Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Molecules ; 27(5)2022 Feb 24.
Article in English | MEDLINE | ID: covidwho-1780062

ABSTRACT

Diseases caused by viruses are a global threat, resulting in serious medical and social problems for humanity. They are the main contributors to many minor and major outbreaks, epidemics, and pandemics worldwide. Over the years, medicinal plants have been used as a complementary treatment in a range of diseases. In this sense, this review addresses promising antiviral plants from Marajó island, a part of the Amazon region, which is known to present a very wide biodiversity of medicinal plants. The present review has been limited to articles and abstracts available in Scopus, Web of Science, Science Direct, Scielo, PubMed, and Google Scholar, as well as the patent offices in Brazil (INPI), United States (USPTO), Europe (EPO) and World Intellectual Property Organization (WIPO). As a result, some plants from Marajó island were reported to have actions against HIV-1,2, HSV-1,2, SARS-CoV-2, HAV and HBV, Poliovirus, and influenza. Our major conclusion is that plants of the Marajó region show promising perspectives regarding pharmacological potential in combatting future viral diseases.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Brazil , COVID-19/virology , HIV-1/drug effects , Hepatitis A virus/drug effects , Herpesvirus 1, Human/drug effects , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plants, Medicinal/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification
2.
Int J Mol Sci ; 22(22)2021 Nov 17.
Article in English | MEDLINE | ID: covidwho-1524024

ABSTRACT

The worldwide outbreak of COVID-19 was caused by a pathogenic virus called Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Therapies against SARS-CoV-2 target the virus or human cells or the immune system. However, therapies based on specific antibodies, such as vaccines and monoclonal antibodies, may become inefficient enough when the virus changes its antigenicity due to mutations. Polyphenols are the major class of bioactive compounds in nature, exerting diverse health effects based on their direct antioxidant activity and their effects in the modulation of intracellular signaling. There are currently numerous clinical trials investigating the effects of polyphenols in prophylaxis and the treatment of COVID-19, from symptomatic, via moderate and severe COVID-19 treatment, to anti-fibrotic treatment in discharged COVID-19 patients. Antiviral activities of polyphenols and their impact on immune system modulation could serve as a solid basis for developing polyphenol-based natural approaches for preventing and treating COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/prevention & control , Polyphenols/therapeutic use , Antiviral Agents/chemistry , Antiviral Agents/metabolism , COVID-19/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/metabolism , Humans , Plants, Medicinal/chemistry , Plants, Medicinal/metabolism , Polyphenols/chemistry , Polyphenols/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism
3.
Molecules ; 26(22)2021 Nov 10.
Article in English | MEDLINE | ID: covidwho-1512512

ABSTRACT

The novel coronavirus disease (COVID-19), the reason for worldwide pandemic, has already masked around 220 countries globally. This disease is induced by Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Arising environmental stress, increase in the oxidative stress level, weak immunity and lack of nutrition deteriorates the clinical status of the infected patients. Though several researches are at its peak for understanding and bringing forward effective therapeutics, yet there is no promising solution treating this disease directly. Medicinal plants and their active metabolites have always been promising in treating many clinical complications since time immemorial. Mother nature provides vivid chemical structures, which act multi-dimensionally all alone or synergistically in mitigating several diseases. Their unique antioxidant and anti-inflammatory activity with least side effects have made them more effective candidate for pharmacological studies. These medicinal plants inhibit attachment, encapsulation and replication of COVID-19 viruses by targeting various signaling molecules such as angiotensin converting enzyme-2, transmembrane serine protease 2, spike glycoprotein, main protease etc. This property is re-examined and its potency is now used to improve the existing global health crisis. This review is an attempt to focus various antiviral activities of various noteworthy medicinal plants. Moreover, its implications as prophylactic or preventive in various secondary complications including neurological, cardiovascular, acute kidney disease, liver disease are also pinpointed in the present review. This knowledge will help emphasis on the therapeutic developments for this novel coronavirus where it can be used as alone or in combination with the repositioned drugs to combat COVID-19.


Subject(s)
COVID-19/drug therapy , Drug Repositioning , Phytochemicals/therapeutic use , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/pathology , COVID-19/virology , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Humans , Phytochemicals/chemistry , Phytochemicals/metabolism , Phytochemicals/pharmacology , Plants, Medicinal/chemistry , Plants, Medicinal/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects
4.
Molecules ; 26(18)2021 Sep 21.
Article in English | MEDLINE | ID: covidwho-1430927

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which initially appeared in Wuhan, China, in December 2019. Elderly individuals and those with comorbid conditions may be more vulnerable to this disease. Consequently, several research laboratories continue to focus on developing drugs to treat this infection because this disease has developed into a global pandemic with an extremely limited number of specific treatments available. Natural herbal remedies have long been used to treat illnesses in a variety of cultures. Modern medicine has achieved success due to the effectiveness of traditional medicines, which are derived from medicinal plants. The objective of this study was to determine whether components of natural origin from Iranian medicinal plants have an antiviral effect that can prevent humans from this coronavirus infection using the most reliable molecular docking method; in our case, we focused on the main protease (Mpro) and a receptor-binding domain (RBD). The results of molecular docking showed that among 169 molecules of natural origin from common Iranian medicinal plants, 20 molecules (chelidimerine, rutin, fumariline, catechin gallate, adlumidine, astragalin, somniferine, etc.) can be proposed as inhibitors against this coronavirus based on the binding free energy and type of interactions between these molecules and the studied proteins. Moreover, a molecular dynamics simulation study revealed that the chelidimerine-Mpro and somniferine-RBD complexes were stable for up to 50 ns below 0.5 nm. Our results provide valuable insights into this mechanism, which sheds light on future structure-based designs of high-potency inhibitors for SARS-CoV-2.


Subject(s)
COVID-19/drug therapy , Phytochemicals/therapeutic use , Viral Protease Inhibitors/chemistry , Antiviral Agents/pharmacology , Computer Simulation , Humans , Iran , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Phytochemicals/metabolism , Plants, Medicinal/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Binding , Receptors, Virus/chemistry , Receptors, Virus/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Thermodynamics , Viral Protease Inhibitors/metabolism , Viral Protease Inhibitors/pharmacology
5.
Int J Biol Macromol ; 181: 462-470, 2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1157350

ABSTRACT

The emergence of the novel coronavirus, SARS-CoV-2 has pushed forward the world to experience the first pandemic of this century. Any specific drug against this RNA virus is yet to be discovered and presently, the COVID-19 infected patients are being treated symptomatically. During the last few decades, a number of polysaccharides with potential biological activities have been invented from Indian medicinal plants. Many polysaccharides, such as sulfated xylomannan, xylan, pectins, fucoidans, glucans, glucoarabinan, and arabinoxylan from Indian medicinal plants, have been shown to exhibit antiviral and immunomodulating activities. Plant polysaccharides exhibit antiviral activities through interference with the viral life cycle and inhibition of attachment of virus to host cell. Intake of certain immune stimulating plant polysaccharides may also protect from the virus to a certain extent. In process of continuous search for most potent drug, Indian plant polysaccharides may emerge as significant biomaterial to combat COVID-19. This review explores a number of polysaccharides from Indian medicinal plants which showed antiviral and immunomodulating activities. It is aimed to provide an overview about the composition, molecular mass, branching configuration and related bioactivities of polysaccharides which is crucial for their classification as possible drug to induce immune response in viral diseases.


Subject(s)
COVID-19/drug therapy , Polysaccharides/pharmacology , Antiviral Agents/pharmacology , COVID-19/epidemiology , COVID-19/immunology , Humans , Immunity/drug effects , India/epidemiology , Pandemics , Plant Extracts/immunology , Plant Extracts/pharmacology , Plants, Medicinal/metabolism , Polysaccharides/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification
6.
Chem Biol Interact ; 341: 109449, 2021 May 25.
Article in English | MEDLINE | ID: covidwho-1157165

ABSTRACT

BACKGROUND: COVID-19, a severe global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has emerged as one of the most threatening transmissible disease. As a great threat to global public health, the development of treatment options has become vital, and a rush to find a cure has mobilized researchers globally from all areas. SCOPE AND APPROACH: This review focuses on deciphering the potential of different secondary metabolites from medicinal plants as therapeutic options either as inhibitors of therapeutic targets of SARS-CoV-2 or as blockers of viral particles entry through host cell receptors. The use of medicinal plants containing specific phytomoieties could be seen in providing a safer and long-term solution for the population with lesser side effects. Key Findings and Conclusions: Considering the high cost and time-consuming drug discovery process, therapeutic repositioning of existing drugs was explored as treatment option in COVID-19, however several molecules have been retracted as therapeutics either due to no positive outcomes or the severe side effects. These effects call for exploring the alternate treatment options which are therapeutically effective as well as safe. Keeping this in mind, phytopharmaceuticals derived from medicinal plants could be explored as important resources in the development of COVID-19 treatment, as their role in the past for treatment of viral diseases like HIV, MERS-CoV, and influenza has been well reported. Considering this fact, different phytoconstituents such as flavonoids, alkaloids, tannins and glycosides etc. Possessing antiviral properties against coronaviruses and possessing potential against SARS-CoV-2 have been reviewed in the present work.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Phytochemicals/pharmacology , Alkaloids/chemistry , Alkaloids/pharmacology , Anthraquinones/chemistry , Anthraquinones/pharmacology , Antiviral Agents/chemistry , Flavonoids/chemistry , Flavonoids/pharmacology , Humans , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Phytochemicals/chemistry , Plants, Medicinal/chemistry , Plants, Medicinal/metabolism , Saponins/chemistry , Saponins/pharmacology , Secondary Metabolism
7.
Int J Mol Sci ; 21(13)2020 Jun 30.
Article in English | MEDLINE | ID: covidwho-635461

ABSTRACT

By attaching to the angiotensin converting enzyme 2 (ACE2) protein on lung and intestinal cells, Sudden Acute Respiratory Syndrome (SARS-CoV-2) can cause respiratory and homeostatic difficulties leading to sepsis. The progression from acute respiratory failure to sepsis has been correlated with the release of high-mobility group box 1 protein (HMGB1). Lack of effective conventional treatment of this septic state has spiked an interest in alternative medicine. This review of herbal extracts has identified multiple candidates which can target the release of HMGB1 and potentially reduce mortality by preventing progression from respiratory distress to sepsis. Some of the identified mixtures have also been shown to interfere with viral attachment. Due to the wide variability in chemical superstructure of the components of assorted herbal extracts, common motifs have been identified. Looking at the most active compounds in each extract it becomes evident that as a group, phenolic compounds have a broad enzyme inhibiting function. They have been shown to act against the priming of SARS-CoV-2 attachment proteins by host and viral enzymes, and the release of HMGB1 by host immune cells. An argument for the value in a nonspecific inhibitory action has been drawn. Hopefully these findings can drive future drug development and clinical procedures.


Subject(s)
Betacoronavirus/physiology , HMGB1 Protein/metabolism , Respiratory Insufficiency/pathology , Sepsis/pathology , Angiotensin-Converting Enzyme 2 , HMGB1 Protein/antagonists & inhibitors , Humans , Macrophages/cytology , Macrophages/metabolism , Macrophages/virology , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Plant Exudates/chemistry , Plant Exudates/pharmacology , Plants, Medicinal/chemistry , Plants, Medicinal/metabolism , Respiratory Insufficiency/metabolism , Respiratory Insufficiency/prevention & control , SARS-CoV-2 , Sepsis/metabolism , Sepsis/prevention & control , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL