Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 240
Filter
1.
Biopreserv Biobank ; 20(5): 423-428, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2188054

ABSTRACT

Background: Antibodies with the specialized ability to fight infection can be found in the blood of individuals who have recovered from or have been vaccinated against COVID-19. As a result, plasma from these individuals could be used to treat critically ill patients. This treatment is known as convalescent plasma (CCP) therapy. Methods: Plasma units from 1555 consented healthy blood bank donors were collected from February to September 2021. Blood units were tested for the quantitative determination of Immunoglobulin G (IgG) antibodies to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus using one of the following assays based on the availability of the kits: The LIAISON® SARS-CoV-2 TrimericS IgG assay or the Abbott SARS-CoV-2 IgG II Quant assay. Results: Among the tested donors, 1027 participants tested positive for neutralizing anti-SARS-CoV-2 IgG antibodies (66.04%). There were 484 donors whose plasma qualified to be used for CCP therapy (47.13%) and 214 CCP units were stored in the COVID-19 convalescent biobank. Conclusion: We were able to identify and store 214 fresh frozen plasma units qualified for CCP-plasma therapy for COVID-19 patients according to World Health Organization standards. Hence, we established the first COVID-19-convalescent plasma data and plasma biobank for treating COVID-19-infected cancer patients in Jordan and the region.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/therapy , Antibodies, Viral , Jordan , Biological Specimen Banks , Antibodies, Neutralizing , Blood Donors , Immunoglobulin G , Plasma
2.
Thromb Res ; 220: 100-106, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2150681

ABSTRACT

INTRODUCTION: COVID-19 disease, which has recently become an important cause of mortality and morbidity all over the world, is remarkably associated with thrombotic complications. Although many factors are responsible for these increased thrombotic complications in COVID-19 disease, its relationship with a marker that increases the risk of thrombosis such as Signal peptide-CUB-EGF domain-containing protein 1 (SCUBE1) has not yet been clarified. This is the first study to examine the potential diagnostic and prognostic value of SCUBE1 levels in patients with COVID-19. In this study, we aimed to clarify the relationship between the increased risk of thrombosis and SCUBE1 in the course of COVID-19 disease. MATERIALS AND METHODS: 553 patients with COVID-19 and 553 healthy controls were compared in terms of SCUBE1 levels. Additionally, patients with COVID-19 were divided into two groups according to their SCUBE1 levels and compared in terms of severity of disease, thrombotic complications and in-hospital mortality. RESULTS: SCUBE1 levels were significantly higher in patients with COVID-19 compared to the control group (p < 0.001). Plasma SCUBE1 levels were significantly higher in patients with severe disease and thrombotic complications, those with mild to moderate disease, and those without thrombotic complications (p < 0.001, for both). In addition, SCUBE1 was found to be an independent predictor of in-hospital mortality (p < 0.001). CONCLUSIONS: SCUBE1 may be one of the major determinants of thrombotic complications, which is an increased cause of mortality and morbidity in COVID-19 patients so inhibition of this peptide may be among the therapeutic targets in patients with COVID-19.


Subject(s)
COVID-19 , Thrombosis , Humans , Hospital Mortality , COVID-19/complications , Thrombosis/etiology , Plasma , Severity of Illness Index , Calcium-Binding Proteins
3.
BMC Infect Dis ; 22(1): 879, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2139169

ABSTRACT

BACKGROUND: The efficacy of early treatment with convalescent plasma in patients with COVID-19 is debated. Nothing is known about the potential effect of other plasma components other than anti-SARS-CoV-2 antibodies. METHODS: To determine whether convalescent or standard plasma would improve outcomes for adults in early phase of Covid19 respiratory impairment we designed this randomized, three-arms, clinical trial (PLACO COVID) blinded on interventional arms that was conducted from June 2020 to August 2021. It was a multicentric trial at 19 Italian hospitals. We enrolled 180 hospitalized adult patients with COVID-19 pneumonia within 5 days from the onset of respiratory distress. Patients were randomly assigned in a 1:1:1 ratio to standard of care (n = 60) or standard of care + three units of standard plasma (n = 60) or standard of care + three units of high-titre convalescent plasma (n = 60) administered on days 1, 3, 5 after randomization. Primary outcome was 30-days mortality. Secondary outcomes were: incidence of mechanical ventilation or death at day 30, 6-month mortality, proportion of days with mechanical ventilation on total length of hospital stay, IgG anti-SARS-CoV-2 seroconversion, viral clearance from plasma and respiratory tract samples, and variations in Sequential Organ Failure Assessment score. The trial was analysed according to the intention-to-treat principle. RESULTS: 180 patients (133/180 [73.9%] males, mean age 66.6 years [IQR 57-73]) were enrolled a median of 8 days from onset of symptoms. At enrollment, 88.9% of patients showed moderate/severe respiratory failure. 30-days mortality was 20% in Control arm, 23% in Convalescent (risk ratio [RR] 1.13; 95% confidence interval [CI], 0.61-2.13, P = 0.694) and 25% in Standard plasma (RR 1.23; 95%CI, 0.63-2.37, P = 0.544). Time to viral clearance from respiratory tract was 21 days for Convalescent, 28 for Standard plasma and 23 in Control arm but differences were not statistically significant. No differences for other secondary endpoints were seen in the three arms. Serious adverse events were reported in 1.7%, 3.3% and 5% of patients in Control, Standard and Convalescent plasma arms respectively. CONCLUSIONS: Neither high-titer Convalescent nor Standard plasma improve outcomes of COVID-19 patients with acute respiratory failure. Trial Registration Clinicaltrials.gov Identifier: NCT04428021. First posted: 11/06/2020.


Subject(s)
COVID-19 , Respiratory Insufficiency , Adult , Male , Humans , Aged , Female , COVID-19/therapy , Standard of Care , Plasma
4.
Sci Rep ; 12(1): 19977, 2022 Nov 20.
Article in English | MEDLINE | ID: covidwho-2133615

ABSTRACT

Metabolomic analysis of blood plasma samples from COVID-19 patients is a promising approach allowing for the evaluation of disease progression. We performed the metabolomic analysis of plasma samples of 30 COVID-19 patients and the 19 controls using the high-performance liquid chromatography (HPLC) coupled with tandem mass spectrometric detection (LC-MS/MS). In our analysis, we identified 103 metabolites enriched in KEGG metabolic pathways such as amino acid metabolism and the biosynthesis of aminoacyl-tRNAs, which differed significantly between the COVID-19 patients and the controls. Using ANDSystem software, we performed the reconstruction of gene networks describing the potential genetic regulation of metabolic pathways perturbed in COVID-19 patients by SARS-CoV-2 proteins. The nonstructural proteins of SARS-CoV-2 (orf8 and nsp5) and structural protein E were involved in the greater number of regulatory pathways. The reconstructed gene networks suggest the hypotheses on the molecular mechanisms of virus-host interactions in COVID-19 pathology and provide a basis for the further experimental and computer studies of the regulation of metabolic pathways by SARS-CoV-2 proteins. Our metabolomic analysis suggests the need for nonstructural protein-based vaccines and the control strategy to reduce the disease progression of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Gene Regulatory Networks , Chromatography, Liquid , Tandem Mass Spectrometry , Plasma , Viral Proteins/genetics , Disease Progression
6.
N Engl J Med ; 387(10): 955, 2022 09 08.
Article in English | MEDLINE | ID: covidwho-2106611
7.
Ann Intern Med ; 173(2): JC3, 2020 07 21.
Article in English | MEDLINE | ID: covidwho-2103352

ABSTRACT

SOURCE CITATION: Ye Z, Rochwerg B, Wang Y, et al. Treatment of patients with nonsevere and severe coronavirus disease 2019: an evidence-based guideline. CMAJ. 2020;192:E536-45. 32350002.


Subject(s)
Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Adrenal Cortex Hormones/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus , COVID-19 , Coronavirus Infections/immunology , Humans , Immunization, Passive/methods , Pandemics , Plasma , Pneumonia, Viral/immunology , SARS-CoV-2 , Severity of Illness Index
9.
Transfusion ; 62(8): 1630-1635, 2022 08.
Article in English | MEDLINE | ID: covidwho-2038208

ABSTRACT

BACKGROUND: Training is essential to develop and maintain skills required to be a competent serologist, yet samples required to achieve this are often difficult to obtain. We evaluated the feasibility of SARS-CoV-2 peptide modified RBCs (1144-kodecytes) to develop simulated antibody screening and identification panels of reagent RBCs suitable for practical training, recognition, and grading of serologic reactions. STUDY DESIGN AND METHODS: RBCs from a single donor were modified into kodecytes using Kode Technology function-spacer-lipid constructs bearing a short SARS-CoV-2 peptide. Kodecytes and unmodified cells were then arranged in patterns representative of RBC antibody profiles as simulated antibody screening and identification reagent cell panels (SASID), and then tested against immune donor plasma samples containing SARS-CoV-2 antibodies. Manual tube and two different gel card serologic platforms were evaluated by routine techniques. SASID exemplars were created for antibodies including D, Cw , f (ce), Jka (strong, weak, dosing), mixtures of D + E, Jka + K, Fya + E, high and low frequency antibodies and a warm IgG autoantibody. RESULTS: Kodecytes (positive reactions) and unmodified cells (negative) when arranged and tested in appropriate patterns in SASID panels were able to mimic IgG antibody reactions, and were capable of measuring both accuracy and precision in reaction grading. CONCLUSIONS: Kodecytes can be used to rapidly create in-house simulated yet realistic antibody screening and identification panels suitable for large scale training in the recognition and grading of serologic reactions.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , Erythrocytes , Humans , Peptides , Plasma
10.
An Acad Bras Cienc ; 94(4): e20210202, 2022.
Article in English | MEDLINE | ID: covidwho-2029823

ABSTRACT

BACKGROUND: Role of Convalescent plasma (COPLA) to treat severe COVID-19 is under investigation. We compared efficacy and safety of COPLA with fresh frozen plasma (FFP) in severe COVID-19 patients. METHODS: One group received COPLA with standard medical care (n = 14), and another group received random donor FFP, as control with standard medical care (n = 15) in severe COVID-19 disease. RESULTS: The proportion of patients free of ventilation at day seven were 78.5% in COPLA group, and 93.3 % in control group were not significant (p= 0.258). However, improved respiratory rate, O2 saturation, SOFA score, and Ct value were observed in the COPLA group. No serious adverse events were noticed by plasma transfusion in both groups.


Subject(s)
COVID-19 , Plasma , Blood Component Transfusion/adverse effects , COVID-19/therapy , Humans , Immunization, Passive/adverse effects
11.
Int J Mol Sci ; 23(17)2022 Aug 27.
Article in English | MEDLINE | ID: covidwho-2006042

ABSTRACT

The non-classical histocompatibility antigen G (HLA-G) is an immune checkpoint molecule that has been implicated in viral disorders. We evaluated the plasma soluble HLA-G (sHLA-G) in 239 individuals, arranged in COVID-19 patients (n = 189) followed up at home or in a hospital, and in healthy controls (n = 50). Increased levels of sHLA-G were observed in COVID-19 patients irrespective of the facility care, gender, age, and the presence of comorbidities. Compared with controls, the sHLA-G levels increased as far as disease severity progressed; however, the levels decreased in critically ill patients, suggesting an immune exhaustion phenomenon. Notably, sHLA-G exhibited a positive correlation with other mediators currently observed in the acute phase of the disease, including IL-6, IL-8 and IL-10. Although sHLA-G levels may be associated with an acute biomarker of COVID-19, the increased levels alone were not associated with disease severity or mortality due to COVID-19. Whether the SARS-CoV-2 per se or the innate/adaptive immune response against the virus is responsible for the increased levels of sHLA-G are questions that need to be further addressed.


Subject(s)
COVID-19 , HLA-G Antigens , Histocompatibility Antigens Class I , Humans , Immune Checkpoint Proteins , Plasma , SARS-CoV-2
12.
Medicina (Kaunas) ; 58(8)2022 Aug 12.
Article in English | MEDLINE | ID: covidwho-1987884

ABSTRACT

With an intricate symptom pattern involving a dysregulated host response to infection, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause severe inflammation and cytokine storms, acute respiratory distress syndrome, coagulopathy, multi-organ failure, and finally death. The uniqueness of this case report lies in the nature of the therapeutic intervention performed. While numerous studies are available on both the use of therapeutic plasma exchange in coronavirus disease 2019 (COVID-19) patients and convalescent plasma transfusion as separate treatment methods, there is very little information regarding the combination of these procedures. We present the case of a 52-year-old male, unvaccinated for COVID-19, who tested positive on reverse transcriptase polymerase chain reaction for SARS-CoV-2 for the first time and presented in the emergency room with fever, chills, severe cough, tachypnea, tachycardia, and dyspnea that started two days before presentation. Upon rapid assessment, the patient showed signs of acute respiratory failure, so it was decided to transfer the patient to the intensive care unit, COVID-19 ward, after preliminary radiological examination. For the next 24 days, the patient was stationed in the intensive care unit, where he was closely monitored and treated. Invasive mechanical ventilation was required following the initial worsening of his respiratory status. We performed therapeutic plasma exchange on the first day of his stay in the intensive care unit, and immediately after the procedure, the patient was transfused with 500 mL of convalescent plasma from healthy donors. The patient's condition improved over the next few days, which led to the cessation of mechanical ventilation and, after treating the superinfection, the patient was discharged home, making a full recovery. The early initiation of therapeutic plasma exchange followed by transfusion of convalescent plasma in severe and critical forms of COVID-19 may reduce the risk of the progression of the disease and ultimately reduce the risk of negative outcomes in a selected group of patients.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Blood Component Transfusion , COVID-19/therapy , Critical Illness/therapy , Humans , Immunization, Passive , Male , Middle Aged , Plasma , Plasma Exchange , Respiratory Distress Syndrome/therapy , SARS-CoV-2
13.
Int J Mol Sci ; 23(16)2022 Aug 13.
Article in English | MEDLINE | ID: covidwho-1987830

ABSTRACT

BACKGROUND: Infection caused by SARS-CoV-2 mostly affects the upper and lower respiratory tracts and causes symptoms ranging from the common cold to pneumonia with acute respiratory distress syndrome. Chemokines are deeply involved in the chemoattraction, proliferation, and activation of immune cells within inflammation. It is crucial to consider that mutations within the virion can potentially affect the clinical course of SARS-CoV-2 infection because disease severity and manifestation vary depending on the genetic variant. Our objective was to measure and assess the different concentrations of chemokines involved in COVID-19 caused by different variants of the virus. METHODS: We used the blood plasma of patients infected with different variants of SARS-CoV-2, i.e., the ancestral Wuhan strain and the Alpha, Delta, and Omicron variants. We measured the concentrations of 11 chemokines in the samples: CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1ß, CCL7/MCP-3, CCL11/Eotaxin, CCL22/MDC, CXCL1/GROα, CXCL8/IL-8, CXCL9/MIG, CXCL10/IP-10, and CX3CL1/Fractalkine. RESULTS: We noted a statistically significant elevation in the concentrations of CCL2/MCP-1, CXCL8/IL-8, and CXCL1/IP-10 independently of the variant, and a drop in the CCL22/MDC concentrations. CONCLUSIONS: The chemokine concentrations varied significantly depending on the viral variant, leading us to infer that mutations in viral proteins play a role in the cellular and molecular mechanisms of immune responses.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/immunology , Chemokine CXCL10 , Chemokines/blood , Humans , Interleukin-8 , Plasma
14.
Curr Opin Hematol ; 29(5): 266-274, 2022 09 01.
Article in English | MEDLINE | ID: covidwho-1985181

ABSTRACT

PURPOSE OF REVIEW: This review evaluates the different methods used to measure levels of tissue factor (TF) in plasma and on extracellular vesicles (EVs). Levels of TF-positive (TF+) EVs in blood are increased in a variety of diseases, such as cancer, sepsis, and viral infection, and are associated with thrombosis. Highly sensitive assays are required to measure the low levels of TF+ EVs in blood. RECENT FINDINGS: TF antigen levels in plasma have been measured using standard ELISAs, SimpleStep ELISA technology, and solid-phase proximity ligation assay. Some studies reported the detection of TF+ EVs in plasma by flow cytometry. In addition, TF+ EVs can be captured onto beads and chips using anti-TF antibodies. Several assays have been developed to measure TF activity in EVs isolated from plasma. Importantly, activity-based assays are more sensitive than antigen-based assays as a single TF/FVIIa complex can generate large amounts of FXa. SUMMARY: We recommend isolating EVs from plasma and measuring TF activity using a functional assay in the presence and absence of an anti-TF antibody. We do not recommend using antigen-based assays as these are not sensitive enough to detect the low levels of TF in plasma.


Subject(s)
Extracellular Vesicles , Thrombosis , Humans , Plasma , Thromboplastin
15.
Nat Biomed Eng ; 6(8): 968-978, 2022 08.
Article in English | MEDLINE | ID: covidwho-1984391

ABSTRACT

Rapid, accurate and frequent detection of the RNA of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) and of serological host antibodies to the virus would facilitate the determination of the immune status of individuals who have Coronavirus disease 2019 (COVID-19), were previously infected by the virus, or were vaccinated against the disease. Here we describe the development and application of a 3D-printed lab-on-a-chip that concurrently detects, via multiplexed electrochemical outputs and within 2 h, SARS-CoV-2 RNA in saliva as well as anti-SARS-CoV-2 immunoglobulins in saliva spiked with blood plasma. The device automatedly extracts, concentrates and amplifies SARS-CoV-2 RNA from unprocessed saliva, and integrates the Cas12a-based enzymatic detection of SARS-CoV-2 RNA via isothermal nucleic acid amplification with a sandwich-based enzyme-linked immunosorbent assay on electrodes functionalized with the Spike S1, nucleocapsid and receptor-binding-domain antigens of SARS-CoV-2. Inexpensive microfluidic electrochemical sensors for performing multiplexed diagnostics at the point of care may facilitate the widespread monitoring of COVID-19 infection and immunity.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , Humans , Lab-On-A-Chip Devices , Plasma , RNA, Viral , Saliva , Spike Glycoprotein, Coronavirus
17.
J Nutr ; 152(7): 1783-1791, 2022 07 06.
Article in English | MEDLINE | ID: covidwho-1967899

ABSTRACT

BACKGROUND: Specialized pro-resolving mediators (SPMs), synthesized from PUFAs, resolve inflammation and return damaged tissue to homeostasis. Thus, increasing metabolites of the SPM biosynthetic pathway may have potential health benefits for select clinical populations, such as subjects with obesity who display dysregulation of SPM metabolism. However, the concentrations of SPMs and their metabolic intermediates in humans with obesity remains unclear. OBJECTIVES: The primary objective of this study was to determine if a marine oil supplement increased specific metabolites of the SPM biosynthetic pathway in adults with obesity. The second objective was to determine if the supplement changed the relative abundance of key immune cell populations. Finally, given the critical role of antibodies in inflammation, we determined if ex vivo CD19 + B-cell antibody production was modified by marine oil intervention. METHODS: Twenty-three subjects [median age: 56 y; BMI (in kg/m2): 33.1] consumed 2 g/d of a marine oil supplement for 28-30 d. The supplement was particularly enriched with 18-hydroxyeicosapentaenoic (HEPE), 14-hydroxydocosahexaenoic acid (14-HDHA), and 17-HDHA. Blood was collected pre- and postsupplementation for plasma mass spectrometry oxylipin and fatty acid analyses, flow cytometry, and B-cell isolation. Paired t-tests and Wilcoxon tests were used for statistical analyses. RESULTS: Relative to preintervention, the supplement increased 6 different HEPEs and HDHAs accompanied by changes in plasma PUFAs. Resolvin E1 and docosapentaenoic acid-derived maresin 1 concentrations were increased 3.5- and 4.7-fold upon intervention, respectively. The supplement did not increase the concentration of D-series resolvins and had no effect on the abundance of immune cells. Ex vivo B-cell IgG but not IgM concentrations were lowered postsupplementation. CONCLUSIONS: A marine oil supplement increased select SPMs and their metabolic intermediates in adults with obesity. Additional studies are needed to determine if increased concentrations of specific SPMs control the resolution of inflammation in humans with obesity. This trial was registered at clinicaltrials.gov as NCT04701138.


Subject(s)
Fatty Acids, Omega-3 , Adult , Dietary Supplements , Docosahexaenoic Acids , Humans , Inflammation , Inflammation Mediators , Middle Aged , Obesity , Plasma
18.
BMJ Open ; 12(4): e055189, 2022 04 06.
Article in English | MEDLINE | ID: covidwho-1962215

ABSTRACT

IMPORTANCE: No proven treatment is available for severely ill COVID-19. Therapeutic use of COVID-19 convalescent plasma (COPLA) is under investigation. OBJECTIVE: To compare the efficacy of COPLA with standard medical therapy (SMT) alone in severe COVID-19 patients. DESIGN, SETTING AND PARTICIPANTS: A multicentric, open-labelled, phase-III randomised controlled trial conducted at two treatment centres with COPLA collected at the third dedicated centre in North-India, the coordinating centre during trial from June 2020 to December 2020. The study population comprised 400 participants in the ratio of 1:1 in each treatment group. INTERVENTION: One group received COPLA with SMT (n=200), and another group received SMT only (n=200). MAIN OUTCOME MEASURES: Primary outcome was time to clinical improvement measured by a two-point reduction in the ordinal scale. Secondary outcomes included duration of O2 therapy, the proportion of patients on mechanical ventilation at day-7, mortality, SARS-CoV-2 antibody levels, cytokine levels and incidence of adverse events. RESULTS: The median time to a two-point reduction in the ordinal scale in both groups was 9 days (IQR=7-13) (p=0.328). The median duration of O2 therapy was 8 days (IQR=6-12) in COPLA and 10 days (IQR=6-12) in SMT group (p=0.64). The PaO2/FiO2 ratio showed significant improvement at 7 days in COPLA group(p=0.036). There was no difference in mortality till 28 days in both groups (p=0.62). However, if COPLA was given within 3 days of hospital admission, a significant reduction in ordinal scale was observed (p=0.04). Neutralising antibody titres in COPLA group (80 (IQR 80-80)) were higher than SMT group (0 (IQR 0-80)) at 48 hours (p=0.001). COPLA therapy led to a significant reduction in TNF-α levels at 48 hours (p=0.048) and D-dimer at 7 days (p=0.02). Mild allergic reactions were observed in 3 (1.5%) patients in COPLA group. CONCLUSION AND RELEVANCE: Convalescent plasma with adequate antibody titres should be transfused in COVID-19 patients along with SMT in the initial 3 days of hospitalisation for better clinical outcomes. TRIAL REGISTRATION NUMBER: NCT04425915.


Subject(s)
COVID-19 , COVID-19/therapy , Humans , Immunization, Passive , Plasma , SARS-CoV-2 , Treatment Outcome
19.
BMC Infect Dis ; 21(1): 1014, 2021 Sep 27.
Article in English | MEDLINE | ID: covidwho-1916929

ABSTRACT

BACKGROUND: Convalescent plasma(CP) was utilized as potential therapy during COVID-19 pandemic in Pakistan. The study aimed at appraisal of CP transfusion safety and usefulness in COVID pneumonia. METHODS: Single arm, MEURI study design of non-randomized open label trial was conducted in five centers. Patients werecategorized as moderately severe, severe, and critical. The primary endpoint was a) improvement in clinical status and change in category of disease severity; secondary endpoint was b) CP ability to halt disease progression to invasive ventilation. CP transfused to hospitalized patients. Statistical tests including median (interquartile ranges), Mann-Whitney U test, Fisher's exact test using SPSS ver. 23, ANOVA and Chi-square test were applied for the analysis of results parameters before and after CP treatment. SOFA score was applied for multiorgan failure in severe and critical cases. RESULTS: A total of 50 adult patients; median age 58.5 years (range: 29-92 years) received CP with infusion titers; median 1:320 U/mL (Interquartile range 1:80-1:320) between April 4 to May 5, 2020. The median time from onset of symptoms to enrollment in trial was 3 to 7 days with shortness of breath and lung infiltration as severity criterion. In 35 (70%) recipients, oxygen saturation improved from 80 to 95% within 72h, with resolution of lung infiltrates. Primary endpoint was achieved in 44 (88%) recipients whereas secondary endpoint was achieved in 42 (84%). No patient experienced severe adverse events. A high SOFA score (> 7) correlated with deaths in severe and critical patients. Eight (16%) patients expired due to comorbidities; cardiac arrest in 2 (4%), multiorgan failure secondary to cytokine storm in 5 (10%) and ventilator associated complications in 1 (2%). CONCLUSION: CP transfusion can be used as a safe and useful treatment in moderately severe and severe patients. TRIAL REGISTRATION: The trial registration number is NCT04352751  ( https://www.irct.ir/search/result?query=IRCT20200414047072N1 ). Trial Registration date is 28th April 2020.


Subject(s)
COVID-19 , Pandemics , Adult , Aged , Aged, 80 and over , Blood Component Transfusion , COVID-19/therapy , Humans , Immunization, Passive , Middle Aged , Pakistan , Plasma , SARS-CoV-2 , Treatment Outcome
20.
Biosensors (Basel) ; 12(6)2022 Jun 14.
Article in English | MEDLINE | ID: covidwho-1903262

ABSTRACT

Interleukin-6 (IL-6) is a biomarker of inflammation, the advanced stage of COVID-19, and several cancers, including ovarian cancer. Two biosensors for the determination of IL-6 in blood plasma by array SPRi have been developed. One of these biosensors consists of the mouse monoclonal anti-IL-6 antibody as the receptor immobilized via the cysteamine linker. The second contains galiellalactone as the receptor, being an inhibitor specific for IL-6, immobilized via octadecanethiol (ODM) as the linker. Both biosensors are specific for IL-6. The biosensor with the antibody as the receptor gives a linear analytical response between 3 (LOQ) and 20 pg mL-1 and has a precision between 8% and 9.8% and recovery between 97% and 107%, depending on the IL-6 concentration. The biosensor with galiellalactone as the receptor gives a linear analytical response between 1.1 (LOQ) and 20 pg mL-1, and has a precision between 3.5% and 9.3% and recovery between 101% and 105%, depending on IL-6 concentration. Both biosensors were validated. Changes in IL-6 concentration in blood plasma before and after resection of ovarian tumor and endometrial cyst, as determined by the two developed biosensors, are given as an example of a real clinical application.


Subject(s)
Biosensing Techniques , COVID-19 , Ovarian Neoplasms , Animals , Female , Humans , Interleukin-6 , Mice , Plasma
SELECTION OF CITATIONS
SEARCH DETAIL