Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
PLoS One ; 15(12): e0243967, 2020.
Article in English | MEDLINE | ID: covidwho-992705


The ongoing coronavirus disease 2019 (COVID-19) pandemic emerged in December 2019. Convalescent plasma represents a promising COVID-19 treatment. Here, we report on the manufacturing of a plasma-based product containing antibodies specific to SARS-CoV-2 obtained from recently recovered COVID-19 patients. Convalescent plasma donors were screened as follows: 1) previously confirmed SARS-CoV-2 infection (by real-time PCR (RT-PCR)); 2) a subsequent negative PCR test followed by a 2-week waiting period; 3) an additional negative PCR test prior to plasmapheresis; and 4) confirmation of the presence of SARS-CoV-2 specific antibodies. Convalescent plasma was stored fresh (2-6°C) for up to 5 days or frozen (-30°C) for long-term storage. Donor peripheral blood and final plasma product were assayed for binding antibodies targeting the SARS-CoV-2 S-protein receptor-binding domain (RBD) and their titers measured by an enzyme-linked immunosorbent assay (ELISA). We performed 72 plasmaphereses resulting in 248 final products. Convalescent plasma contained an RBD-specific antibody titer (IgG) ranging from 1:100 to 1:3200 (median 1:800). The titer was congruent to the titer of the blood (n = 34) before collection (1:100-1:6400, median 1:800). Levels of IL-8 and LBP of donors were slightly increased. Therapeutic products derived from a human origin must undergo rigorous testing to ensure uniform quality and patient safety. Whilst previous publications recommended RBD-specific binding antibody titers of ≥ 1:320, we selected a minimum titer of 1:800 in order to maximize antibody delivery. Production of highly standardized convalescent plasma was safe, feasible and was readily implemented in the treatment of severely ill COVID-19 patients.

Antibodies, Viral/blood , COVID-19/immunology , COVID-19/therapy , Adolescent , Adult , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/epidemiology , COVID-19/virology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunization, Passive , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged , Neutralization Tests , Pandemics , Plasma/immunology , Plasma/virology , Plasmapheresis/methods , SARS-CoV-2/immunology , Tissue Donors , Young Adult , COVID-19 Serotherapy
J Transl Med ; 18(1): 412, 2020 11 02.
Article in English | MEDLINE | ID: covidwho-901889


The latest outbreak of pneumonia caused by SARS-CoV-2 presents a significant challenge to global public health and has a major impact on clinical microbiology laboratories. In some situations, such as patients in coma condition, the oropharyngeal or nasopharyngeal sampling is seldom feasible, and blood sampling could be an alternative. In the current article, a comprehensive literature search has been conducted for detecting coronavirus disease 2019 (COVID-19) using plasma or serum samples. To date, twenty-six studies have used SARS-CoV-2 nucleic acid in plasma or serum (RNAaemia) to diagnose COVID-19. The pros and cons are discussed in this article. While the detection of SARS-CoV-2 viral load in respiratory specimens is commonly used to diagnose COVID-19, detecting SARS-CoV-2 RNA in plasma or serum should not lose sight and it could be considered as an alternative diagnostic approach.

Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , RNA, Viral/blood , Betacoronavirus , COVID-19 , COVID-19 Testing , Coronavirus Infections/blood , Humans , Pandemics , Plasma/virology , Pneumonia, Viral/blood , SARS-CoV-2 , Serum/virology , Viral Load
Am J Pathol ; 190(11): 2290-2303, 2020 11.
Article in English | MEDLINE | ID: covidwho-877760


Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, has spread globally, and proven treatments are limited. Transfusion of convalescent plasma collected from donors who have recovered from COVID-19 is among many approaches being studied as potentially efficacious therapy. We are conducting a prospective, propensity score-matched study assessing the efficacy of COVID-19 convalescent plasma transfusion versus standard of care as treatment for severe and/or critical COVID-19. We present herein the results of an interim analysis of 316 patients enrolled at Houston Methodist hospitals from March 28 to July 6, 2020. Of the 316 transfused patients, 136 met a 28-day outcome and were matched to 251 non-transfused control COVID-19 patients. Matching criteria included age, sex, body mass index, comorbidities, and baseline ventilation requirement 48 hours from admission, and in a second matching analysis, ventilation status at day 0. Variability in the timing of transfusion relative to admission and titer of antibodies of plasma transfused allowed for analysis in specific matched cohorts. The analysis showed a significant reduction (P = 0.047) in mortality within 28 days, specifically in patients transfused within 72 hours of admission with plasma with an anti-spike protein receptor binding domain titer of ≥1:1350. These data suggest that treatment of COVID-19 with high anti-receptor binding domain IgG titer convalescent plasma is efficacious in early-disease patients.

Betacoronavirus/pathogenicity , Coronavirus Infections/mortality , Plasma/immunology , Pneumonia, Viral/mortality , Adult , Aged , Aged, 80 and over , Blood Component Transfusion/methods , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Coronavirus Infections/virology , Female , Humans , Immunization, Passive/mortality , Male , Middle Aged , Pandemics , Plasma/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Prospective Studies , SARS-CoV-2 , COVID-19 Serotherapy