases/epidemiology
16.
Biomed Pharmacother ; 150: 113041, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1821148

ABSTRACT

BACKGROUND: Lung diseases including chronic obstructive pulmonary disease (COPD), infections like influenza, acute respiratory distress syndrome (ARDS), asthma and pneumonia lung cancer (LC) are common causes of sickness and death worldwide due to their remoteness, cold and harsh climatic conditions, and inaccessible health care facilities. PURPOSE: Many drugs have already been proposed for the treatment of lung diseases. Few of them are in clinical trials and have the potential to cure infectious diseases. Plant extracts or herbal products have been extensively used as Traditional Chinese Medicine (TCM) and Indian Ayurveda. Moreover, it has been involved in the inhibition of certain genes/protiens effects to promote regulation of signaling pathways. Natural remedies have been scientifically proven with remarkable bioactivities and are considered a cheap and safe source for lung disease. METHODS: This comprehensive review highlighted the literature about traditional plants and their metabolites with their applications for the treatment of lung diseases through experimental models in humans. Natural drugs information and mode of mechanism have been studied through the literature retrieved by Google Scholar, ScienceDirect, SciFinder, Scopus and Medline PubMed resources against lung diseases. RESULTS: In vitro, in vivo and computational studies have been explained for natural metabolites derived from plants (like flavonoids, alkaloids, and terpenoids) against different types of lung diseases. Probiotics have also been biologically active therapeutics against cancer, anti-inflammation, antiplatelet, antiviral, and antioxidants associated with lung diseases. CONCLUSION: The results of the mentioned natural metabolites repurposed for different lung diseases especially for SARS-CoV-2 should be evaluated more by advance computational applications, experimental models in the biological system, also need to be validated by clinical trials so that we may be able to retrieve potential drugs for most challenging lung diseases especially SARS-CoV-2.


Subject(s)
COVID-19 , Lung Diseases , COVID-19/drug therapy , Dietary Supplements , Humans , Lung Diseases/drug therapy , Medicine, Chinese Traditional , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytotherapy , Plant Extracts/pharmacology , SARS-CoV-2
17.
Phytomedicine ; 102: 154136, 2022 Jul 20.
Article in English | MEDLINE | ID: covidwho-1804982

ABSTRACT

BACKGROUND: As coronavirus disease 2019 (COVID-19) continues to spread throughout countries, researchers and scientific groups have published a large number of scientific papers examining effective treatments and prevention strategies for COVID-19, including herbal medicine. It has become difficult to navigate the increasing volume of scientific material on the pandemic, and critical appraisal of these outcomes is needed. This overview of systematic reviews (SRs) aims to synthesize evidence from SRs and summarize the effects of herbal medicine interventions in the treatment of COVID-19. METHODS: Four databases were searched from inception up to October 20, 2021. SRs analyzing primary studies of the efficacy of herbal medications for treating COVID-19 were included. Two reviewers selected the studies and retrieved the data independently. The AMSTAR 2 (A Measurement Tool to Assess Systematic Reviews) was used to assess the methodological quality of the included SRs. RESULTS: A total of 21 SRs on herbal medicine treatments for COVID-19 were included. All SRs were published between May 2020 and September 2021. Thirteen of the SRs included only randomized controlled trials (RCTs), whereas the remaining eight included evidence from nonrandomized trials in addition to RCTs, with a significant overlap identified across the RCTs. Twelve SRs concluded that existing evidence was insufficient to form a definite judgment, nine found that herbal therapy was useful, and none indicated that herbal medicine had no benefit. The AMSTAR 2 tool revealed that the methodological quality of the included SRs was generally low. CONCLUSION: In this overview of SRs, we reviewed herbal medicine-related evidence from 21 SRs that were published after the outbreak of COVID-19. This study shows that while there is considerable evidence demonstrating the advantages of herbal medicine interventions, the quality of the evidence is inadequate to provide solid and accurate judgments about the effectiveness of herbal medicine therapies for COVID-19. Despite the crisis caused by the pandemic, clinical studies and SRs should comply with established methodological standards.


Subject(s)
COVID-19 , COVID-19/drug therapy , Herbal Medicine , Humans , Pandemics , Phytotherapy , Systematic Reviews as Topic
18.
19.
Drug Metab Bioanal Lett ; 15(1): 2-11, 2022.
Article in English | MEDLINE | ID: covidwho-1775549

ABSTRACT

BACKGROUND: Herbal products are derived from different natural sources, mainly used as a source of food material and medicine in the health sectors since ancient times. Herbal products have gained popularity in modern medicine due to their beneficial health properties and pharmacological activities. Flavonoids are an important class of secondary metabolites found to be present in medicinal plants and their derived products. Flavonoids have been known for their anti-allergic, anti-bacterial, anti-diabetic, anti-inflammatory, anti-viral, anti-proliferative, anti-mutagenic, antithrombotic, anti-carcinogenic, anti-oxidant and hepatoprotective activities in the medicine. Nicotiflorin is a flavonoidal class phytochemical, found in medicinal plants, including Traditional Chinese medicine. METHODS: Scientific data on the medicinal importance and pharmacological activities of nicotiflorin have been collected and analyzed in the present work in order to know the therapeutic importance of nicotiflorin in medicine. Scientific data have been collected from Google, Google Scholar, Science Direct, PubMed and Scopus and analyzed in the present work. Analytical techniques data of separation, isolation and identification of nicotiflorin have also been collected and presented in the current work. Further biological importance of flavonoidal class phytochemicals was also discussed in the present work to understand the biological importance of nicotiflorin in medicine as it belongs to the flavonoid class. RESULTS: Scientific data analysis revealed the therapeutic importance and pharmacological activities of nicotiflorin. Nicotiflorin has significant biological potential against coronavirus, ischemia, renal impairment, hepatic complication, memory dysfunction and myocardial infarction. The biological potential of nicotiflorin against α-glucosidase and α-amylase enzymes, multiple myeloma cells and insulin secretion has also been discussed in the present work. Analytical data revealed the significance of modern analytical tools in medicine for the isolation, separation and quantification of nicotiflorin. CONCLUSION: Scientific data analysis of different research works revealed the biological importance and therapeutic potential of nicotiflorin in medicine.


Subject(s)
Cardiac Glycosides , Plants, Medicinal , Flavonoids/pharmacology , Glycosides/pharmacology , Phytochemicals/pharmacology , Phytotherapy , Plants, Medicinal/chemistry
20.
Genet Res (Camb) ; 2021: 9952620, 2021.
Article in English | MEDLINE | ID: covidwho-1775004

ABSTRACT

Purpose: Herbal medicine is one of crucial symbols of Chinese national medicine. Investigation on molecular responses of different herbal strategies against viral myocarditis is immeasurably conducive to targeting drug development in the current international absence of miracle treatment. Methods: Literature retrieval platforms were applied in the collection of existing empirical evidences for viral myocarditis-related single-herbal strategies. SwissTargetPrediction, Metascape, and Discovery Studio coordinating with multidatabases investigated underlying target genes, interactive proteins, and docking molecules in turn. Results: Six single-herbal medicines consisting of Huangqi (Hedysarum Multijugum Maxim), Yuganzi (Phyllanthi Fructus), Kushen (Sophorae Flavescentis Radix), Jianghuang (Curcumaelongae Rhizoma), Chaihu (Radix Bupleuri), and Jixueteng (Spatholobus Suberectus Dunn) meet the requirement. There were 11 overlapped and 73 unique natural components detected in these herbs. SLC6A2, SLC6A4, NOS2, PPARA, PPARG, ACHE, CYP2C19, CYP51A1, and CHRM2 were equally targeted by six herbs and identified as viral myocarditis-associated symbols. MCODE algorithm exposed the hub role of SRC and EGFR in strategies without Jianghuang. Subsequently, we learned intermolecular interactions of herbal components and their targeting heart-tissue-specific CHRM2, FABP3, TNNC1, TNNI3, TNNT2, and SCN5A and cardiac-myocytes-specific IL6, MMP1, and PLAT coupled with viral myocarditis. Ten interactive characteristics such as π-alkyl and van der Waals were modeled in which ARG111, LYS253, ILE114, and VAL11 on cardiac troponin (TNNC1-TNNI3-TNNT2) and ARG208, ASN106, and ALA258 on MMP1 fulfilled potential communicating anchor with ellagic acid, 5α, 9α-dihydroxymatrine, and leachianone g via hydrogen bond and hydrophobic interaction, respectively. Conclusions: The comprehensive outcomes uncover differences and linkages between six herbs against viral myocarditis through component and target analysis, fostering development of drugs.


Subject(s)
Cardiovascular Infections , Drugs, Chinese Herbal , Myocarditis , Plants, Medicinal , Virus Diseases , Drugs, Chinese Herbal/therapeutic use , Humans , Myocarditis/drug therapy , Phytotherapy , Serotonin Plasma Membrane Transport Proteins , Virus Diseases/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL