ABSTRACT
Background: Low temperature is conducive to the survival of COVID-19. Some studies suggest that cold-chain environment may prolong the survival of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and increase the risk of transmission. However, the effect of cold-chain environmental factors and packaging materials on SARS-CoV-2 stability remains unclear. Methods: This study aimed to reveal cold-chain environmental factors that preserve the stability of SARS-CoV-2 and further explore effective disinfection measures for SARS-CoV-2 in the cold-chain environment. The decay rate of SARS-CoV-2 pseudovirus in the cold-chain environment, on various types of packaging material surfaces, i.e., polyethylene plastic, stainless steel, Teflon and cardboard, and in frozen seawater was investigated. The influence of visible light (wavelength 450 nm-780 nm) and airflow on the stability of SARS-CoV-2 pseudovirus at -18°C was subsequently assessed. Results: Experimental data show that SARS-CoV-2 pseudovirus decayed more rapidly on porous cardboard surfaces than on nonporous surfaces, including polyethylene (PE) plastic, stainless steel, and Teflon. Compared with that at 25°C, the decay rate of SARS-CoV-2 pseudovirus was significantly lower at low temperatures. Seawater preserved viral stability both at -18°C and with repeated freeze-thaw cycles compared with that in deionized water. Visible light from light-emitting diode (LED) illumination and airflow at -18°C reduced SARS-CoV-2 pseudovirus stability. Conclusion: Our studies indicate that temperature and seawater in the cold chain are risk factors for SARS-CoV-2 transmission, and LED visible light irradiation and increased airflow may be used as disinfection measures for SARS-CoV-2 in the cold-chain environment.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , Refrigeration , Disinfection , Stainless Steel , Plastics , Polytetrafluoroethylene , PolyethylenesABSTRACT
Facemasks have become a global medical necessity and are a key preventive measure against COVID-19. Typically, facemasks (FMs) are fabricated from non-renewable polymers, particularly polypropylene (PP) and polyethylene (PE), which release secondary microplastic (MPs) due to the chemical, physical, and biological processes. In light of the widespread usage and improper disposal of single-use facemasks, there is concern about their environmental impact since they contribute to plastic pollution during and after pandemics. The repercussions of this have led to millions of tons of plastic waste being dumped into the environment. Due to lack of awareness and improper disposal, the occurrence of micro/nanoplastics released from facemasks in wastewater treatment plants and landfills poses a concern. Infiltration of wastewater treatment processes by micro/nanoplastics at various levels can be problematic because of their chemical nature and broad but small size. Thus, operational and process stability issues can arise during wastewater treatment processes. In addition, landfilling and illegal waste disposal are being used to dispose of potentially infectious COVID-19 waste, leading to an environmental threat to animal and human health and exacerbating plastic pollution. This paper reviews the fate of facemasks in the environment and the repercussions of improper waste management of facemasks in wastewater treatment plants, landfills, and ultimately the environment.
Subject(s)
COVID-19 , Water Pollutants, Chemical , Animals , Humans , Microplastics , Plastics , Masks , Water Pollutants, Chemical/analysis , Environmental MonitoringABSTRACT
A generation of microplastics caused by improper disposal of disposable masks has become a non-negligible environmental concern. In order to investigate the degradation mechanisms of masks and the release of microplastics under different environmental conditions, the masks are placed in 4 common environments. After 30 days of weathering, the total amount and release kinetics of microplastics released from different layers of the mask were studied. The chemical and mechanical properties of the mask were also discussed. The results showed that the mask released 25141±3543 particles/mask into the soil, which is much more than the sea and river water. The release kinetics of microplastics fit the Elovich model better. All samples correspond to the release rate of microplastics from fast to slow. Experiments show that the middle layer of the mask is released more than the other layers, and the amount of release was highest in the soil. And the tensile capacity of the mask is negatively correlated with its ability to release microplastics in the following order, which are soil > seawater > river > air > new masks. In addition, during the weathering process, the C-C/C-H bond of the mask was broken.
Subject(s)
Microplastics , Plastics , Fresh Water , Kinetics , SoilABSTRACT
We present a first study on the temporal changes (2019-2021) in the microplastic abundance in the coastal soils of an urban town in the south-western part of India. All sampling stations exhibited higher abundances of microplastics in soils collected during 2021 (959.7 ± 277.7 particles/kg) compared to those collected in 2019 (515.1 ± 182.7 particles/kg). Morphologically, flakes, fibres, and films are the most abundant types documented in the soil environment. The microplastics of 0.3-5 mm size are relatively more abundant (60.6 %) compared to those of 0.03-0.3 mm size (39.4 %) in 2021. The three main types of polymers (polypropylene and high- and low-density polyethylene) in the soil exhibited an increase in abundance during an interval of 15 months (October 2019 to March 2021). In addition to packaging materials, the enhanced use of surgical masks during the COVID-19 period might have acted as a source of microplastic contamination in the soils.
Subject(s)
COVID-19 , Water Pollutants, Chemical , Humans , Microplastics , Plastics , Soil , Environmental Monitoring , Water Pollutants, Chemical/analysis , IndiaABSTRACT
The use of disposable personal protective equipment (PPE) as a control measure to avoid transmission against COVID-19 has generated a challenge to the waste management and enhances plastic pollution in the environment. The research aims to monitor the presence of PPE waste and other plastic debris, in a time interval where the use of face mask at specific places was still mandatory, on the coastal areas of Granada (Spain) which belongs to the Mediterranean Sea. Four beaches called La Rijana, La Charca, La Rábita and Calahonda were examined during different periods. The total amount of sampled waste was 17,558 plastic units. The abundance, characteristics and distribution of PPE and other plastic debris were determined. Results showed that the observed amount of total plastic debris were between 2.531·10-2 and 24.487·10-2 units per square meter, and up to 0.136·10-2 for PPE debris, where face masks represented the 92.22 % of the total PPE debris, being these results comparable to previous studies in other coastal areas in the world. On the other hand, total plastic debris densities were in the range from 2.457·10-2 to 92.219·10-2 g/m2 and densities were up to 0.732·10-2 for PPE debris. PPE debris supposed 0.79 % of the weight of total waste and the 0.51 % of total items. Concerning non-PPE plastic waste: cigarettes filters, food containers and styrofoam were the most abundant items (42.95, 10.19 and 16.37 % of total items, respectively). During vacation periods, total plastic debris amount increased 92.19 % compared to non-vacation periods. Regarding type of beaches, the presence of plastic debris was significantly higher on touristic/recreational than in fishing beaches. Data showed no significant differences between accessible and no-accessible beaches, but between periods with restrictive policy about mask face use and periods with non-restrictive policy data suggest significant differences between densities (g/m2) for PPE litter. The amount of PPEs debris is also correlated with the number of cigarettes filters (Person's r = 0.650), food containers (r = 0.782) and other debris (r = 0.63). Finally, although interesting results were provided in this study, further research is required to better understand the consequences of this type of pollution and to provide viable solutions to this problem.
Subject(s)
COVID-19 , Waste Products , Humans , Waste Products/analysis , Environmental Monitoring/methods , Spain , Bathing Beaches , COVID-19/prevention & control , Plastics , Personal Protective EquipmentABSTRACT
OBJECTIVES: During the covid-19 pandemic, protective equipment such as respirators and masks were widely used to protect respiratory tract. This disposable protective equipment is usually made from plastic fibre-based nonwoven fabrics. If used masks and respirators are improperly discarded, they pollute the environment by becoming a source of micro and nanoplastics. The aim of the study was to find out how stable the materials of protective equipment are and how released nano and microplastics can affect aquatic and soil organisms. MATERIALS: The input materials used to produce respirators and masks were tested for their thermal stability and resistance to the release of plastic particles into the environment. To determine the thermal stability of the materials, a simultaneous thermal analysis - thermogravimetry (TGA) and differential scanning calorimetry (DSC) were performed. RESULTS: Materials of masks and respirators are stable at temperatures common to temperate climate zone. However, the possible effects of chemical reactions of the materials with the environment were not considered during the measurement. The materials were also subjected to ecotoxicity tests according to European standards. CONCLUSION: While the leachate obtained by shaking the materials in water did not show acute toxicity to the selected aquatic organisms, the material itself had a significant effect on selected soil organisms (springtails).
Subject(s)
COVID-19 , Respiratory Protective Devices , Humans , COVID-19/prevention & control , SARS-CoV-2 , Plastics , PandemicsABSTRACT
The COVID-19 pandemic caused that most countries established the closure of many beaches, affecting the scientific monitoring of thousands of coastal sectors. This article shows the status of beach litter in South America before and after COVID-19 closure. The data were obtained during the years 2019, 2020 and 2022 on 25 beaches using a technique BLAT-QQ. The results show that cigarette butts were the most frequent type of litter, meanwhile Brazil should improve cleanliness of general gross litter and gross polystyrene. Colombia gross vegetation litter and small vegetation litter, and Ecuador organic litter from animals. The results shown in qualitative and quantitative manner facilitate their understanding for managers, scholars and activists interested on beach litter monitoring. This baseline is useful to analyse regional and worldwide marine litter trends with the purpose to start or restart monitoring of tourist beaches from a science-based method.
Subject(s)
COVID-19 , Waste Products , Humans , Waste Products/analysis , Environmental Monitoring/methods , Pandemics , Plastics , Bathing Beaches , BrazilABSTRACT
Waste management and mitigation is the primary necessity across the globe. The daily use of plastic materials in different forms emergence the plastic pollutions, and it has been significantly increased during the COVID-19 pandemic. Thus, mitigation of waste plastics generation is one of the major challenges in the present situation. The present study addressed the conversion of waste plastics into value-added products such as liquid hydrocarbon fuels and their application in reducing greenhouse gas emissions. A comprehensive investigation has been performed on engine performance and combustion characteristics at various compression ratios and PO blending. The effect of liquid fuel blending with commercial diesel was investigated at three different compression ratios (15.1, 16.2, and 16.7) under various BMEP conditions. The results revealed that blending of liquid fuel produced from waste plastic can improve the BTE significantly, and the highest 35.77% of BTE was observed for 10% blending at 15.1 CR. While the lowest BSFC of 5.77 × 10-5 kg/kW-s was estimated for 20% PO blending at 16.7 CR under optimum BMEP (4.0 bar) conditions. The investigation of combustion parameters such as cylinder pressure, net heat release rate, rate of pressure rise, and cumulative heat release showed that it increases with the compression ratio from 15.1 to 16.7. At the same time, the emissions of CO, CO2, and unburnt hydrocarbon was decreased significantly. The economic analysis for the present lab-scale study estimated that approximately â¹12.17 ($0.15) profit per liter is possible in the 1st year, while the significant profit starts from the 2nd year onward, which is in the range of â¹59.78-â¹84.48 ($0.75-$1.07) when the PO is blended with CD within the permissible limits as per the norms.
Subject(s)
COVID-19 , Gasoline , Humans , Pandemics , Vehicle Emissions , Biofuels , Carbon Monoxide/analysis , Hydrocarbons , PlasticsABSTRACT
The ubiquitous nature of microplastics (MPs) in nature and the risks they pose on the environment and human health have led to an increased research interest in the topic. Despite being an area of high plastic production and consumption, studies on MPs in the Middle East and North Africa (MENA) region have been limited. However, the region witnessed a research surge in 2021 attributed to the COVID-19 pandemic. In this review, a total of 97 studies were analyzed based on their environmental compartments (marine, freshwater, air, and terrestrial) and matrices (sediments, water columns, biota, soil, etc.). Then, the MP concentrations and polymer types were utilized to conduct a risk assessment to provide a critical analysis of the data. The highest MP concentrations recorded in the marine water column and sediments were in the Mediterranean Sea in Tunisia with 400 items/m3 and 7960 items/kg of sediments, respectively. The number of MPs in biota ranged between 0 and 7525 per individual across all the aquatic compartments. For the air compartment, a school classroom had 56,000 items/g of dust in Iran due to the confined space. Very high risks in the sediment samples (Eri > 1500) were recorded in the Caspian Sea and Arab/Persian Gulf due to their closed or semi-closed nature that promotes sedimentation. The risk factors obtained are sensitive to the reference concentration which calls for the development of more reliable risk assessment approaches. Finally, more studies are needed in understudied MENA environmental compartments such as groundwater, deserts, and estuaries.
Subject(s)
COVID-19 , Water Pollutants, Chemical , Humans , Microplastics/analysis , Plastics/analysis , Ecosystem , Pandemics , Geologic Sediments , Water Pollutants, Chemical/analysis , Environmental Monitoring , Middle East , Water/analysis , TunisiaABSTRACT
Microplastics and benzyldimethyldodecylammonioum chloride (DDBAC) enter the environment more frequently during the COVID-19 pandemic and their co-occurrence will be a potential threat to the environment in the post-pandemic era. This study investigates the performance of an electrochemical system for the simultaneous removal of microplastics and DDBAC. During experimental studies, effects of applied voltage (3-15 V), pH (4-10), time (0-80 min), electrolyte concentration (0.01-0.0.09 M), electrode configuration, and perforated anode were investigated to identify their influence on DDBAC and microplastics removal efficiency. Eventually, the techno-economic optimization yielded to evaluate the commercial feasibility of this process. The central composite design (CCD) and analysis of variance (ANOVA) are employed for evaluation and optimization of the variables and response, DDBAC-microplastics removal, and for determining the adequacy and significance of mathematical models proposed by response surface methodology (RSM). Experimental results indicate that optimum conditions are pH = 7.4, time = 80 min, electrolyte concentration = 0.05 M, and applied voltage = 12.59, in which the removal of microplastics, DDBAC, and TOC reached the maximum level, which was 82.50%, 90.35%, and 83.60% respectively. The results confirm that the valid model is adequately significant for the target response. Overall, financial and energy consumption analyses confirmed that this process is a promising technology as a commercial method for the removal of DDBAC-microplastics complexes in water and wastewater treatment.
Subject(s)
COVID-19 , Water Pollutants, Chemical , Humans , Benzalkonium Compounds , Microplastics , Plastics , Pandemics , Electrocoagulation/methods , Chlorides , Electrodes , Water Pollutants, Chemical/chemistryABSTRACT
Systematic seafloor surveys are a highly desirable method of marine litter monitoring, but the high costs involved in seafloor sampling are not a trivial handicap. In the present work, we explore the opportunity provided by the artisanal trawling fisheries to obtain systematic data on marine litter in the Gulf of Cadiz between 2019 and 2021. We find that plastic was the most frequent material, with a prevalence of single-use and fishing-related items. Litter densities decreased with increasing distance to shore with a seasonal migration of the main litter hotspots. During pre-lockdown and post-lockdown stages derived from COVID-19, marine litter density decreased by 65 %, likely related to the decline in tourism and outdoor recreational activities. A continuous collaboration of 33 % of the local fleet would imply a removal of hundreds of thousands of items each year. The artisanal trawl fishing sector can play a unique role of monitoring marine litter on the seabed.
Subject(s)
COVID-19 , Fisheries , Humans , Environmental Monitoring , Communicable Disease Control , Environmental Pollution , Plastics , Waste Products/analysisABSTRACT
AIMS: This study aimed to determine the extent of Phi6 (Φ6) transfer between skin and surfaces relevant to consumer-facing environments based on inoculum matrix, surface type and contact time. METHODS AND RESULTS: Φ6 transfer rates were determined from skin-to-fomite and fomite-to-skin influenced by inoculum matrix (artificial saliva and tripartite), surface type (aluminium, plastic, stainless steel, touchscreen, vinyl and wood) and contact time (5 and 10 s). Significant differences in estimated means were observed based on surface type (both transfer directions), inoculum matrix (skin-to-fomite) and contact time (both transfer directions). During a sequential transfer experiment from fomite-to-skin, the maximum number of consecutive transfer events observed was 3.33 ± 1.19, 2.33 ± 1.20 and 1.67 ± 1.21 for plastic, touchscreen and vinyl, respectively. CONCLUSIONS: Contact time significantly impacted Φ6 transfer rates, which may be attributed to skin absorption dynamics. Surface type should be considered for assessing Φ6 transfer rates. SIGNIFICANCE AND IMPACT OF THE STUDY: Although the persistence of Φ6 on fomites has been characterized, limited data are available regarding the transfer of Φ6 among skin and fomites. Determining Φ6 transfer rates for surfaces in consumer-facing environments based on these factors is needed to better inform future virus transmission mitigation strategies.
Subject(s)
Bacteriophages , Humans , Fomites , Stainless Steel , PlasticsABSTRACT
The current work focuses on designing a low-cost, reusable, and highly efficient facemask for protection from respiratory droplets that cause COVID-19, other infection-causing organisms, and dust allergies. Several masks available in the market are single-use that would choke the environment through plastic pollution or are expensive for the commoner to afford. In the present study, the facemask incorporates a waste-derived polyethylene terephthalate (PET) layer and a non-woven polypropylene (PP) layer sandwiched between two tightly woven cotton layers. Combining these layers provides comfort and breathability, besides high bacterial and particulate filtration efficiency. Moreover, the unique PET layer provides mechanical strength and a 3D shape that enables hindrance-free speaking and prevents spectacle fogging. Compared to commercial N95 masks, the developed mask can be reused up to 30 washes and recycled with zero waste discharge ensuing green technology. Moreover, the mask was produced at an affordable cost of Rs. 17 (0.22 USD), including labor charges, and sold at a 100% profit margin @ Rs.35 (0.45 USD) per unit. Further, the mask was certified by neutral testing agencies and provided to a population of more than 6 lakhs, thus significantly contributing to the mitigation of COVID-19.
Subject(s)
COVID-19 , Masks , Humans , Plastics , Textiles , Polyethylene Terephthalates , Preventive Health ServicesABSTRACT
AIMS: The purpose of this study was to evaluate the effects of altered environmental conditions, specifically elevated temperature at various levels of expected relative humidity (RH), on the inactivation of SARS-CoV-2 when applied to U.S. Air Force aircraft materials. METHODS AND RESULTS: SARS CoV-2 (USA-WA1/2020) was spiked (â¼1 × 105 TCID50) in either synthetic saliva or lung fluid, dried onto porous (e.g. Nylon strap) and nonporous materials (e.g. bare aluminum, silicone, and ABS plastic), placed in a test chamber and exposed to environmental conditions ranging from 40 to 51.7 °C and RH ranging from 0% to 50%. The amount of infectious SARS-CoV-2 was then assessed at various timepoints from 0 to 2 days. Warmer test temperatures, higher RH, and longer exposure duration resulted in higher inactivation rates per material type. Synthetic saliva inoculation vehicle was more readily decontaminated compared to materials inoculated with synthetic lung fluid. CONCLUSIONS: SARS-CoV-2 was readily inactivated below limit of quantitation (LOQ) for all materials inoculated using synthetic saliva vehicle within 6 hours when exposed to environmental conditions of 51.7 °C and RH ≥ 25%. Synthetic lung fluid vehicle did not follow the general trend of an increase in RH resulting in increased efficacy. The lung fluid performed best at the 20%-25% RH range to achieve complete inactivation below LOQ.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Decontamination/methods , Plastics , HumidityABSTRACT
Plastic pollution is a significant problem worldwide because of the risks it poses to the equilibrium and health of the environment as well as to human beings. Discarded plastic released into the environment can degrade into microplastics (MPs) due to various factors, such as sunlight, seawater flow, and temperature. MP surfaces can act as solid scaffolds for microorganisms, viruses, and various biomolecules (such as LPS, allergens, and antibiotics), depending on the MP characteristics of size/surface area, chemical composition, and surface charge. The immune system has efficient recognition and elimination mechanisms for pathogens, foreign agents, and anomalous molecules, including pattern recognition receptors and phagocytosis. However, associations with MPs can modify the physical, structural, and functional characteristics of microbes and biomolecules, thereby changing their interactions with the host immune system (in particular with innate immune cells) and, most likely, the features of the subsequent innate/inflammatory response. Thus, exploring differences in the immune response to microbial agents that have been modified by interactions with MPs is meaningful in terms of identifying new possible risks to human health posed by anomalous stimulation of immune reactivities.
Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Plastics , Seawater/chemistry , Host-Pathogen Interactions , Immunity , Water Pollutants, Chemical/analysis , Environmental MonitoringABSTRACT
Pandemic plastics (e.g., masks, gloves, aprons, and sanitizer bottles) are global consequences of COVID-19 pandemic-infected waste, which has increased significantly throughout the world. These hazardous wastes play an important role in environmental pollution and indirectly spread COVID-19. Predicting the environmental impacts of these wastes can be used to provide situational management, conduct control procedures, and reduce the COVID-19 effects. In this regard, the presented study attempted to provide a deep learning-based predictive model for forecasting the expansion of the pandemic plastic in the megacities of Iran. As a methodology, a database was gathered from February 27, 2020, to October 10, 2021, for COVID-19 spread and personal protective equipment usage in this period. The dataset was trained and validated using training (80%) and testing (20%) datasets by a deep neural network (DNN) procedure to forecast pandemic plastic pollution. Performance of the DNN-based model is controlled by the confusion matrix, receiver operating characteristic (ROC) curve, and justified by the k-nearest neighbours, decision tree, random forests, support vector machines, Gaussian naïve Bayes, logistic regression, and multilayer perceptron methods. According to the comparative modelling results, the DNN-based model was found to predict more accurately than other methods and have a significant predominance over others with a lower errors rate (MSE = 0.024, RMSE = 0.027, MAPE = 0.025). The ROC curve analysis results (overall accuracy) indicate the DNN model (AUC = 0.929) had the highest score among others.
Subject(s)
COVID-19 , Deep Learning , Humans , COVID-19/epidemiology , Pandemics/prevention & control , Plastics , Bayes Theorem , Environmental PollutionABSTRACT
The increasing amount of marine litter pollution and its impact on the marine environment raises global concern. This study aims to reveal the effect of streams on marine litter density and composition. A total of ten stations on the southeastern Black Sea and six stations on the Manahoz stream were seasonally surveyed. The litter density ranged between 0.838 ± 0.33 and 4.01 ± 0.55 items/m2 in the beach stations, and 0.93 ± 0.27 2.40 ± 2.18 items/m2 in the streamside stations. No significant difference was determined among the seasons for both beach and streamside (Kruskal-Wallis test, p > 0.05). On the other hand, the litter density was also similar in beach and streamside stations in the same season. The litter composition consisted of > 75% plastic. Principal component analysis and PERMANOVA determined no significant difference in litter composition among beach and streamside stations. The litter items mostly consisted of single-use items. Among them, plastic beverage containers were the most abundant litter subcategory during the study (ranging between 18.79% and 34.50%). The subcategory composition exhibited a significant difference among beach and streamside stations (ANOSIM, p < 0.05), which was mainly explained by plastic pieces, beverage containers, and foams according to SIMPER analysis. Personal protection equipment that was not reported before the COVID-19 pandemic emerged. The results of our study can be used for marine litter modeling studies and legislation for restriction or ban of most abundant single-use litter items.
Subject(s)
COVID-19 , Waste Products , Humans , Waste Products/analysis , Black Sea , Pandemics , Environmental Monitoring , Bathing Beaches , PlasticsABSTRACT
In April 2020, the Covid-19 pandemic changed human behaviour worldwide, creating an increased demand for plastic, especially single-use plastic in the form of personal protective equipment. The pandemic also provided a unique situation for plastic pollution studies, especially microplastic studies. This study looks at the impact of the Covid-19 pandemic and three national lockdowns on microplastic abundance at five sites along the river Thames, UK, compared to pre-Covid-19 levels. This study took place from May 2019-May 2021, with 3-L water samples collected monthly from each site starting at Teddington and ending at Southend-on-Sea. A total of 4480 pieces, the majority of fibres (82.1 %), were counted using light microscopy. Lockdown 2 (November 2020) had the highest average microplastic total (27.1 L-1). A total of 691 pieces were identified via Fourier Transform Infrared Spectroscopy (FTIR). Polyvinyl chloride (36.19 %) made up the most microplastics identified. This study documents changes in microplastic abundance before, during and after the Covid-19 pandemic, an unprecedented event, as well as documenting microplastic abundance along the river Thames from 2019 to 2021.
Subject(s)
COVID-19 , Water Pollutants, Chemical , Humans , Microplastics , Plastics , Rivers/chemistry , Pandemics , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , COVID-19/epidemiology , Communicable Disease ControlABSTRACT
During the COVID-19 pandemic billions of face masks were used since they became a necessity in everyone's lives. But these were not disposed properly and serve as one of the most significant sources of micro and nano plastics in the environment. The effects of mask leached plastics in aquatic biota remains largely unexplored. In this work, we quantified and characterized the released microplastics from the three layers of the mask. The outer layer of the face mask released more microplastics i.e., polypropylene than middle and inner layers. We investigated and compared the acute toxic effects of the released microplastics between Scenedesmus obliquus and Chlorella sp. The results showed a decrease in cell viability, photosynthetic yield, and electron transport rate in both the algal species. This was accompanied by an increase in oxidative stress markers such reactive oxygen species (ROS) and malondialdehyde (MDA) content. There was also a significant rise of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) in both the algal cells. Furthermore, morphological changes like cell aggregation and surface chemical changes in the algae were ascertained by optical microscopy and FTIR spectroscopy techniques, respectively. The tests confirmed that Scenedesmus obliquus was more sensitive than Chlorella sp. to the mask leachates. Our study clearly revealed serious environmental risk posed by the released microplastics from surgical face masks. Further work with other freshwater species is required to assess the environmental impacts of the mask leachates.
Subject(s)
COVID-19 , Chlorella , Microalgae , Scenedesmus , Water Pollutants, Chemical , Humans , Microplastics/metabolism , Scenedesmus/metabolism , Masks , Pandemics , Plastics , Water Pollutants, Chemical/metabolismABSTRACT
The COVID-19 pandemic forced use of face masks up to billions of masks per day globally. Though an important and necessary measure for control of the pandemic, use of masks also poses some inherent risks. One of those risks is inhalation of microplastics released from the mask materials. Since most of the mask materials are made from plastic/polymers, they always have the potential to expose the user to fragmented microplastics. To estimate the amount of inhalable microplastic exuded from masks, an experiment simulating real-life scenario of mask usage was performed. The study included collection of microplastics oozed out from the masks on to a filter paper followed by staining and fluorescence detection of the total number of microplastics using a microscope. Both used and new masks were studied. Based on the emission wavelength, the microplastics were found to be belonging to three different categories, namely blue, green and red emitting microplastics respectively. The number of microplastic particles emitted per mask over a period of usage of 8 h was about 5000 to 9000 for new masks and about 6500 to 15,000 for used masks respectively. The estimation of polymer type of plastic in the mask fabrics was also carried out using Raman and FTIR spectroscopy.