Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
EBioMedicine ; 74: 103723, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1536518

ABSTRACT

BACKGROUND: COVID-19 has caused millions of deaths globally, yet the cellular mechanisms underlying the various effects of the disease remain poorly understood. Recently, a new analytical platform for comprehensive analysis of plasma protein profiles using proximity extension assays combined with next generation sequencing has been developed, which allows for multiple proteins to be analyzed simultaneously without sacrifice on accuracy or sensitivity. METHODS: We analyzed the plasma protein profiles of COVID-19 patients (n = 50) with mild and moderate symptoms by comparing the protein levels in newly diagnosed patients with the protein levels in the same individuals after 14 days. FINDINGS: The study has identified more than 200 proteins that are significantly elevated during infection and many of these are related to cytokine response and other immune-related functions. In addition, several other proteins are shown to be elevated, including SCARB2, a host cell receptor protein involved in virus entry. A comparison with the plasma protein response in patients with severe symptoms shows a highly similar pattern, but with some interesting differences. INTERPRETATION: The study presented here demonstrates the usefulness of "next generation plasma protein profiling" to identify molecular signatures of importance for disease progression and to allow monitoring of disease during recovery from the infection. The results will facilitate further studies to understand the molecular mechanism of the immune-related response of the SARS-CoV-2 virus. FUNDING: This work was financially supported by Knut and Alice Wallenberg Foundation.


Subject(s)
Blood Proteins/classification , Blood Proteins/metabolism , COVID-19/blood , COVID-19/pathology , Plasma/chemistry , Disease Progression , Gene Expression Profiling , High-Throughput Screening Assays , Humans , Proteome/metabolism , SARS-CoV-2/immunology , Severity of Illness Index
2.
Int J Mol Sci ; 22(21)2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1512379

ABSTRACT

The research presented herein follows an urgent global need for the development of novel surface engineering techniques that would allow the fabrication of next-generation cardiovascular stents, which would drastically reduce cardiovascular diseases (CVD). The combination of hydrothermal treatment (HT) and treatment with highly reactive oxygen plasma (P) allowed for the formation of an oxygen-rich nanostructured surface. The morphology, surface roughness, chemical composition and wettability of the newly prepared oxide layer on the Ti substrate were characterized by scanning electron microscopy (SEM) with energy-dispersive X-ray analysis (EDX), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and water contact angle (WCA) analysis. The alteration of surface characteristics influenced the material's bio-performance; platelet aggregation and activation was reduced on surfaces treated by hydrothermal treatment, as well as after plasma treatment. Moreover, it was shown that surfaces treated by both treatment procedures (HT and P) promoted the adhesion and proliferation of vascular endothelial cells, while at the same time inhibiting the adhesion and proliferation of vascular smooth muscle cells. The combination of both techniques presents a novel approach for the fabrication of vascular implants, with superior characteristics.


Subject(s)
Endothelial Cells/cytology , Muscle, Smooth, Vascular/cytology , Plasma/chemistry , Titanium/chemistry , Cell Adhesion , Cell Line , Cell Proliferation , Humans , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Nanostructures , Particle Size , Stents , Surface Properties , Wettability
3.
Biomed Chromatogr ; 36(1): e5238, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1380369

ABSTRACT

Sofosbuvir is a direct-acting antiviral drug that inhibits hepatitis C virus (HCV) NS5B polymerase, which in turn affects the virus replication inside biological systems. The clinical importance of sofosbuvir is based not only on its effect on HCV but also on other lethal viruses such as Zika and severe acute respiratory syndrome coronavirus disease 2019 (SARS-COVID-19). Accordingly, there is a continuous shedding of light on the development and validation of accurate and fast analytical methods for the determination of sofosbuvir in different environments. This work critically reviews the recent advances in chromatographic methods for the analysis of sofosbuvir and/or its metabolites in pure samples, pharmaceutical dosage forms, and in the presence of other co-administered drugs to highlight the current status and future perspectives to enhance its determination in different matrixes.


Subject(s)
Antiviral Agents/blood , Chromatography/methods , Hepatitis C, Chronic/drug therapy , Sofosbuvir/blood , Antiviral Agents/therapeutic use , Hepatitis C, Chronic/blood , Humans , Plasma/chemistry , Sofosbuvir/therapeutic use
4.
Diabetes Metab Syndr ; 15(5): 102240, 2021.
Article in English | MEDLINE | ID: covidwho-1347578

ABSTRACT

AIMS: To evaluate calculated total plasma osmolality as a marker of outcome prediction, fluid and metabolic balance, thrombotic risk in severe COVID-19 patients. METHODS: Retrospective data of RT-PCR confirmed hospitalized severe COVID-19 patients (total: n = 175 patients, including diabetic subset: n = 102) were analyzed. Clinically applicable cut-offs were derived using receiver operating characteristic (ROC) curve analysis for calculated total osmolality, eGFR, and D-dimer, and their correlations were studied. RESULTS: Among 175 severe COVID-19 patients, a significant association with mortality was seen with respect to calculated total osmolality (p < 0.001), eGFR (p < 0.001), and D-dimer (p < 0.001). In the total cohort, applicable cut-offs based on ROC curve in predicting outcome were, for total osmolality 299 mosm/kg (area under the curve (AUC)-0.773, odds ratio (OR)-1.09), eGFR 61.5 ml/min/m2 (AUC-0.789, OR-0.96), D-dimer 5.13 (AUC-0.814, OR-2.65) respectively. In diabetic subset, the cut-offs for total osmolality were 298 mosm/kg (AUC-0.794, OR-1.12), eGFR 44.9 ml/min/m2 (AUC-0.774, OR-0.96) and D-dimer 1.59 (AUC-0.769, OR-1.52) respectively. CONCLUSIONS: Applicable cut-offs for calculated total plasma osmolality, eGFR, and D-dimer predicts clinical outcome in severe COVID-19 with and without diabetes. Correlation studies validated calculated total osmolality as a marker of the combined effect of fluid and metabolic imbalance, compromised renal function and hypercoagulability.


Subject(s)
COVID-19/diagnosis , Glomerular Filtration Rate/physiology , Plasma/chemistry , Biomarkers/blood , Blood Coagulation/physiology , COVID-19/blood , COVID-19/physiopathology , COVID-19/therapy , Cohort Studies , Diabetes Complications/blood , Diabetes Complications/diagnosis , Diabetes Complications/physiopathology , Diabetes Complications/therapy , Female , Fibrin Fibrinogen Degradation Products/analysis , Fibrin Fibrinogen Degradation Products/metabolism , Humans , India , Male , Middle Aged , Osmolar Concentration , Patient Admission/statistics & numerical data , Prognosis , Retrospective Studies , Risk Factors , Severity of Illness Index , Thrombosis/blood , Thrombosis/diagnosis , Thrombosis/etiology , Thrombosis/physiopathology , Water-Electrolyte Balance/physiology
5.
Cell Rep Med ; 2(8): 100369, 2021 08 17.
Article in English | MEDLINE | ID: covidwho-1322391

ABSTRACT

There is an urgent need to identify which COVID-19 patients will develop life-threatening illness so that medical resources can be optimally allocated and rapid treatment can be administered early in the disease course, when clinical management is most effective. To aid in the prognostic classification of disease severity, we perform untargeted metabolomics on plasma from 339 patients, with samples collected at six longitudinal time points. Using the temporal metabolic profiles and machine learning, we build a predictive model of disease severity. We discover that a panel of metabolites measured at the time of study entry successfully determines disease severity. Through analysis of longitudinal samples, we confirm that most of these markers are directly related to disease progression and that their levels return to baseline upon disease recovery. Finally, we validate that these metabolites are also altered in a hamster model of COVID-19.


Subject(s)
COVID-19/metabolism , Plasma/metabolism , SARS-CoV-2/metabolism , Adult , Biomarkers/blood , Female , Humans , Longitudinal Studies , Machine Learning , Male , Metabolome , Metabolomics/methods , Middle Aged , Patient Acuity , Plasma/chemistry , Prognosis , Severity of Illness Index
6.
J Extracell Vesicles ; 10(9): e12117, 2021 07.
Article in English | MEDLINE | ID: covidwho-1293203

ABSTRACT

Coronavirus disease-2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has lead to a global pandemic with a rising toll in infections and deaths. Better understanding of its pathogenesis will greatly improve the outcomes and treatment of affected patients. Here we compared the inflammatory and cardiovascular disease-related protein cargo of circulating large and small extracellular vesicles (EVs) from 84 hospitalized patients infected with SARS-CoV-2 with different stages of disease severity. Our findings reveal significant enrichment of proinflammatory, procoagulation, immunoregulatory and tissue-remodelling protein signatures in EVs, which remarkably distinguished symptomatic COVID-19 patients from uninfected controls with matched comorbidities and delineated those with moderate disease from those who were critically ill. Specifically, EN-RAGE, followed by TF and IL-18R1, showed the strongest correlation with disease severity and length of hospitalization. Importantly, EVs from COVID-19 patients induced apoptosis of pulmonary microvascular endothelial cells in the order of disease severity. In conclusion, our findings support a role for EVs in the pathogenesis of COVID-19 disease and underpin the development of EV-based approaches to predicting disease severity, determining need for patient hospitalization and identifying new therapeutic targets.


Subject(s)
COVID-19/pathology , COVID-19/physiopathology , Adult , Apoptosis , Endothelial Cells/pathology , Extracellular Vesicles/chemistry , Extracellular Vesicles/pathology , Female , Humans , Length of Stay , Male , Middle Aged , Plasma/chemistry , Plasma/cytology , S100A12 Protein/analysis , Severity of Illness Index , Young Adult
7.
PLoS One ; 16(4): e0249938, 2021.
Article in English | MEDLINE | ID: covidwho-1206195

ABSTRACT

This study compared the performance of four serology assays for Coronavirus Disease 2019 (COVID-19) and investigated whether COVID-19 disease history correlates with assay performance. Samples were tested at Northshore using the Elecsys Anti-SARS-CoV-2 (Roche Diagnostics), Access SARS-CoV-2 IgG anti-RBD (Beckman Coulter), and LIAISON SARS-CoV-2 S1/S2 IgG (DiaSorin) as well as at Genalyte using Maverick Multi-Antigen Serology Panel. The study included one hundred clinical samples collected before December 2019 and ninety-seven samples collected from convalescent plasma donors originally diagnosed with COVID-19 by PCR. COVID-19 disease history was self-reported by the plasma donors. There was no difference in specificity between the assays tested. Clinical sensitivity of these four tests was 98% (Genalyte), 96% (Roche), 92% (DiaSorin), and 87% (Beckman). The only statistically significant differences in clinical sensitivity was between the Beckman assay and both Genalyte and Roche assays. Convalescent plasma donor characteristics and disease symptoms did not correlate with false negative results from the Beckman and DiaSorin assays. All four tests showed high specificity (100%) and varying sensitivities (89-98%). No correlations between disease history and serology results were observed. The Genalyte Multiplex assay showed as good or better sensitivity to three other previously validated assays with FDA Emergency Use Authorizations.


Subject(s)
COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Viral/immunology , Female , Humans , Immunization, Passive/methods , Immunoglobulin G/immunology , Male , Middle Aged , Plasma/chemistry , Plasma/immunology , SARS-CoV-2/pathogenicity , Sensitivity and Specificity , Serologic Tests/methods
9.
Sci Rep ; 11(1): 5563, 2021 03 10.
Article in English | MEDLINE | ID: covidwho-1125955

ABSTRACT

While there are various attempts to administer COVID-19-convalescent plasmas to SARS-CoV-2-infected patients, neither appropriate approach nor clinical utility has been established. We examined the presence and temporal changes of the neutralizing activity of IgG fractions from 43 COVID-19-convalescent plasmas using cell-based assays with multiple endpoints. IgG fractions from 27 cases (62.8%) had significant neutralizing activity and moderately to potently inhibited SARS-CoV-2 infection in cell-based assays; however, no detectable neutralizing activity was found in 16 cases (37.2%). Approximately half of the patients (~ 41%), who had significant neutralizing activity, lost the neutralization activity within ~ 1 month. Despite the rapid decline of neutralizing activity in plasmas, good amounts of SARS-CoV-2-S1-binding antibodies were persistently seen. The longer exposure of COVID-19 patients to greater amounts of SARS-CoV-2 elicits potent immune response to SARS-CoV-2, producing greater neutralization activity and SARS-CoV-2-S1-binding antibody amounts. The dilution of highly-neutralizing plasmas with poorly-neutralizing plasmas relatively readily reduced neutralizing activity. The presence of good amounts of SARS-CoV-2-S1-binding antibodies does not serve as a surrogate ensuring the presence of good neutralizing activity. In selecting good COVID-19-convalescent plasmas, quantification of neutralizing activity in each plasma sample before collection and use is required.


Subject(s)
COVID-19/immunology , COVID-19/therapy , Immunoglobulin G/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , Female , Humans , Immunization, Passive/methods , Male , Middle Aged , Pandemics/prevention & control , Plasma/chemistry , Receptors, Virus/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
10.
Sci Rep ; 11(1): 5558, 2021 03 10.
Article in English | MEDLINE | ID: covidwho-1125779

ABSTRACT

The recent COVID-19 pandemic poses a serious threat to global public health, thus there is an urgent need to define the molecular mechanisms involved in SARS-CoV-2 spike (S) protein-mediated virus entry that is essential for preventing and/or treating this emerging infectious disease. In this study, we examined the blocking activity of human COVID-19 convalescent plasma by cell-cell fusion assays using SARS-CoV-2-S-transfected 293 T as effector cells and ACE2-expressing 293 T as target cells. We demonstrate that the SARS-CoV-2 S protein exhibits a very high capacity for membrane fusion and is efficient in mediating virus fusion and entry into target cells. Importantly, we find that COVID-19 convalescent plasma with high titers of IgG neutralizing antibodies can block cell-cell fusion and virus entry by interfering with the SARS-CoV-2-S/ACE2 or SARS-CoV-S/ACE2 interactions. These findings suggest that COVID-19 convalescent plasma may not only inhibit SARS-CoV-2-S but also cross-neutralize SARS-CoV-S-mediated membrane fusion and virus entry, supporting its potential as a preventive and/or therapeutic agent against SARS-CoV-2 as well as other SARS-CoV infections.


Subject(s)
COVID-19/immunology , COVID-19/therapy , Spike Glycoprotein, Coronavirus/immunology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , Cell Fusion/methods , Female , Humans , Immunization, Passive/methods , Male , Membrane Fusion/drug effects , Middle Aged , Pandemics/prevention & control , Plasma/chemistry , Receptors, Virus/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects
11.
J Pharm Biomed Anal ; 197: 113956, 2021 Apr 15.
Article in English | MEDLINE | ID: covidwho-1078045

ABSTRACT

The clinically tested KCa3.1 channel blocker, senicapoc, has been proven to have excellent pharmacological properties and prior clinical trials found it to be safe for use in patients with sickle cell anaemia. Currently, several preclinical projects are aiming to repurpose senicapoc for other indications, but well-described analytical methods in the literature are lacking. Our aim was to develop a sensitive, rapid and accurate ultra-high-performance liquid chromatography-tandem mass spectrometry method using pneumatically assisted electrospray ionisation (UHPLC-ESI-MS/MS) suitable for the determination of senicapoc in plasma samples. Unfortunately, direct analysis of senicapoc in crude acetonitrile extracts of human plasma samples by UHPLC-ESI-MS/MS was subjected to significant and variable ion suppression from coeluting phospholipids (PLs). The interferences were mainly caused by the presence of phosphatidylcholine and phosphatidylethanolamine classes of PLs, including their lyso-products. However, the PLs were easily removed from crude extracts by filtration through a sorbent with Lewis acid properties which decreased the total ion suppression effect to approximately 5%. Based on this technique, a simple high-throughput UHPLC-MS/MS method was developed and validated for the determination of senicapoc in 100-µL plasma samples. The lower limit of quantification was 0.1 ng/mL. The mean true extraction recovery was close to 100 %. The relative intra-laboratory reproducibility standard deviations of the measured concentrations were 8% and 4% at concentrations of 0.1 ng/mL and 250 ng/mL, respectively. The trueness expressed as the relative bias of the test results was within ± 2% at concentrations of 1 ng/mL or higher.


Subject(s)
Acetamides/blood , Chromatography, High Pressure Liquid/methods , Plasma/chemistry , Tandem Mass Spectrometry/methods , Trityl Compounds/blood , Animals , Female , Filtration/methods , Humans , Limit of Detection , Phospholipids/blood , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization/methods , Swine
13.
J Pharm Biomed Anal ; 196: 113927, 2021 Mar 20.
Article in English | MEDLINE | ID: covidwho-1051794

ABSTRACT

To administer vitamin C (VC) with precision to patients with the coronavirus disease (COVID-19), we developed an ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to assess plasma VC concentrations. 31 patients with COVID-19 and 51 healthy volunteers were enrolled. VC stability was evaluated in blood, plasma, and precipitant-containing stabilizers. A proportion of 7.7 % of VC was degraded in blood at room temperature (RT) (approximately 20-25 °C) at 1.5 h post administration with respect to the proportion degraded at 0.5 h, but without statistical difference. VC was stable in plasma for 0.75 h at RT, 2 h at 4 °C, 5 days at -40 °C, and 4 h in precipitant-containing stabilizer (2 % oxalic acid) at RT. The mean plasma concentration of VC in patients with COVID-19 was 2.00 mg/L (0.5-4.90) (n = 8), which was almost 5-fold lower than that in healthy volunteers (9.23 mg/L (3.09. 35.30)) (n = 51). After high-dose VC treatment, the mean VC concentration increased to 13.46 mg/L (3.93. 34.70) (n = 36), higher than that in healthy volunteers, and was within the normal range (6-20 mg/L). In summary, we developed a simple UPLC-MS/MS method to quantify VC in plasma, and determined the duration for which the sample remained stable. VC levels in patients with COVID-19 were considerably low, and supplementation at 100 mg/kg/day is considered highly essential.


Subject(s)
Ascorbic Acid/blood , Ascorbic Acid/pharmacology , COVID-19/blood , COVID-19/prevention & control , Adult , Aged , Chromatography, High Pressure Liquid/methods , Dietary Supplements , Female , Humans , Male , Middle Aged , Plasma/chemistry , Reference Values , SARS-CoV-2/pathogenicity , Tandem Mass Spectrometry/methods , Young Adult
16.
Int J Infect Dis ; 98: 334-346, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-703039

ABSTRACT

BACKGROUND: Convalescent plasma (CP) has been used successfully to treat many types of infectious disease, and has shown initial effects in the treatment of the emerging 2019 coronavirus disease (COVID-19). However, its curative effects and feasibility have yet to be confirmed by formal evaluation and well-designed clinical trials. To explore the effectiveness of treatment and predict the potential effects of CP with COVID-19, studies of different types of infectious disease treated with CP were included in this systematic review and meta-analysis. METHODS: Related studies were obtained from databases and screened according to the inclusion criteria. The data quality was assessed, and the data were extracted and pooled for analysis. RESULTS: 40 studies on CP treatment for infectious diseases were included. Our study found that CP treatment could reduce the risk of mortality, with a low incidence of adverse events, promote the production of antibodies, lead to a decline in viral load, and shorten the disease course. A meta-analysis of 15 controlled studies showed that there was a significantly lower mortality rate in the group treated with CP (pooled OR=0.32; 95% CI=0.19-0.52; p<0.001, I2=54%) compared with the control groups. Studies were mostly of low or very low quality, with a moderate or high risk of bias. The sources of clinical and methodological heterogeneity were identified. The exclusion of heterogeneity indicated that the results were stable. CONCLUSIONS: CP therapy has some curative effect and is well tolerated in treating infectious diseases. It is a potentially effective treatment for COVID-19.


Subject(s)
Antibodies, Viral/administration & dosage , Betacoronavirus/physiology , Coronavirus Infections/therapy , Plasma/chemistry , Pneumonia, Viral/therapy , Antibodies, Viral/immunology , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/virology , Humans , Immunization, Passive , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Treatment Outcome , Viral Load
19.
PLoS One ; 15(5): e0233947, 2020.
Article in English | MEDLINE | ID: covidwho-432093

ABSTRACT

BACKGROUND: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has recently been identified as the causative agent for Coronavirus Disease 2019 (COVID-19). The ability of this agent to be transmitted by blood transfusion has not been documented, although viral RNA has been detected in serum. Exposure to treatment with riboflavin and ultraviolet light (R + UV) reduces blood-borne pathogens while maintaining blood product quality. Here, we report on the efficacy of R + UV in reducing SARS-CoV-2 infectivity when tested in human plasma and whole blood products. STUDY DESIGN AND METHODS: SARS-CoV-2 (isolate USA-WA1/2020) was used to inoculate plasma and whole blood units that then underwent treatment with riboflavin and UV light (Mirasol Pathogen Reduction Technology System, Terumo BCT, Lakewood, CO). The infectious titers of SARS-CoV-2 in the samples before and after R + UV treatment were determined by plaque assay on Vero E6 cells. Each plasma pool (n = 9) underwent R + UV treatment performed in triplicate using individual units of plasma and then repeated using individual whole blood donations (n = 3). RESULTS: Riboflavin and UV light reduced the infectious titer of SARS-CoV-2 below the limit of detection for plasma products at 60-100% of the recommended energy dose. At the UV light dose recommended by the manufacturer, the mean log reductions in the viral titers were ≥ 4.79 ± 0.15 Logs in plasma and 3.30 ± 0.26 in whole blood units. CONCLUSION: Riboflavin and UV light effectively reduced the titer of SARS-CoV-2 to the limit of detection in human plasma and by 3.30 ± 0.26 on average in whole blood. Two clades of SARS-CoV-2 have been described and questions remain about whether exposure to one strain confers strong immunity to the other. Pathogen-reduced blood products may be a safer option for critically ill patients with COVID-19, particularly those in high-risk categories.


Subject(s)
Betacoronavirus/drug effects , Betacoronavirus/radiation effects , Riboflavin/pharmacology , Ultraviolet Rays , Betacoronavirus/growth & development , Blood Chemical Analysis , Blood Transfusion , COVID-19 , Coronavirus Infections/therapy , Coronavirus Infections/transmission , Coronavirus Infections/virology , Humans , Immunization, Passive , Pandemics , Plasma/chemistry , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , RNA, Viral/analysis , SARS-CoV-2 , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL