Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
Add filters

Document Type
Year range
1.
J Evid Based Integr Med ; 27: 2515690X211053641, 2022.
Article in English | MEDLINE | ID: covidwho-1608003

ABSTRACT

The coronavirus disease-2019 (COVID-19) pandemic started in early 2020 with the outbreak of a highly pathogenic human coronavirus. The world is facing a challenge and there is a pressing need for efficient drugs. Plants and natural compounds are a proven rich resource for new drug discovery. Considering the potential of natural products to manage the pandemic, this article was designed to provide an inclusive map of the stages and pathogenetic mechanisms for effective natural products on COVID-19. New drug discovery for the COVID-19 pandemic can encompass both prevention and disease management strategies. Preventive mechanisms that may be considered include boosting the immune response and hand hygiene in the preexposure phase; and blocking of virus binding and entry in the postexposure phase. Potential therapeutic target mechanisms include virus-directed therapies and host-directed therapies. Several medicinal plants and natural products, such as Withania somnifera (L.) Dunal and propolis for prevention; Tanacetum parthenium (L.) for treatment; and Ammoides verticillata (Desf.) Briq and Nigella sativa L. for both prevention and treatment have been found effective and are good targets for future research. The examples of phytochemical compounds that may be effective include aloin and terpenes as anti-septics; isothymol, dithymoquinone, and glycyrrhizin as inhibitors of virus binding and entry; glycyrrhizin, and berberine as replication suppressants; ginsenoside Rg1 and parthenolide as immunomodulators; and eriocitrin, rhoifolin, hesperidin, naringin, rutin, and veronicastroside as anti-complements. Recognizing different mechanisms of fighting against this virus can lead to a more systematic approach in finding natural products and medicinal plants for COVID-19 prevention and treatment.


Subject(s)
COVID-19 , Plants, Medicinal , Humans , Pandemics , Phytotherapy , SARS-CoV-2
2.
Appl Biochem Biotechnol ; 194(1): 291-301, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1605778

ABSTRACT

Corona virus pandemic outbreak also known as COVID-19 has created an imbalance in this world. Scientists have adopted the use of natural or alternative medicines which are consumed mostly as dietary supplements to boost the immune system as herbal remedies. India is famous for traditional medicinal formulations which includes 'Trikadu'-a combination of three acrids, namely Zingiber officinale, Piper nigrum and Piper longum which have antioxidant properties that boost our immune system hence acting as a strong preventive measure. In this study, AutoDock 4.0 was used to study interaction between the phytocompounds of Trikadu with RNA-dependent polymerase protein and enveloped protein of the SARS-CoV-2 virus. Analysis of the results showed that coumarin, coumaperine and bisdemethoxycurcumin showed strong bonding interactions with both the proteins. We can conclude that Trikadu has the potential molecules; hence, it can be incorporated in the diet to boost the immune system as a preventive measure against the virus.


Subject(s)
COVID-19/drug therapy , COVID-19/immunology , Phytotherapy , Plant Preparations/therapeutic use , SARS-CoV-2 , Antioxidants/isolation & purification , Antioxidants/therapeutic use , COVID-19/virology , Computer Simulation , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/drug effects , Dietary Supplements , Ginger/chemistry , Humans , Immune System/drug effects , India , Ligands , Medicine, Traditional , Molecular Docking Simulation , Phytochemicals/chemistry , Phytochemicals/therapeutic use , Piper/chemistry , Piper nigrum/chemistry , Plant Preparations/isolation & purification , Plants, Medicinal/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/drug effects
3.
Am J Chin Med ; 49(8): 1965-1999, 2021.
Article in English | MEDLINE | ID: covidwho-1599109

ABSTRACT

Pulmonary fibrosis (PF) is a chronic and irreversible interstitial lung disease that even threatens the lives of some patients infected with COVID-19. PF is a multicellular pathological process, including the initial injuries of epithelial cells, recruitment of inflammatory cells, epithelial-mesenchymal transition, activation and differentiation of fibroblasts, etc. TGF-[Formula: see text]1 acts as a key effect factor that participates in these cellular processes of PF. Recently, much attention was paid to inhibiting TGF-[Formula: see text]1 mediated cell processes in the treatment of PF with Chinese herbal medicines (CHM), an important part of traditional Chinese medicine. Here, this review first summarized the effects of TGF-[Formula: see text]1 in different cellular processes of PF. Then, this review summarized the recent research on CHM (compounds, multi-components, single medicines and prescriptions) to directly and/or indirectly inhibit TGF-[Formula: see text]1 signaling (TLRs, PPARs, micrRNA, etc.) in PF. Most of the research focused on CHM natural compounds, including but not limited to alkaloids, flavonoids, phenols and terpenes. After review, the research perspectives of CHM on TGF-[Formula: see text]1 inhibition in PF were further discussed. This review hopes that revealing the inhibiting effects of CHM on TGF-[Formula: see text]1-mediated cellular processes of PF can promote CHM to be better understood and utilized, thus transforming the therapeutic activities of CHM into practice.


Subject(s)
Cell Physiological Phenomena/drug effects , Drugs, Chinese Herbal/therapeutic use , Pulmonary Fibrosis/drug therapy , Signal Transduction/drug effects , Transforming Growth Factor beta1/antagonists & inhibitors , COVID-19/complications , COVID-19/metabolism , COVID-19/virology , Humans , Medicine, Chinese Traditional/methods , Phytotherapy/methods , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/metabolism , SARS-CoV-2/physiology , Transforming Growth Factor beta1/metabolism
4.
Front Immunol ; 12: 631233, 2021.
Article in English | MEDLINE | ID: covidwho-1575223

ABSTRACT

Coronavirus disease-19 caused by the novel RNA betacoronavirus SARS-CoV2 has first emerged in Wuhan, China in December 2019, and since then developed into a worldwide pandemic with >99 million people afflicted and >2.1 million fatal outcomes as of 24th January 2021. SARS-CoV2 targets the lower respiratory tract system leading to pneumonia with fever, cough, and dyspnea. Most patients develop only mild symptoms. However, a certain percentage develop severe symptoms with dyspnea, hypoxia, and lung involvement which can further progress to a critical stage where respiratory support due to respiratory failure is required. Most of the COVID-19 symptoms are related to hyperinflammation as seen in cytokine release syndrome and it is believed that fatalities are due to a COVID-19 related cytokine storm. Treatments with anti-inflammatory or anti-viral drugs are still in clinical trials or could not reduce mortality. This makes it necessary to develop novel anti-inflammatory therapies. Recently, the therapeutic potential of phytocannabinoids, the unique active compounds of the cannabis plant, has been discovered in the area of immunology. Phytocannabinoids are a group of terpenophenolic compounds which biological functions are conveyed by their interactions with the endocannabinoid system in humans. Here, we explore the anti-inflammatory function of cannabinoids in relation to inflammatory events that happen during severe COVID-19 disease, and how cannabinoids might help to prevent the progression from mild to severe disease.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19/therapy , Cannabinoids/therapeutic use , Cannabis/immunology , Cytokine Release Syndrome/therapy , Phytotherapy , SARS-CoV-2/physiology , Endocannabinoids/metabolism , Humans , Pandemics
5.
Sci Rep ; 11(1): 22169, 2021 11 12.
Article in English | MEDLINE | ID: covidwho-1514423

ABSTRACT

Folk medicine such as herbal and natural products have been used for centuries in every culture throughout the world. The Chenopodiaceae family with more than 1500 species is dispersed worldwide. The Iranian wild spinach (Blitum virgatum L.) is an important traditional medicinal plant used for antiviral diseases such as pneumonia and other respiratory track infections. This plant is a mountainous herb and is growing upper than 3000 m. We performed a mass selection plant breeding program on wild populations of this Iranian wild spinach during 2013-2020. Based on experimental and field characteristics this plant was identified as B. virgatum, |abbaricum|, and related characteristics were prepared with reference to the International Union for the Protection of New Varieties of Plants (UPOV). Mass selection program resulted from an adapted population named as medicinal spinach (MSP) population. To compare the mineral content of the mass-selected population with cultivated spinach (Spinacia oleracea L. |Varamin 88|), both plants were planted in pots and fields under similar conditions. In five leaves stage, plant samples were taken from both leaf and crown sections and used for experimental analysis. Atomic absorption spectroscopy was used to determine the mineral content including iron (Fe), zinc (Z), manganese (Mn), and copper (Cu). Our results showed the selected medicinal spinach population (MSP) with about 509 ppm iron was an important iron-rich population with about 3.5-4 times more than the amount of iron in cultivated spinach in the same conditions. Because iron is an important essential element for blood production, respiration process, energy metabolisms, synthesis of collagen, and some neurotransmitters are needed for proper immune function, so the supply of absorbable adequate iron is very important. The reasons such as the prevalence of the COVID-19 pandemic, which affects the amount of exchangeable oxygen in the lungs and historical local evidences of the use of this plant (MSP) for pneumonia, could open new horizons for focusing on studies related to the use of ancestral human experiences in addition to scientifically modern research.


Subject(s)
Iron/analysis , Plant Breeding , Plants, Medicinal/growth & development , Spinacia oleracea/growth & development , COVID-19/therapy , Copper/analysis , Humans , Iran , Manganese/analysis , Minerals/analysis , Phytotherapy , Plants, Medicinal/chemistry , Spinacia oleracea/chemistry , Zinc/analysis
6.
Curr Pharm Des ; 27(41): 4223-4231, 2021.
Article in English | MEDLINE | ID: covidwho-1502208

ABSTRACT

Coronavirus disease-2019 (COVID-19) is a respiratory tract infection accompanied by severe or fatal pneumonia-like symptoms and sometimes death. It has posed to be an ongoing global health emergency caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to a sudden outbreak and a large number of infections and deaths, it became a major concern all over the world. The options available as effective therapeutics should be urgently exercised to handle this pandemic. So far, no specific and accurate anti- SARS-CoV-2 treatment is recommended because of the absence of sufficient clinical evidence. In such cases, the clinical use of available drugs is always considered to be on top priority. A broad-spectrum antiviral agent, remdesivir, is found effective in many cases and recommended by many clinicians in many countries. This drug acts as a potential inhibitor of viral RNA-dependent RNA polymerase protein and thus likely to be efficacious in SARS-CoV-2 infection. Tocilizumab is currently recommended by many hospitals as an alternative treatment for critically ill COVID-19 patients. Tocilizumab has been administered to control cytokine storms that occur due to the release of proinflammatory cytokine, including interleukin 6. Chloroquine and hydroxychloroquine are also used in hospitals to handle severe COVID-19 patients. Currently, plasma therapy has been exercised as a therapeutic alternative, especially to handle severe COVID-19 patients. In addition, herbal medicines are expected to play a significant role in the control and prevention of COVID-19. All these therapeutic options have their advantages and limitations. This review highlights the therapeutic potential of these available drugs, along with their mechanism of action and shortcomings. We have provided detailed information on available therapeutic options, which have proved to be effective in improving clinical symptoms of severe COVID-19 patients.


Subject(s)
Antiviral Agents , COVID-19 , Antiviral Agents/therapeutic use , COVID-19/therapy , Cytokine Release Syndrome , Humans , Hydroxychloroquine , Immunization, Passive , Pandemics , Phytotherapy
7.
Molecules ; 26(20)2021 Oct 15.
Article in English | MEDLINE | ID: covidwho-1480885

ABSTRACT

In our in vitro and in vivo studies, we used Acalypha indica root methanolic extract (AIRME), and investigated their free radical scavenging/antioxidant and anti-inflammatory properties. Primarily, phytochemical analysis showed rich content of phenols (70.92 mg of gallic acid/g) and flavonoids (16.01 mg of rutin/g) in AIRME. We then performed HR-LC-MS and GC-MS analyses, and identified 101 and 14 phytochemical compounds, respectively. Among them, ramipril glucuronide (1.563%), antimycin A (1.324%), swietenine (1.134%), quinone (1.152%), oxprenolol (1.118%), choline (0.847%), bumetanide (0.847%) and fenofibrate (0.711%) are the predominant phytomolecules. Evidence from in vitro studies revealed that AIRME scavenges DPPH and hydroxyl radicals in a concentration dependent manner (10-50 µg/mL). Similarly, hydrogen peroxide and lipid peroxidation were also remarkably inhibited by AIRME as concentration increases (20-100 µg/mL). In vitro antioxidant activity of AIRME was comparable to ascorbic acid treatment. For in vivo studies, carrageenan (1%, sub-plantar) was injected to rats to induce localized inflammation. Acute inflammation was represented by paw-edema, and significantly elevated (p < 0.05) WBC, platelets and C-reactive protein (CRP). However, AIRME pretreatment (150/300 mg/kg bodyweight) significantly (p < 0.05) decreased edema volume. This was accompanied by a significant (p < 0.05) reduction of WBC, platelets and CRP with both doses of AIRME. The decreased activities of superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase in paw tissue were restored (p < 0.05 / p < 0.01) with AIRME in a dose-dependent manner. Furthermore, AIRME attenuated carrageenan-induced neutrophil infiltrations and vascular dilation in paw tissue. For the first time, our findings demonstrated the potent antioxidant and anti-inflammatory properties of AIRME, which could be considered to develop novel anti-inflammatory drugs.


Subject(s)
Acalypha/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plants, Medicinal/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Disease Models, Animal , Edema/drug therapy , Edema/enzymology , Edema/pathology , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , In Vitro Techniques , Male , Phytotherapy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Rats , Rats, Wistar
8.
J Ethnopharmacol ; 283: 114738, 2022 Jan 30.
Article in English | MEDLINE | ID: covidwho-1466608

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal importance and potential activity of Siddha herbal formulations have proved over several centuries against a wide range of causative agents as Influenza, Dengue, Chikungunya, and Tuberculosis. The traditional medicine system of Siddha is a valuable therapeutic approach for treating viral respiratory infections like Coronavirus disease 2019 (COVID-19) and can be effectively employed to target the host response and preventive care to boost the immune system. Kaba Sura Kudineer (KSK), an official polyherbal formulation has been used in Siddha traditional medicine for centuries. However, the role of KSK in regulating inflammation and the underlying molecular mechanisms has remained elusive. AIM OF THE STUDY: The goal of this study was to evaluate the anti-inflammatory effect of KSK using lipopolysaccharide (LPS) stimulated RAW 264.7 murine macrophage cells. MATERIALS AND METHODS: Raw 264.7 murine macrophage cells were used for this study. The Inflammatory mediators and cytokines were measured by enzyme-linked immunosorbent assay (ELISA). The NF-κB nulcear translocation and protein expression of iNOS, COX-2 was analyzed with westernblot. RESULTS: KSK supplementation decreased LPS mediated TLR-4 production and secretion of pro-inflammatory mediators and cytokines including IL-6, TNF-α, COX-2 and PGE-2. Moreover, it inhibited the production of nitric oxide (NO) and thereby inhibited the expression of iNOS in the cell. The Western blot analysis further confirmed that KSK strongly prevented the LPS-induced degradation of IκB which is normally required for the activation of NF-κB and hereby suppressed nuclear translocation of NF-κB. The protein expression of iNOS, COX-2 was significantly decreased with the presence of KSK treatment. Results suggested that KSK manipulates its anti-inflammatory effects mainly through blocking the TLR mediated NF-κB signal transduction pathways. CONCLUSIONS: Together, this study has proven that KSK could be a potential therapeutic drug for alleviating excessive inflammation in many inflammation-associated diseases like COVID-19.


Subject(s)
COVID-19/drug therapy , Inflammation/drug therapy , Lipopolysaccharides/toxicity , Macrophages/drug effects , Medicine, Ayurvedic , Plant Preparations/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Dietary Supplements , Mice , Pharmaceutical Preparations , Phytotherapy , Plant Preparations/pharmacology , RAW 264.7 Cells , SARS-CoV-2
9.
J Ethnopharmacol ; 283: 114701, 2022 Jan 30.
Article in English | MEDLINE | ID: covidwho-1446835

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Xuanfei Baidu Decoction (XFBD), one of the "three medicines and three prescriptions" for the clinically effective treatment of COVID-19 in China, plays an important role in the treatment of mild and/or common patients with dampness-toxin obstructing lung syndrome. AIM OF THE STUDY: The present work aims to elucidate the protective effects and the possible mechanism of XFBD against the acute inflammation and pulmonary fibrosis. METHODS: We use TGF-ß1 induced fibroblast activation model and LPS/IL-4 induced macrophage inflammation model as in vitro cell models. The mice model of lung fibrosis was induced by BLM via endotracheal drip, and then XFBD (4.6 g/kg, 9.2 g/kg) were administered orally respectively. The efficacy and molecular mechanisms in the presence or absence of XFBD were investigated. RESULTS: The results proved that XFBD can effectively inhibit fibroblast collagen deposition, down-regulate the level of α-SMA and inhibit the migration of fibroblasts. IL-4 induced macrophage polarization was also inhibited and the secretions of the inflammatory factors including IL6, iNOS were down-regulated. In vivo experiments, the results proved that XFBD improved the weight loss and survival rate of the mice. The XFBD high-dose administration group had a significant effect in inhibiting collagen deposition and the expression of α-SMA in the lungs of mice. XFBD can reduce bleomycin-induced pulmonary fibrosis by inhibiting IL-6/STAT3 activation and related macrophage infiltration. CONCLUSIONS: Xuanfei Baidu Decoction protects against macrophages induced inflammation and pulmonary fibrosis via inhibiting IL-6/STAT3 signaling pathway.


Subject(s)
COVID-19/drug therapy , Drugs, Chinese Herbal , Inflammation/drug therapy , Macrophages/drug effects , SARS-CoV-2 , Signal Transduction/drug effects , Animals , Cell Survival/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Fibroblasts/drug effects , Gene Expression Regulation/drug effects , Gene Regulatory Networks , Humans , Interleukin-6/antagonists & inhibitors , Interleukin-6/genetics , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Phytotherapy , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/prevention & control , RAW 264.7 Cells , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
10.
J Ethnopharmacol ; 283: 114540, 2022 Jan 30.
Article in English | MEDLINE | ID: covidwho-1401608

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tinospora cordifolia (Willd.) Miers (Menispermaceae) is a Mediterranean herb, used in Ayurvedic, Siddha, Unani, and folk medicines. The herb is also used in conventional medicine to treat oxidative stress-related diseases and conditions, including inflammation, pain, diarrhea, asthma, respiratory infections, cancer, diabetes, and gastrointestinal disorders. AIM OF THE REVIEW: The taxonomy, botanical classification, geographical distribution, and ethnobotanical uses of T. cordifolia, as well as the phytochemical compounds found in the herb, the toxicology of and pharmacological and clinical studies on the effects of T. cordifolia are all covered in this study. MATERIALS AND METHODS: To gather information on T. cordifolia, we used a variety of scientific databases, including Scopus, Google Scholar, PubMed, and Science Direct. The information discussed focuses on biologically active compounds found in T. cordifolia, and common applications and pharmacological activity of the herb, as well as toxicological and clinical studies on its properties. RESULTS: The findings of this study reveal a connection between the use of T. cordifolia in conventional medicine and its antioxidant, anti-inflammatory, antihypertensive, antidiabetic, anticancer, immunomodulatory, and other biological effects. The entire plant, stem, leaves, root, and extracts of T. cordifolia have been shown to have a variety of biological activities, including antioxidant, antimicrobial, antiviral, antiparasitic, antidiabetic, anticancer, anti-inflammatory, analgesic and antipyretic, hepatoprotective, and cardioprotective impact. Toxicological testing demonstrated that this plant may have medicinal applications. T. cordifolia contains a variety of biologically active compounds from various chemical classes, including alkaloids, terpenoids, sitosterols, flavonoids, and phenolic acids. Based on the reports researched for this review, we believe that chemicals in T. cordifolia may activate Nrf2, which leads to the overexpression of antioxidant enzymes such as CAT, GPx, GST, and GR, and thereby induces the adaptive response to oxidative stress. T. cordifolia is also able to reduce NF-κB signalling by inhibiting PI3K/Akt, activating AMPK and sirtuins, and downregulating PI3K/Akt. CONCLUSIONS: Our findings indicate that the pharmacological properties displayed by T. cordifolia back up its conventional uses. Antimicrobial, antiviral, antioxidant, anticancer, anti-inflammatory, antimutagenic, antidiabetic, nephroprotective, gastroprotective, hepatoprotective, and cardioprotective activities were all demonstrated in T. cordifolia stem extracts. To validate pharmacodynamic targets, further research is needed to evaluate the molecular mechanisms of the known compounds against gastrointestinal diseases, inflammatory processes, and microbial infections, as immunostimulants, and in chemotherapy. The T. cordifolia safety profile was confirmed in a toxicological analysis, which prompted pharmacokinetic assessment testing to confirm its bioavailability.


Subject(s)
COVID-19/drug therapy , Medicine, Traditional , Oxidative Stress/drug effects , Plants, Medicinal , SARS-CoV-2 , Tinospora/chemistry , Humans , Phytotherapy
11.
BMC Complement Med Ther ; 21(1): 141, 2021 May 12.
Article in English | MEDLINE | ID: covidwho-1388756

ABSTRACT

BACKGROUND: Herbal remedies of Echinacea purpurea tinctures are widely used today to reduce common cold respiratory tract infections. METHODS: Transcriptome, epigenome and kinome profiling allowed a systems biology level characterisation of genomewide immunomodulatory effects of a standardized Echinacea purpurea (L.) Moench extract in THP1 monocytes. RESULTS: Gene expression and DNA methylation analysis revealed that Echinaforce® treatment triggers antiviral innate immunity pathways, involving tonic IFN signaling, activation of pattern recognition receptors, chemotaxis and immunometabolism. Furthermore, phosphopeptide based kinome activity profiling and pharmacological inhibitor experiments with filgotinib confirm a key role for Janus Kinase (JAK)-1 dependent gene expression changes in innate immune signaling. Finally, Echinaforce® treatment induces DNA hypermethylation at intergenic CpG, long/short interspersed nuclear DNA repeat elements (LINE, SINE) or long termininal DNA repeats (LTR). This changes transcription of flanking endogenous retroviral sequences (HERVs), involved in an evolutionary conserved (epi) genomic protective response against viral infections. CONCLUSIONS: Altogether, our results suggest that Echinaforce® phytochemicals strengthen antiviral innate immunity through tonic IFN regulation of pattern recognition and chemokine gene expression and DNA repeat hypermethylated silencing of HERVs in monocytes. These results suggest that immunomodulation by Echinaforce® treatment holds promise to reduce symptoms and duration of infection episodes of common cold corona viruses (CoV), Severe Acute Respiratory Syndrome (SARS)-CoV, and new occurring strains such as SARS-CoV-2, with strongly impaired interferon (IFN) response and weak innate antiviral defense.


Subject(s)
COVID-19/drug therapy , Echinacea , Immunologic Factors/pharmacology , Monocytes/drug effects , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Gene Expression , Humans , Immunity, Innate/drug effects , Immunologic Factors/therapeutic use , Interferons/drug effects , Phytotherapy , Plant Extracts/therapeutic use
13.
Molecules ; 25(21)2020 Nov 02.
Article in English | MEDLINE | ID: covidwho-1389462

ABSTRACT

Zebrafish has been a reliable model system for studying human viral pathologies. SARS-CoV-2 viral infection has become a global chaos, affecting millions of people. There is an urgent need to contain the pandemic and develop reliable therapies. We report the use of a humanized zebrafish model, xeno-transplanted with human lung epithelial cells, A549, for studying the protective effects of a tri-herbal medicine Coronil. At human relevant doses of 12 and 58 µg/kg, Coronil inhibited SARS-CoV-2 spike protein, induced humanized zebrafish mortality, and rescued from behavioral fever. Morphological and cellular abnormalities along with granulocyte and macrophage accumulation in the swim bladder were restored to normal. Skin hemorrhage, renal cell degeneration, and necrosis were also significantly attenuated by Coronil treatment. Ultra-high-performance liquid chromatography (UHPLC) analysis identified ursolic acid, betulinic acid, withanone, withaferine A, withanoside IV-V, cordifolioside A, magnoflorine, rosmarinic acid, and palmatine as phyto-metabolites present in Coronil. In A549 cells, Coronil attenuated the IL-1ß induced IL-6 and TNF-α cytokine secretions, and decreased TNF-α induced NF-κB/AP-1 transcriptional activity. Taken together, we show the disease modifying immunomodulatory properties of Coronil, at human equivalent doses, in rescuing the pathological features induced by the SARS-CoV-2 spike protein, suggesting its potential use in SARS-CoV-2 infectivity.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Plant Extracts/therapeutic use , Pneumonia, Viral/drug therapy , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Air Sacs/drug effects , Air Sacs/virology , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , COVID-19 , Chromatography, High Pressure Liquid/methods , Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Disease Models, Animal , Fever/drug therapy , Fever/etiology , Hemorrhage/prevention & control , Humans , Interleukin-6/metabolism , Kidney/drug effects , Necrosis/pathology , Necrosis/prevention & control , Pandemics , Phytotherapy , Pneumonia, Viral/pathology , Pneumonia, Viral/physiopathology , Respiratory Mucosa/transplantation , Transcriptional Activation/drug effects , Tumor Necrosis Factor-alpha/metabolism , Zebrafish
14.
Phytother Res ; 35(8): 4284-4296, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1161639

ABSTRACT

The review article serves as a mini directory of medicinal plants (662 medicinal plants have been identified) that have been investigated for antiviral property between 2015 and 2019. Data have been extracted from Scopus using specific keywords followed by manual sorting to avoid any duplication. Critical analyses of handpicked data have been presented. Mapping of medicinal plants, followed by critical analysis on the families and plant parts investigated in the said tenure, and its correlation with the participating countries and virus types have been critically analyzed. Interceptive role of phytochemicals in impeding viral replication has also been taken note of. Emphasis on India's exploration of various medicinal plants has also been given. Also presents a tutelage, which is likely to revive the interest in natural products for search of potential antivirals. This review is expected to serve as a rich data bank and as a guiding principle for researchers who are planning to explore medicinal plants in search for potential antiviral. It is time that researchers need to revisit their countries' own history of traditional medicine to predict something worthful in future.


Subject(s)
Antiviral Agents/pharmacology , Phytochemicals/pharmacology , Plants, Medicinal , Humans , Medicine, Traditional , Phytotherapy , Plant Extracts
15.
Cochrane Database Syst Rev ; 7: CD013877, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1320059

ABSTRACT

BACKGROUND: Loss of olfactory function is well recognised as a cardinal symptom of COVID-19 infection, and the ongoing pandemic has resulted in a large number of affected individuals with abnormalities in their sense of smell. For many, the condition is temporary and resolves within two to four weeks. However, in a significant minority the symptoms persist. At present, it is not known whether early intervention with any form of treatment (such as medication or olfactory training) can promote recovery and prevent persisting olfactory disturbance.  OBJECTIVES: To assess the effects (benefits and harms) of interventions that have been used, or proposed, to prevent persisting olfactory dysfunction due to COVID-19 infection. A secondary objective is to keep the evidence up-to-date, using a living systematic review approach.  SEARCH METHODS: The Cochrane ENT Information Specialist searched the Cochrane COVID-19 Study Register; Cochrane ENT Register; CENTRAL; Ovid MEDLINE; Ovid Embase; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished studies. The date of the search was 16 December 2020. SELECTION CRITERIA: Randomised controlled trials including participants who had symptoms of olfactory disturbance following COVID-19 infection. Individuals who had symptoms for less than four weeks were included in this review. Studies compared any intervention with no treatment or placebo.  DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures. Our primary outcomes were the presence of normal olfactory function, serious adverse effects and change in sense of smell. Secondary outcomes were the prevalence of parosmia, change in sense of taste, disease-related quality of life and other adverse effects (including nosebleeds/bloody discharge). We used GRADE to assess the certainty of the evidence for each outcome.  MAIN RESULTS: We included one study of 100 participants, which compared an intranasal steroid spray to no intervention. Participants in both groups were also advised to undertake olfactory training for the duration of the trial. Data were identified for only two of the prespecified outcomes for this review, and no data were available for the primary outcome of serious adverse effects. Intranasal corticosteroids compared to no intervention (all using olfactory training) Presence of normal olfactory function after three weeks of treatment was self-assessed by the participants, using a visual analogue scale (range 0 to 10, higher scores = better). A score of 10 represented "completely normal smell sensation". The evidence is very uncertain about the effect of intranasal corticosteroids on self-rated recovery of sense of smell (estimated absolute effect 619 per 1000 compared to 520 per 1000, risk ratio (RR) 1.19, 95% confidence interval (CI) 0.85 to 1.68; 1 study; 100 participants; very low-certainty evidence).  Change in sense of smell was not reported, but the self-rated score for sense of smell was reported at the endpoint of the study with the same visual analogue scale (after three weeks of treatment). The median scores at endpoint were 10 (interquartile range (IQR) 9 to 10) for the group receiving intranasal corticosteroids, and 10 (IQR 5 to 10) for the group receiving no intervention (1 study; 100 participants; very low-certainty evidence). AUTHORS' CONCLUSIONS: There is very limited evidence regarding the efficacy of different interventions at preventing persistent olfactory dysfunction following COVID-19 infection. However, we have identified a small number of additional ongoing studies in this area. As this is a living systematic review, the evidence will be updated regularly to incorporate new data from these, and other relevant studies, as they become available.  For this (first) version of the living review, we identified a single study of intranasal corticosteroids to include in this review, which provided data for only two of our prespecified outcomes. The evidence was of very low certainty, therefore we were unable to determine whether intranasal corticosteroids may have a beneficial or harmful effect.


Subject(s)
Adrenal Cortex Hormones/administration & dosage , COVID-19/complications , Mometasone Furoate/administration & dosage , Olfaction Disorders/drug therapy , Phytotherapy/methods , Administration, Intranasal , Bias , Citrus , Confidence Intervals , Humans , Olfaction Disorders/etiology , Olfaction Disorders/prevention & control , Recovery of Function , Syzygium , Visual Analog Scale
16.
Pharmacol Res ; 158: 104939, 2020 08.
Article in English | MEDLINE | ID: covidwho-1318941

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) has been declared as a global pandemic, but specific medicines and vaccines are still being developed. In China, interventional therapies with traditional Chinese medicine for COVID-19 have achieved significant clinical efficacies, but the underlying pharmacological mechanisms are still unclear. This article reviewed the etiology of COVID-19 and clinical efficacy. Both network pharmacological study and literature search were used to demonstrate the possible action mechanisms of Chinese medicines in treating COVID-19. We found that Chinese medicines played the role of antivirus, anti-inflammation and immunoregulation, and target organs protection in the management of COVID-19 by multiple components acting on multiple targets at multiple pathways. AEC2 and 3CL protein could be the direct targets for inhibiting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Quercetin, kaempferol, luteolin, isorhamnetin, baicalein, naringenin, and wogonin could be the main active ingredients of Chinese medicines for the management of COVID-19 by targeting on AEC2 and 3CL protein and inhibiting inflammatory mediators, regulating immunity, and eliminating free radicals through COX-2, CASP3, IL-6, MAPK1, MAPK14, MAPK8, and REAL in the signaling pathways of IL-17, arachidonic acid, HIF-1, NF-κB, Ras, and TNF. This study may provide meaningful and useful information on further research to investigate the action mechanisms of Chinese medicines against SARS-CoV-2 and also provide a basis for sharing the "China scheme" for COVID-19 treatment.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Phytotherapy , Pneumonia, Viral/drug therapy , COVID-19 , Humans , Models, Biological , Pandemics , SARS-CoV-2
17.
Molecules ; 26(13)2021 Jul 05.
Article in English | MEDLINE | ID: covidwho-1304692

ABSTRACT

Respiratory tract infections are underestimated, as they are mild and generally not incapacitating. In clinical medicine, however, these infections are considered a prevalent problem. By 2030, the third most comprehensive reason for death worldwide will be chronic obstructive pulmonary disease (COPD), according to the World Health Organization. The current arsenal of anti-inflammatory drugs shows little or no benefits against COPD. For thousands of years, herbal drugs have been used to cure numerous illnesses; they exhibit promising results and enhance physical performance. Ginseng is one such herbal medicine, known to alleviate pro-inflammatory chemokines and cytokines (IL-2, IL-4, IFN-γ, TNF-α, IL-5, IL-6, IL-8) formed by macrophages and epithelial cells. Furthermore, the mechanisms of action of ginsenoside are still not fully understood. Various clinical trials of ginseng have exhibited a reduction of repeated colds and the flu. In this review, ginseng's structural features, the pathogenicity of microbial infections, and the immunomodulatory, antiviral, and anti-bacterial effects of ginseng were discussed. The focus was on the latest animal studies and human clinical trials that corroborate ginseng's role as a therapy for treating respiratory tract infections. The article concluded with future directions and significant challenges. This review would be a valuable addition to the knowledge base for researchers in understanding the promising role of ginseng in treating respiratory tract infections. Further analysis needs to be re-focused on clinical trials to study ginseng's efficacy and safety in treating pathogenic infections and in determining ginseng-drug interactions.


Subject(s)
Ginsenosides/pharmacology , Panax/chemistry , Phytotherapy/methods , Respiratory Tract Infections/drug therapy , Animals , Complementary Therapies , Humans
18.
Int J Mol Sci ; 22(8)2021 Apr 11.
Article in English | MEDLINE | ID: covidwho-1298160

ABSTRACT

Many plants have been known for centuries to have medicinal importance with potential beneficial effects on health. Phytotherapeutic compounds are well known to play a globally significant role, in particular in the management and treatment of various chronic diseases. Among these, diabetes can cause long term damage to the body other than having a relevant economic burden on society being among the costliest chronic diseases. This motivated the focus of the proposed Special Issue, intended to develop and exploit the potential role of plants in the management and treatment of diabetes. The main topics included are: (i) description and use of medicinal plants for diabetes management; (ii) the elucidation and delineation of their main components, properties (anti-hyperglycaemic, hypoglicaemic, anti-infiammatory, apoptotic agents, etc.), (iii) the mechanism of action (in vitro and in vivo studies); (iv) formulation of nutraceuticals, botanicals, and dietary supplements useful as tools as an alternative or support to anti-diabetic pharmacological therapies; (v) development of new markers.


Subject(s)
Diabetes Mellitus/drug therapy , Hypoglycemic Agents/therapeutic use , Phytotherapy , Plants, Medicinal , Humans
19.
Molecules ; 26(13)2021 Jul 05.
Article in English | MEDLINE | ID: covidwho-1295889

ABSTRACT

COVID-19 is a pandemic disease caused by the SARS-CoV-2 virus, which is potentially fatal for vulnerable individuals. Disease management represents a challenge for many countries, given the shortage of medicines and hospital resources. The objective of this work was to review the medicinal plants, foods and natural products showing scientific evidence for host protection against various types of coronaviruses, with a focus on SARS-CoV-2. Natural products that mitigate the symptoms caused by various coronaviruses are also presented. Particular attention was placed on natural products that stabilize the Renin-Angiotensin-Aldosterone System (RAAS), which has been associated with the entry of the SARS-CoV-2 into human cells.


Subject(s)
Biological Products/pharmacology , Coronavirus/drug effects , Phytotherapy/methods , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Biological Products/metabolism , COVID-19/drug therapy , COVID-19/virology , Humans , Pandemics , Plant Extracts/metabolism , Plants/chemistry , Renin-Angiotensin System/drug effects
20.
Medicine (Baltimore) ; 100(24): e26370, 2021 Jun 18.
Article in English | MEDLINE | ID: covidwho-1269624

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is an epidemic infectious disease resulted from 2019 novel coronavirus (2019-nCoV). Up till now, COVID-19 has swept globally. Currently, due to many high-profiled benefits, clinical studies on Toujie Quwen granule (TJQW) have been increasing. The aim of the study is to assess the efficacy and safety of TJQW used with conventional western therapy for COVID-19. METHODS: Relevant randomized controlled trials (RCTs) were searched in Chinese and English databases, and the search time is January 2020 to May 2021. English databases include PubMed, Embase, Web of Science, and the Cochrane Library. Chinese databases include CNKI, WF, VIP, and CBM. The international clinical trial registration platform and the Chinese clinical trial registration platform of controlled trials will be searched by us from January 2020 to May 2021. According to the inclusion and exclusion criteria, screening literature, extraction data will be conducted by 2 researchers independently. Statistical analysis will be conducted using the RevMan 5.3.5 software. After screening the literature based on the inclusion and exclusion criteria, The Recommendation, Assessment, Development, and Evaluation (GRADE) system will be used to evaluate the quality of each result. RESULTS: This study will provide the evidence for TJQW to be used with conventional western therapy for COVID-19. CONCLUSION: The efficacy and safety of TJQW used with conventional western therapy for COVID-19 will be assessed. INPLASY REGISTRATION NUMBER: INPLASY202150038.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Drugs, Chinese Herbal/therapeutic use , Meta-Analysis as Topic , Nutritional Support , Phytotherapy , Respiratory Therapy , Systematic Reviews as Topic , Antiviral Agents/adverse effects , Combined Modality Therapy , Drugs, Chinese Herbal/adverse effects , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...