Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
2.
J Clin Immunol ; 42(2): 232-239, 2022 02.
Article in English | MEDLINE | ID: covidwho-1838372

ABSTRACT

PURPOSE: To study the effect of interferon-α2 auto-antibodies (IFN-α2 Abs) on clinical and virological outcomes in critically ill COVID-19 patients and the risk of IFN-α2 Abs transfer during convalescent plasma treatment. METHODS: Sera from healthy controls, cases of COVID-19, and other respiratory illness were tested for IFN-α2 Abs by ELISA and a pseudo virus-based neutralization assay. The effects of disease severity, sex, and age on the risk of having neutralizing IFN-α2 Abs were determined. Longitudinal analyses were performed to determine association between IFN-α2 Abs and survival and viral load and whether serum IFN-α2 Abs appeared after convalescent plasma transfusion. RESULTS: IFN-α2 neutralizing sera were found only in COVID-19 patients, with proportions increasing with disease severity and age. In the acute stage of COVID-19, all sera from patients with ELISA-detected IFN-α2 Abs (13/164, 7.9%) neutralized levels of IFN-α2 exceeding physiological concentrations found in human plasma and this was associated with delayed viral clearance. Convalescent plasma donors that were anti-IFN-α2 ELISA positive (3/118, 2.5%) did not neutralize the same levels of IFN-α2. Neutralizing serum IFN-α2 Abs were associated with delayed viral clearance from the respiratory tract. CONCLUSIONS: IFN-α2 Abs were detected by ELISA and neutralization assay in COVID-19 patients, but not in ICU patients with other respiratory illnesses. The presence of neutralizing IFN-α2 Abs in critically ill COVID-19 is associated with delayed viral clearance. IFN-α2 Abs in COVID-19 convalescent plasma donors were not neutralizing in the conditions tested.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , COVID-19/therapy , Interferon alpha-2/immunology , Plasma/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antiviral Agents/immunology , Blood Component Transfusion/methods , Critical Illness , Female , Humans , Immunization, Passive/methods , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2/immunology
3.
J Clin Apher ; 36(4): 628-633, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1748739

ABSTRACT

BACKGROUND: Criteria for selection of FFP blood type has not been clearly established and use of group AB plasma is preferred by numerous transplantation protocols. AIMS: This study assesses the safety and efficacy of alternative group A or B plasma in ABO incompatible solid organ transplantation. MATERIALS & METHODS: Alternative use of group A or B plasma (incompatible plasma) was inevitable during the shortage of group AB plasma. Experience from select number of patients during the period of extreme group AB plasma shortage is described. RESULTS: The result of alternative use of group A or B plasma was within expectation, showing effective reduction of isoagglutinin titers for pre-operative desensitization and efficacy for treatment of post-operative patients. No immediate hemolytic transfusion reaction was reported. DISCUSSION: While validation in a larger cohort of patients is necessary, our limited experience have shown satisfactory clinical outcomes without adverse events. CONCLUSIONS: Use of incompatible group A or B plasma is a viable option when group AB plasma is limited.


Subject(s)
ABO Blood-Group System , Blood Group Incompatibility/therapy , Plasma Exchange/methods , Transplantation/methods , Agglutinins/chemistry , Blood Banks/supply & distribution , Graft Survival , Hemolysis , Humans , Kidney Transplantation/adverse effects , Patient Safety , Plasma/immunology , Plasmapheresis , Transfusion Reaction , Treatment Outcome
5.
Microbiol Spectr ; 10(1): e0256021, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1700708

ABSTRACT

The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an unprecedented event requiring frequent adaptation to changing clinical circumstances. Convalescent immune plasma (CIP) is a promising treatment that can be mobilized rapidly in a pandemic setting. We tested whether administration of SARS-CoV-2 CIP at hospital admission could reduce the rate of ICU transfer or 28-day mortality or alter levels of specific antibody responses before and after CIP infusion. In a single-arm phase II study, patients >18 years-old with respiratory symptoms with confirmed COVID-19 infection who were admitted to a non-ICU bed were administered two units of CIP within 72 h of admission. Levels of SARS-CoV-2 detected by PCR in the respiratory tract and circulating anti-SARS-CoV-2 antibody titers were sequentially measured before and after CIP transfusion. Twenty-nine patients were transfused high titer CIP and 48 contemporaneous comparable controls were identified. All classes of antibodies to the three SARS-CoV-2 target proteins were significantly increased at days 7 and 14 post-transfusion compared with baseline (P < 0.01). Anti-nucleocapsid IgA levels were reduced at day 28, suggesting that the initial rise may have been due to the contribution of CIP. The groups were well-balanced, without statistically significant differences in demographics or co-morbidities or use of remdesivir or dexamethasone. In participants transfused with CIP, the rate of ICU transfer was 13.8% compared to 27.1% for controls with a hazard ratio 0.506 (95% CI 0.165-1.554), and 28-day mortality was 6.9% compared to 10.4% for controls, hazard ratio 0.640 (95% CI 0.124-3.298). IMPORTANCE Transfusion of high-titer CIP to non-critically ill patients early after admission with COVID-19 respiratory disease was associated with significantly increased anti-SARS-CoV-2 specific antibodies (compared to baseline) and a non-significant reduction in ICU transfer and death (compared to controls). This prospective phase II trial provides a suggestion that the antiviral effects of CIP from early in the COVID-19 pandemic may delay progression to critical illness and death in specific patient populations. This study informs the optimal timing and potential population of use for CIP in COVID-19, particularly in settings without access to other interventions, or in planning for future coronavirus pandemics.


Subject(s)
Antibodies, Viral/administration & dosage , COVID-19/immunology , COVID-19/therapy , Critical Illness/therapy , Plasma/immunology , SARS-CoV-2/immunology , Aged , COVID-19/mortality , Female , Humans , Immunization, Passive , Male , Middle Aged , Prospective Studies , SARS-CoV-2/genetics
6.
J Clin Immunol ; 42(2): 253-265, 2022 02.
Article in English | MEDLINE | ID: covidwho-1565436

ABSTRACT

Patients with primary antibody deficiency are at risk for severe and in many cases for prolonged COVID-19. Convalescent plasma treatment of immunocompromised individuals could be an option especially in countries with limited access to monoclonal antibody therapies. While studies in immunocompetent COVID19 patients have demonstrated only a limited benefit, evidence for the safety, timing, and effectiveness of this treatment in antibody-deficient patients is lacking. Here, we describe 16 cases with primary antibody deficiency treated with convalescent plasma in four medical centers. In our cohort, treatment was associated with a reduction in viral load and improvement of clinical symptoms, even when applied over a week after onset of infection. There were no relevant side effects besides a short-term fever reaction in one patient. Longitudinal full-genome sequencing revealed the emergence of mutations in the viral genome, potentially conferring an antibody escape in one patient with persistent viral RNA shedding upon plasma treatment. However, he resolved the infection after a second course of plasma treatment. Thus, our data suggest a therapeutic benefit of convalescent plasma treatment in patients with primary antibody deficiency even months after infection. While it appears to be safe, PCR follow-up for SARS-CoV-2 is advisable and early re-treatment might be considered in patients with persistent viral shedding.


Subject(s)
COVID-19/immunology , COVID-19/therapy , Plasma/immunology , Primary Immunodeficiency Diseases/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Child , Female , Humans , Immunization, Passive/methods , Male , Middle Aged , Virus Shedding/immunology , Young Adult
7.
Nat Commun ; 12(1): 6853, 2021 11 25.
Article in English | MEDLINE | ID: covidwho-1537313

ABSTRACT

Transfer of convalescent plasma (CP) had been proposed early during the SARS-CoV-2 pandemic as an accessible therapy, yet trial results worldwide have been mixed, potentially due to the heterogeneous nature of CP. Here we perform deep profiling of SARS-CoV-2-specific antibody titer, Fc-receptor binding, and Fc-mediated functional assays in CP units, as well as in plasma from hospitalized COVID-19 patients before and after CP administration. The profiling results show that, although all recipients exhibit expanded SARS-CoV-2-specific humoral immune responses, CP units contain more functional antibodies than recipient plasma. Meanwhile, CP functional profiles influence the evolution of recipient humoral immunity in conjuncture with the recipient's pre-existing SARS-CoV2-specific antibody titers: CP-derived SARS-CoV-2 nucleocapsid-specific antibody functions are associated with muted humoral immune evolution in patients with high titer anti-spike IgG. Our data thus provide insights into the unexpected impact of CP-derived functional anti-spike and anti-nucleocapsid antibodies on the evolution of SARS-CoV-2-specific response following severe infection.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/therapy , Immunity , Immunization, Passive/methods , Plasma/immunology , Antibodies, Neutralizing/immunology , Blood Donors , Humans , Immunity, Humoral , Nucleocapsid/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
8.
Front Immunol ; 12: 633323, 2021.
Article in English | MEDLINE | ID: covidwho-1523693

ABSTRACT

Background: Convalescent plasma therapy is expected to be a promising alternative to supportive therapy during the SARS-CoV-2 pandemic outbreak. Altered immune response in repetitive convalescent plasma donors has not been widely studied. This case series was reported to analyze the patterns of immune responses and the factors that might influence them in repetitive convalescent plasma donors and increase awareness of COVID-19 survivors to donate their convalescent plasma. Cases Illustration: There were five repetitive donors who were eligible as convalescent plasma donor requirements. It was found two donors who showed increment of anti-SARS-CoV-2 IgG level after donation and two others who showed persistent anti-SARS-CoV-2 IgG level more than two months after recovered. Discussion: There was a difference in immune response in survivors who have the probability of being exposed to same antigens with survivors who did not, where the group of survivors who are at risk of exposure to antigens after recovery could trigger anamnestic immune response that can increase antiSARS-CoV-2 IgG levels. The other factor that influence the prolongation of anti-SARS-CoV-2 IgG levels are the possibility of neutralizing antibodies in plasma upregulation. Conclusion: Immunological phenomenon in SARS-CoV-2, both in survivors and convalescent plasma donors, have not been widely observed and studied. From the case series discussed above, it can be concluded that convalescent plasma donation does not yet have strong evidence of decreasing levels of specific antibodies against SARS-CoV-2 and plasmapheresis procedure is safe to be done without reducing the protective effect of donor antibody post-plasma donation.


Subject(s)
COVID-19/immunology , COVID-19/therapy , Immunoglobulin G/blood , Immunoglobulin G/immunology , Plasma/immunology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Blood Donors , Convalescence , Female , Humans , Immunization, Passive , Indonesia , Male , Middle Aged
9.
mBio ; 12(6): e0297521, 2021 12 21.
Article in English | MEDLINE | ID: covidwho-1518123

ABSTRACT

Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have arisen that exhibit increased viral transmissibility and partial evasion of immunity induced by natural infection and vaccination. To address the specific antibody targets that were affected by recent viral variants, we generated 43 monoclonal antibodies (mAbs) from 10 convalescent donors that bound three distinct domains of the SARS-CoV-2 spike. Viral variants harboring mutations at K417, E484, and N501 could escape most of the highly potent antibodies against the receptor binding domain (RBD). Despite this, we identified 12 neutralizing mAbs against three distinct regions of the spike protein that neutralize SARS-CoV-2 and variants of concern (VOCs), including B.1.1.7 (alpha), P.1 (gamma), and B.1.617.2 (delta). Notably, antibodies targeting distinct epitopes could neutralize discrete variants, suggesting that different variants may have evolved to disrupt the binding of particular neutralizing antibody classes. These results underscore that humans exposed to the first pandemic wave of prototype SARS-CoV-2 possess neutralizing antibodies against current variants and that it is critical to induce antibodies targeting multiple distinct epitopes of the spike that can neutralize emerging variants of concern. IMPORTANCE We describe the binding and neutralization properties of a new set of human monoclonal antibodies derived from memory B cells of 10 coronavirus disease 2019 (COVID-19) convalescent donors in the first pandemic wave of prototype SARS-CoV-2. There were 12 antibodies targeting distinct epitopes on spike, including two sites on the RBD and one on the N-terminal domain (NTD), that displayed cross-neutralization of VOCs, for which distinct antibody targets could neutralize discrete variants. This work underlines that natural infection by SARS-CoV-2 induces effective cross-neutralization against only some VOCs and supports the need for COVID-19 vaccination for robust induction of neutralizing antibodies targeting multiple epitopes of the spike protein to combat the current SARS-CoV-2 VOCs and any others that might emerge in the future.


Subject(s)
Antibodies, Viral/blood , Broadly Neutralizing Antibodies/blood , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , Convalescence , Epitopes/immunology , Female , Humans , Male , Middle Aged , Neutralization Tests , Pandemics , Plasma/immunology , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
10.
Clin Immunol ; 232: 108871, 2021 11.
Article in English | MEDLINE | ID: covidwho-1446516

ABSTRACT

Despite the burgeoning field of coronavirus disease-19 (COVID-19) research, the persistence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralising antibodies remains unclear. This study validated two high-throughput immunological methods for use as surrogate live virus neutralisation assays and employed them to examine the half-life of SARS-CoV-2 neutralising antibodies in convalescent plasma donations made by 42 repeat donors between April and September 2020. SARS-CoV-2 neutralising antibody titres decreased over time but typically remained above the methods' diagnostic cut-offs. Using this longitudinal data, the average half-life of SARS-CoV-2 neutralising antibodies was determined to be 20.4 days. SARS-CoV-2 neutralising antibody titres appear to persist in the majority of donors for several months. Whether these titres confer protection against re-infection requires further study and is of particular relevance as COVID-19 vaccines become widely available.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19/metabolism , Adult , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , Blood Donors , COVID-19/immunology , COVID-19/therapy , Female , Half-Life , Humans , Immunization, Passive , Longitudinal Studies , Male , Middle Aged , Plasma/immunology , Plasma/metabolism , SARS-CoV-2/immunology , Young Adult
11.
PLoS Pathog ; 17(9): e1009958, 2021 09.
Article in English | MEDLINE | ID: covidwho-1440996

ABSTRACT

Cross-reactive epitopes (CREs) are similar epitopes on viruses that are recognized or neutralized by same antibodies. The S protein of SARS-CoV-2, similar to type I fusion proteins of viruses such as HIV-1 envelope (Env) and influenza hemagglutinin, is heavily glycosylated. Viral Env glycans, though host derived, are distinctly processed and thereby recognized or accommodated during antibody responses. In recent years, highly potent and/or broadly neutralizing human monoclonal antibodies (bnAbs) that are generated in chronic HIV-1 infections have been defined. These bnAbs exhibit atypical features such as extensive somatic hypermutations, long complementary determining region (CDR) lengths, tyrosine sulfation and presence of insertions/deletions, enabling them to effectively neutralize diverse HIV-1 viruses despite extensive variations within the core epitopes they recognize. As some of the HIV-1 bnAbs have evolved to recognize the dense viral glycans and cross-reactive epitopes (CREs), we assessed if these bnAbs cross-react with SARS-CoV-2. Several HIV-1 bnAbs showed cross-reactivity with SARS-CoV-2 while one HIV-1 CD4 binding site bnAb, N6, neutralized SARS-CoV-2. Furthermore, neutralizing plasma antibodies of chronically HIV-1 infected children showed cross neutralizing activity against SARS-CoV-2 pseudoviruses. Collectively, our observations suggest that human monoclonal antibodies tolerating extensive epitope variability can be leveraged to neutralize pathogens with related antigenic profile.


Subject(s)
Broadly Neutralizing Antibodies/immunology , HIV Antibodies/immunology , HIV-1/immunology , SARS-CoV-2/immunology , Antibodies, Monoclonal/immunology , COVID-19/immunology , Cross Reactions/immunology , Humans , Plasma/immunology
12.
Viruses ; 12(5)2020 05 06.
Article in English | MEDLINE | ID: covidwho-1389513

ABSTRACT

SARS-CoV-2 enters cells using its Spike protein, which is also the main target of neutralizing antibodies. Therefore, assays to measure how antibodies and sera affect Spike-mediated viral infection are important for studying immunity. Because SARS-CoV-2 is a biosafety-level-3 virus, one way to simplify such assays is to pseudotype biosafety-level-2 viral particles with Spike. Such pseudotyping has now been described for single-cycle lentiviral, retroviral, and vesicular stomatitis virus (VSV) particles, but the reagents and protocols are not widely available. Here, we detailed how to effectively pseudotype lentiviral particles with SARS-CoV-2 Spike and infect 293T cells engineered to express the SARS-CoV-2 receptor, ACE2. We also made all the key experimental reagents available in the BEI Resources repository of ATCC and the NIH. Furthermore, we demonstrated how these pseudotyped lentiviral particles could be used to measure the neutralizing activity of human sera or plasma against SARS-CoV-2 in convenient luciferase-based assays, thereby providing a valuable complement to ELISA-based methods that measure antibody binding rather than neutralization.


Subject(s)
Antibodies, Viral/immunology , Neutralization Tests/methods , Spike Glycoprotein, Coronavirus/analysis , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Containment of Biohazards , HEK293 Cells , Humans , Lentivirus , Peptidyl-Dipeptidase A/metabolism , Plasma/immunology
13.
Trials ; 21(1): 828, 2020 Oct 06.
Article in English | MEDLINE | ID: covidwho-1388814

ABSTRACT

OBJECTIVES: Primary objectives • To assess the time from randomisation until an improvement within 84 days defined as two points on a seven point ordinal scale or live discharge from the hospital in high-risk patients (group 1 to group 4) with SARS-CoV-2 infection requiring hospital admission by infusion of plasma from subjects after convalescence of SARS-CoV-2 infection or standard of care. Secondary objectives • To assess overall survival, and the overall survival rate at 28 56 and 84 days. • To assess SARS-CoV-2 viral clearance and load as well as antibody titres. • To assess the percentage of patients that required mechanical ventilation. • To assess time from randomisation until discharge. TRIAL DESIGN: Randomised, open-label, multicenter phase II trial, designed to assess the clinical outcome of SARS-CoV-2 disease in high-risk patients (group 1 to group 4) following treatment with anti-SARS-CoV-2 convalescent plasma or standard of care. PARTICIPANTS: High-risk patients >18 years of age hospitalized with SARS-CoV-2 infection in 10-15 university medical centres will be included. High-risk is defined as SARS-CoV-2 positive infection with Oxygen saturation at ≤ 94% at ambient air with additional risk features as categorised in 4 groups: • Group 1, pre-existing or concurrent hematological malignancy and/or active cancer therapy (incl. chemotherapy, radiotherapy, surgery) within the last 24 months or less. • Group 2, chronic immunosuppression not meeting the criteria of group 1. • Group 3, age ≥ 50 - 75 years meeting neither the criteria of group 1 nor group 2 and at least one of these criteria: Lymphopenia < 0.8 x G/l and/or D-dimer > 1µg/mL. • Group 4, age ≥ 75 years meeting neither the criteria of group 1 nor group 2. Observation time for all patients is expected to be at least 3 months after entry into the study. Patients receive convalescent plasma for two days (day 1 and day 2) or standard of care. For patients in the standard arm, cross over is allowed from day 10 in case of not improving or worsening clinical condition. Nose/throat swabs for determination of viral load are collected at day 0 and day 1 (before first CP administration) and subsequently at day 2, 3, 5, 7, 10, 14, 28 or until discharge. Serum for SARS-Cov-2 diagnostic is collected at baseline and subsequently at day 3, 7, 14 and once during the follow-up period (between day 35 and day 84). There is a regular follow-up of 3 months. All discharged patients are followed by regular phone calls. All visits, time points and study assessments are summarized in the Trial Schedule (see full protocol Table 1). All participating trial sites will be supplied with study specific visit worksheets that list all assessments and procedures to be completed at each visit. All findings including clinical and laboratory data are documented by the investigator or an authorized member of the study team in the patient's medical record and in the electronic case report forms (eCRFs). INTERVENTION AND COMPARATOR: This trial will analyze the effects of convalescent plasma from recovered subjects with SARS-CoV-2 antibodies in high-risk patients with SARS-CoV-2 infection. Patients at high risk for a poor outcome due to underlying disease, age or condition as listed above are eligible for enrollment. In addition, eligible patients have a confirmed SARS-CoV-2 infection and O2 saturation ≤ 94% while breathing ambient air. Patients are randomised to receive (experimental arm) or not receive (standard arm) convalescent plasma in two bags (238 - 337 ml plasma each) from different donors (day 1, day 2). A cross over from the standard arm into the experimental arm is possible after day 10 in case of not improving or worsening clinical condition. MAIN OUTCOMES: Primary endpoints: The main purpose of the study is to assess the time from randomisation until an improvement within 84 days defined as two points on a seven-point ordinal scale or live discharge from the hospital in high-risk patients (group 1 to group 4) with SARS-CoV-2 infection requiring hospital admission by infusion of plasma from subjects after convalescence of a SARS-CoV-2 infection or standard of care. Secondary endpoints: • Overall survival, defined as the time from randomisation until death from any cause 28-day, 56-day and 84-day overall survival rates. • SARS-CoV-2 viral clearance and load as well as antibody titres. • Requirement mechanical ventilation at any time during hospital stay (yes/no). • Time until discharge from randomisation. • Viral load, changes in antibody titers and cytokine profiles are analysed in an exploratory manner using paired non-parametric tests (before - after treatment). RANDOMISATION: Upon confirmation of eligibility (patients must meet all inclusion criteria and must not meet exclusion criteria described in section 5.3 and 5.4 of the full protocol), the clinical site must contact a centralized internet randomization system ( https://randomizer.at/ ). Patients are randomized using block randomisation to one of the two arms, experimental arm or standard arm, in a 1:1 ratio considering a stratification according to the 4 risk groups (see Participants). BLINDING (MASKING): The study is open-label, no blinding will be performed. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): A total number of 174 patients is required for the entire trial, n=87 per group. TRIAL STATUS: Protocol version 1.2 dated 09/07/2020. A recruitment period of approximately 9 months and an overall study duration of approximately 12 months is anticipated. Recruitment of patients starts in the third quarter of 2020. The study duration of an individual patient is planned to be 3 months. After finishing all study-relevant procedures, therapy, and follow-up period, the patient is followed in terms of routine care and treated if necessary. Total trial duration: 18 months Duration of the clinical phase: 12 months First patient first visit (FPFV): 3rd Quarter 2020 Last patient first visit (LPFV): 2nd Quarter 2021 Last patient last visit (LPLV): 3rd Quarter 2021 Trial Report completed: 4th Quarter 2021 TRIAL REGISTRATION: EudraCT Number: 2020-001632-10, https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001632-10/DE , registered on 04/04/2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2). The eCRF is attached (Additional file 3).


Subject(s)
Antibodies, Viral/blood , Betacoronavirus , Coronavirus Infections , Pandemics , Plasma/immunology , Pneumonia, Viral , Aged , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , COVID-19 , Clinical Trials, Phase II as Topic , Convalescence , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Female , Humans , Immunization, Passive/methods , Male , Middle Aged , Monitoring, Physiologic/methods , Multicenter Studies as Topic , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Pneumonia, Viral/therapy , Randomized Controlled Trials as Topic , Risk Adjustment , SARS-CoV-2 , Severity of Illness Index
14.
Nat Commun ; 12(1): 4864, 2021 08 11.
Article in English | MEDLINE | ID: covidwho-1354101

ABSTRACT

Successful therapeutics and vaccines for coronavirus disease 2019 (COVID-19) have harnessed the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Evidence that SARS-CoV-2 exists as locally evolving variants suggests that immunological differences may impact the effectiveness of antibody-based treatments such as convalescent plasma and vaccines. Considering that near-sourced convalescent plasma likely reflects the antigenic composition of local viral strains, we hypothesize that convalescent plasma has a higher efficacy, as defined by death within 30 days of transfusion, when the convalescent plasma donor and treated patient were in close geographic proximity. Results of a series of modeling techniques applied to approximately 28,000 patients from the Expanded Access to Convalescent Plasma program (ClinicalTrials.gov number: NCT04338360) support this hypothesis. This work has implications for the interpretation of clinical studies, the ability to develop effective COVID-19 treatments, and, potentially, for the effectiveness of COVID-19 vaccines as additional locally-evolving variants continue to emerge.


Subject(s)
COVID-19/therapy , Plasma/immunology , Adolescent , Adult , Aged , Antibodies, Viral/immunology , Antibody Specificity , Antigenic Variation , Blood Donors , COVID-19/mortality , Female , Humans , Immunization, Passive/mortality , Male , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Treatment Outcome , United States/epidemiology , Young Adult
15.
Chem Biol Interact ; 344: 109497, 2021 Aug 01.
Article in English | MEDLINE | ID: covidwho-1312959

ABSTRACT

Extracellular vesicles like exosomes are important therapeutic tactics for treating COVID -19. By utilizing convalescent plasma derived exosomes (CPExo) from COVID-19 recovered persistence could accelerate the treatment strategies in the current state of affairs. Adequate literature has shown that administering the exosome to the in vivo system could be beneficial and could target the pathogens in an effective and precise manner. In this hypothesis we highlight the CPExo instead of convalescent plasma (CP), perhaps to dispense of exosomes are gratified and it's more effectively acquired immune response conferral through antibodies. COVID-19 convalescent plasma has billions of exosomes and it has aptitudes to carry molecular constituents like proteins, lipids, RNA and DNA, etc. Moreover, exosomes are capable of recognizing antigens with adequate sensitivity and specificity. Many of these derivatives could trigger an immune modulation into the cells and act as an epigenetic inheritor response to target pathogens through RNAs. COIVID-19 resistance activated plasma-derived exosomes are either responsible for the effects of plasma beyond the contained immune antibodies or could be inhibitory. The proposed hypothesis suggests that preselecting the plasma-derived antibodies and RNAs merged exosomes would be an optimized therapeutic tactic for COVID-19 patients. We suggest that, the CPExo has a multi-potential effect for treatment efficacy by acting as immunotherapeutic, drug carrier, and diagnostic target with noncoding genetic materials as a biomarker.


Subject(s)
COVID-19/immunology , COVID-19/therapy , Exosomes/immunology , Plasma/immunology , Adaptive Immunity/immunology , Antibodies/immunology , Antigens/immunology , DNA/immunology , Humans , Immunization, Passive , RNA/immunology , SARS-CoV-2/immunology
16.
Viruses ; 13(7)2021 06 23.
Article in English | MEDLINE | ID: covidwho-1289016

ABSTRACT

We summarize here in vitro evidences of efficacy for convalescent plasma, currently approved vaccines and monoclonal antibodies against SARS-CoV-2 variants of concern (VOC: B.1.1.7, B.1.351, P.1, and B.1.617.2), variants of interest (VOI: B.1.427/B.1.429, P.2, B.1.525, P.3, B.1.526, and B.1.671.1), and other strains (B.1.1.298 and B.1.258delta). While waiting from real world clinical efficacy, these data provide guidance for the treating physician.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/blood , Plasma/immunology , SARS-CoV-2/immunology , Viral Vaccines/immunology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neutralizing/immunology , COVID-19/therapy , Humans , Immunization, Passive/standards , In Vitro Techniques , Neutralization Tests , Spike Glycoprotein, Coronavirus/immunology
17.
PLoS One ; 16(4): e0249938, 2021.
Article in English | MEDLINE | ID: covidwho-1206195

ABSTRACT

This study compared the performance of four serology assays for Coronavirus Disease 2019 (COVID-19) and investigated whether COVID-19 disease history correlates with assay performance. Samples were tested at Northshore using the Elecsys Anti-SARS-CoV-2 (Roche Diagnostics), Access SARS-CoV-2 IgG anti-RBD (Beckman Coulter), and LIAISON SARS-CoV-2 S1/S2 IgG (DiaSorin) as well as at Genalyte using Maverick Multi-Antigen Serology Panel. The study included one hundred clinical samples collected before December 2019 and ninety-seven samples collected from convalescent plasma donors originally diagnosed with COVID-19 by PCR. COVID-19 disease history was self-reported by the plasma donors. There was no difference in specificity between the assays tested. Clinical sensitivity of these four tests was 98% (Genalyte), 96% (Roche), 92% (DiaSorin), and 87% (Beckman). The only statistically significant differences in clinical sensitivity was between the Beckman assay and both Genalyte and Roche assays. Convalescent plasma donor characteristics and disease symptoms did not correlate with false negative results from the Beckman and DiaSorin assays. All four tests showed high specificity (100%) and varying sensitivities (89-98%). No correlations between disease history and serology results were observed. The Genalyte Multiplex assay showed as good or better sensitivity to three other previously validated assays with FDA Emergency Use Authorizations.


Subject(s)
COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Viral/immunology , Female , Humans , Immunization, Passive/methods , Immunoglobulin G/immunology , Male , Middle Aged , Plasma/chemistry , Plasma/immunology , SARS-CoV-2/pathogenicity , Sensitivity and Specificity , Serologic Tests/methods
18.
J Med Virol ; 93(3): 1678-1686, 2021 03.
Article in English | MEDLINE | ID: covidwho-1196494

ABSTRACT

BACKGROUND: The role of convalescent plasma therapy for patients with coronavirus disease 2019 (COVID-19) is unclear. METHODS: We retrospectively compared outcomes in a cohort of critical COVID-19 patients who received standard care (SC Group) and those who, in addition, received convalescent plasma (CP Group). RESULTS: In total, 40 patients were included in each group. The median patient age was 53.5 years (interquartile range [IQR] 42-60.5), and the majority of patients required invasive ventilation (69, 86.2%). Plasma was harvested from donors after a median of 37 days (IQR 31-46) from the first positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction (PCR) result and 26 days (IQR 21-32) after documented viral clearance; it was administered after a median of 10 days (IQR 9-10) from the onset of symptoms and 2.5 days (IQR 2-4) from admission to intensive care unit. The primary endpoint of improvement in respiratory support status within 28 days was achieved in 26 patients (65%) in the SC Group and 31 patients (77.5%) in the CP Group (p = .32). The 28-day all-cause mortality (12.5% vs. 2.5%; p = .22) and viral clearance (65% vs. 55%; p = .49) were not significantly different between the two groups. Convalescent plasma was not significantly associated with the primary endpoint (adjusted hazard ratio 0.87; 95% confidence interval 0.51-1.49; p = .62). Adverse events were balanced between the two study groups. CONCLUSION: In severe COVID-19, convalescent plasma therapy was not associated with clinical benefits. Randomized trials are required to confirm our findings.


Subject(s)
COVID-19/therapy , Plasma/immunology , Adult , COVID-19/immunology , Female , Humans , Immunization, Passive/methods , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/immunology , Severity of Illness Index , Treatment Outcome
19.
Front Cell Infect Microbiol ; 11: 650487, 2021.
Article in English | MEDLINE | ID: covidwho-1167306

ABSTRACT

Background: Convalescent plasma (CP) transfusion is considered to be the priority therapeutic option for COVID-19 inpatients when no specific drugs are available for emerging infections. An alternative, simple, and sensitive method is urgently needed for clinical use to detect neutralization activity of the CP to avoid the use of inconvenient micro-neutralization assay. Method: This study aims to explore optimal index in predicting the COVID-19 CP neutralization activity (neutralizing antibody titers, NAb titers) in an indirect ELISA format. Fifty-seven COVID-19-recovered patients plasma samples were subjected to anti-SARS-CoV-2 RBD, S1, and N protein IgG antibody by indirect ELISA. Results: ELISA-RBD exhibited high specificity (96.2%) and ELISA-N had high sensitivity (100%); while ELISA-S1 had low sensitivity (86.0%) and specificity (73.1%). Furthermore, ELISA-RBD IgG titers and pseudovirus-based NAb titers correlated significantly, with R2 of 0.2564 (P < 0.0001). Conclusion: ELISA-RBD could be a substitute for the neutralization assay in resource-limited situations to screen potential plasma donors for further plasma infusion therapy.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/blood , COVID-19/therapy , Immunization, Passive/methods , Plasma/immunology , Animals , Antibodies, Viral/therapeutic use , Antiviral Agents/therapeutic use , Blood Donors , China , Chlorocebus aethiops , Cohort Studies , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Humans , Immunoglobulin G/blood , SARS-CoV-2 , Sensitivity and Specificity , Vero Cells
20.
Viruses ; 13(3)2021 03 08.
Article in English | MEDLINE | ID: covidwho-1143612

ABSTRACT

The use of convalescent plasma in the treatment of COVID-19 may lead to a milder course of infection and has been associated with improved outcomes. Determining optimal treatments in high risk populations is crucial, as is the case in those with hematological malignancies. We analyzed a cohort of 23 patients with hematological malignancies and COVID-19 who had received plasma 48-72 h after the diagnosis of infection and compared it with a historical group of 22 patients who received other therapy. Overall survival in those who received convalescent plasma was significantly higher than in the historical group (p = 0.03460). The plasma-treated group also showed a significantly milder course of infection (p = 0.03807), characterized by less severe symptoms and faster recovery (p = 0.00001). In conclusion, we have demonstrated that convalescent plasma is an effective treatment and its early administration leads to clinical improvement, increased viral clearance and longer overall survival in patients with hematological malignancies and COVID-19. To our knowledge, this is the first report to analyze the efficacy of convalescent plasma in a cohort of patients with hematological malignancies.


Subject(s)
COVID-19/therapy , Hematologic Neoplasms/mortality , Adult , Aged , Aged, 80 and over , COVID-19/mortality , Cohort Studies , Female , Hematologic Neoplasms/therapy , Humans , Immunization, Passive , Male , Middle Aged , Plasma/immunology , Survival , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL