ABSTRACT
BACKGROUND: In young children, rates of lower respiratory infections (LRI) and invasive pneumococcal disease (IPD) have been associated with respiratory syncytial virus (RSV), human metapneumovirus (hMPV), influenza (flu), and parainfluenza (PIV) (collectively termed here as pneumonia and pneumococcal disease-associated viruses [PDA-viruses]). However, their contribution to the pathogenesis of these disease endpoints has not yet been elucidated. The COVID-19 pandemic provided a unique opportunity to examine the question. METHODS: This prospective study comprised all children <5 years, living in southern Israel, during 2016 through 2021. The data were previously collected in multiple ongoing prospective surveillance programs and include: hospital visits for community-acquired alveolar pneumonia (CAAP), non-CAAP LRI; nasopharyngeal pneumococcal carriage (<3 years of age); respiratory virus activity; and nationwide, all-ages COVID-19 episodes and IPD in children <5 years. A hierarchical statistical model was developed to estimate the proportion of the different clinical endpoints attributable to each virus from monthly time series data, stratified by age and ethnicity. A separate model was fit for each endpoint, with covariates that included a linear time trend, 12-month harmonic variables to capture unexplained seasonal variations, and the proportion of tests positive for each virus in that month. FINDINGS: During 2016 through 2021, 3,204, 26,695, 257, and 619 episodes of CAAP, non-CAAP LRI, pneumococcal bacteremic pneumonia and non-pneumonia IPD, respectively, were reported. Compared to 2016-2019, broad declines in the disease endpoints were observed shortly after the pandemic surge, coincident with a complete disappearance of all PDA-viruses and continued circulation of rhinovirus (RhV) and adenovirus (AdV). From April 2021, off-season and abrupt surges of all disease endpoints occurred, associated with similar dynamics among the PDA-viruses, which re-emerged sequentially. Using our model fit to the entire 2016-2021 period, 82% (95% CI, 75-88%) of CAAP episodes in 2021 were attributable to the common respiratory viruses, as were 22%-31% of the other disease endpoints. Virus-specific contributions to CAAP were: RSV, 49% (95% CI, 43-55%); hMPV, 13% (10-17%); PIV, 11% (7-15%); flu, 7% (1-13%). RhV and AdV did not contribute. RSV was the main contributor in all endpoints, especially in infants. Pneumococcal carriage prevalence remained largely stable throughout the study. INTERPRETATION: RSV and hMPV play a critical role in the burden of CAAP and pneumococcal disease in children. Interventions targeting these viruses could have a secondary effect on the burden of disease typically attributed to bacteria. FUNDING: There was no funding for this study.
Subject(s)
COVID-19 , Influenza, Human , Metapneumovirus , Pneumococcal Infections , Pneumonia, Pneumococcal , Pneumonia, Viral , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Infant , Humans , Child , Child, Preschool , Streptococcus pneumoniae , Prospective Studies , Pandemics , COVID-19/epidemiology , Respiratory Tract Infections/epidemiology , Pneumonia, Pneumococcal/epidemiology , Pneumococcal Infections/epidemiology , Adenoviridae , RhinovirusABSTRACT
The introduction of pneumococcal conjugate vaccines (PCV) into the childhood vaccination programme has reduced invasive pneumococcal disease (IPD). Although anticipated from data elsewhere, surveillance in Ireland has confirmed reductions in IPD amongst those ⩾65 years of age due to a decline of PCV serotypes in this age group. Currently, direct protection against IPD in the elderly is focused on immunisation with the 23-valent pneumococcal polysaccharide vaccine (PPV23). However, immunity may not be as effective as with PCV and, furthermore, PPV23 uptake is poor in Ireland. Hence, consideration should be given to providing a PCV to this age group.
Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Humans , Aged , Vaccines, Conjugate , Pneumococcal Vaccines , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , SerogroupABSTRACT
Objective: This study aims to analyze the serotype distribution and drug resistance of Streptococcus pneumoniae isolated from children aged 8 days to 7 years in Urumqi, China, between 2014 to 2021, during which PCV13 was introduced in the private sector's immunization program and COVID-19 control was administrated in the last 2 years. Methods: Serotypes of S. pneumoniae isolates were determined by Quellung reaction, and their susceptibility against 14 antimicrobials were tested. According to the start year of PCV13 administration (2017) and COVID-19 control (2020), the study period was divided into three stages: 2014-2015, 2018-2019, and 2020-2021. Results: A total of 317 isolates were involved in this study. The most common serotypes were type 19F (34.4%), followed by 19A (15.8%), 23F (11.7%), 6B (11.4%), and 6A(5.0%). The coverage rate of both PCV13 and PCV15 was 83.0%. The coverage of PCV20 was a little higher at 85.2%. The resistance rate against penicillin was 28.6% according to the breakpoints of oral penicillin, which would reach up to 91.8% based on the breakpoints of parenteral penicillin for meningitis. The resistance rates to erythromycin, clindamycin, tetracycline, and sulfamethoxazole-trimethoprim were 95.9%, 90.2%, 88.9%, and 78.8%, respectively. The PCV13 isolate was more resistant to penicillin than the non-PCV13 ones. There was not any significant change found in the serotype distribution since the PCV13 introduction and the COVID-19 control. The resistance rate against oral penicillin slightly elevated to 34.5% in 2018-2019 from 30.7% in 2014-2015 and then decreased significantly to 18.1% in 2020-2021 (χ 2 = 7.716, P < 0.05), while the resistance rate to ceftriaxone (non-meningitis) continuously declined from 16.0% in 2014-2015 to 1.4% in 2018-2019 and 0% in 2020-2021 (Fisher = 24.463, P < 0.01). Conclusion: The common serotypes of S. pneumoniae isolated from children in Urumqi were types 19F, 19A, 23F, 6B, and 6A, which we found to have no marked change since the PCV13 introduction and the COVID-19 control However, the resistance rate to oral penicillin and ceftriaxone significantly declined in the COVID-19 control stage.
Subject(s)
Anti-Infective Agents , COVID-19 , Pneumococcal Infections , Child , Humans , Infant , Streptococcus pneumoniae , Anti-Bacterial Agents/pharmacology , Serogroup , Ceftriaxone , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Drug Resistance, Bacterial , COVID-19/epidemiology , Penicillins , China/epidemiology , Pneumococcal Vaccines , SerotypingABSTRACT
BACKGROUND: In 2016, the travel subcommittee of the UK Joint Committee on Vaccination and Immunisation (JCVI) recommended that 13-valent PCV (PCV13) could be offered to travellers aged over 65 years, visiting countries without infant PCV immunization programmes. This study aimed to identify, collate and review the available evidence to identify specific countries where UK travellers might be at an increased risk of developing pneumococcal infection. The data were then used to develop an algorithm, which could be used to facilitate implementation of the JCVI recommendation. METHODS: We conducted a systematic search of the published data available for pneumococcal disease, PCV vaccine implementation, coverage data and programme duration by country. The primary data sources used were World Health Organization databases and the International Vaccine Access Centre Vaccine Information and Epidemiology Window-hub database. Based on the algorithm, the countries were classified into 'high overall risk', 'intermediate overall risk' and 'low overall risk' from an adult traveller perspective. This could determine whether PCV13 should be recommended for UK adult travellers. RESULTS: A data search for a total of 228 countries was performed, with risk scores calculated for 188 countries. Overall, 45 countries were classified as 'high overall risk', 86 countries as 'intermediate overall risk', 57 countries as 'low overall risk' and 40 countries as 'unknown'. CONCLUSION: To our knowledge this is the first attempt to categorize the risk to UK adult travellers of contracting pneumococcal infection in each country, globally. These findings could be used by national travel advisory bodies and providers of travel vaccines to identify travellers at increased risk of pneumococcal infection, who could be offered PCV immunization.
Subject(s)
Pneumococcal Infections , Pneumococcal Vaccines , Adult , Aged , Algorithms , Humans , Infant , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , United Kingdom/epidemiology , Vaccination , Vaccines, ConjugateABSTRACT
Nonpharmaceutical interventions (NPIs) implemented to contain SARS-CoV-2 have decreased invasive pneumococcal disease. Previous studies have proposed the decline is due to reduced pneumococcal transmission or suppression of respiratory viruses, but the mechanism remains unclear. We undertook a secondary analysis of data collected from a clinical trial to evaluate the impact of NPIs on pneumococcal carriage and density, drivers of transmission and disease, during the COVID-19 pandemic in Ho Chi Minh City, Vietnam. Nasopharyngeal samples from children aged 24 months were assessed in three periods - one pre-COVID-19 period (n = 1,537) and two periods where NPIs were implemented with increasing stringency (NPI period 1 [NPI-1, n = 307], and NPI period 2 [NPI-2, n = 262]). Pneumococci were quantified using lytA quantitative PCR and serotyped by DNA microarray. Overall, capsular, and nonencapsulated pneumococcal carriage and density were assessed in each NPI period compared with the pre-COVID-19 period using unadjusted log-binomial and linear regression. Pneumococcal carriage was generally stable after the implementation of NPIs. In contrast, overall pneumococcal carriage density decreased by 0.44 log10 genome equivalents/mL (95% confidence interval [CI]: 0.19 to 0.69) in NPI-1 and by 0.84 log10 genome equivalents/mL (95% CI: 0.55 to 1.13) in NPI-2 compared with the pre-COVID-19 period. Reductions in overall pneumococcal density were driven by reductions in capsular pneumococci, with no corresponding reduction in nonencapsulated density. As higher pneumococcal density is a risk factor for disease, the decline in density provides a plausible explanation for the reductions in invasive pneumococcal disease that have been observed in many countries in the absence of a substantive reduction in pneumococcal carriage. IMPORTANCE The pneumococcus is a major cause of mortality globally. Implementation of NPIs during the COVID-19 pandemic led to reductions in invasive pneumococcal disease in many countries. However, no studies have conducted a fully quantitative assessment on the impact of NPIs on pneumococcal carriage density, which could explain this reduction. We evaluated the impact of COVID-19 NPIs on pneumococcal carriage prevalence and density in 2,106 children aged 24 months in Vietnam and found pneumococcal carriage density decreased up to 91.5% after NPI introduction compared with the pre-COVID-19 period, which was mainly attributed to capsular pneumococci. Only a minor effect on carriage prevalence was observed. As respiratory viruses are known to increase pneumococcal carriage density, transmission, and disease, this work suggests that interventions targeting respiratory viruses may have the added benefit of reducing invasive pneumococcal disease and explain the reductions observed following NPI implementation.
Subject(s)
COVID-19 , Pneumococcal Infections , Child , Humans , Infant , Streptococcus pneumoniae/genetics , COVID-19/epidemiology , COVID-19/prevention & control , Prevalence , Vietnam/epidemiology , Pandemics/prevention & control , SARS-CoV-2 , Carrier State/epidemiology , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & controlABSTRACT
OBJECTIVES: Streptococcus pneumoniae is the leading bacterial pathogen causing respiratory infections. Since the COVID-19 pandemic emerged, less invasive pneumococcal disease (IPD) was identified by surveillance systems worldwide. Measures to prevent transmission of SARS-CoV-2 also reduce transmission of pneumococci, but this would gradually lead to lower disease rates. DESIGN: Here, we explore additional factors contributing to the instant drop in pneumococcal disease cases captured in surveillance. RESULTS: Our observations on referral practices and other impediments to diagnostic testing indicate that residual IPD has likely occurred but remained undetected by conventional hospital-based surveillance. CONCLUSIONS: Depending on the setting, we discuss alternative monitoring strategies that could improve understanding of pneumococcal disease dynamics.
Subject(s)
COVID-19 , Pneumococcal Infections , Adult , Humans , Incidence , Infant , Netherlands/epidemiology , Pandemics , Pneumococcal Infections/epidemiology , Pneumococcal Vaccines , SARS-CoV-2ABSTRACT
BACKGROUND: Despite the 23-valent pneumococcal polysaccharide vaccine (PPSV23) vaccination programme implementation, pneumococcal disease (PD) remains an important cause of morbidity and mortality among the elderly in Japan, particularly since childhood pneumococcal conjugate vaccine (PCV) vaccination programme continues to alter the serotype PD distribution among the elderly. Recently, in the United States, PCV15/PCV20 were recommended for adults aged ≥ 65 years and those aged 19-64 years with certain underlying conditions. In Japan, PCV15 is under the approval application process and PCV20 undergoing clinical trials, which has warranted the need in evaluating their value for money. METHODS: We conducted cost-effectiveness analyses with Markov model and calculated incremental cost-effectiveness ratios of PCV15/PCV20 vaccination programme compared to status quo from payers' perspective. Transition probabilities and utility weights in estimating quality-adjusted life-year (QALY), and disease treatment costs were either estimated or obtained from literature. To reflect the situation of COVID-19 pandemic, epidemiological data from 2020 and beyond were used. RESULTS: Compared to the current vaccination programme, PCV20 vaccination programme gained more QALYs with less cost, while PCV15 vaccination programme cost ¥35,020 (US$318, US$1 = ¥110) to gain an additional QALY. Replacing PPSV23 vaccination programme with PCV20 vaccination programme is cost-saving. One-way sensitivity analyses revealed that lower VE limits of PCVs against non-bacteremic pneumonia (NBP) have large impact to change the result from PCV20 vaccination programme dominated PPSV23 vaccination programme to PPSV23 vaccination programme dominated PCV20 vaccination programme. CONCLUSION: In the COVID-19 era, replacing current PPSV23 with a single-dose PCV15- or PCV20 immunisation programme for 65-year-old adults in Japan is highly cost-effective, while the PCV 20 vaccination programme was observed to be more favourable.
Subject(s)
COVID-19 , Pneumococcal Infections , Adult , Aged , Humans , Child , Vaccines, Conjugate , Cost-Benefit Analysis , Japan/epidemiology , Pandemics , Pneumococcal Vaccines , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , VaccinationABSTRACT
BACKGROUND: Data related to carriage of Streptococcus pneumoniae (Spn) and antimicrobial resistance patterns in middle-aged and older adults are limited. We assessed the carriage of Spn, and its antibiotic resistance patterns, among participants ≥50 years of age living in the city of Novi Sad during the second year of COVID-19 pandemic. METHODS: Analysis of prospectively collected data among participants with or without symptoms of upper respiratory tract infection who visited their elected physicians in the Primary Health Care Centre of Novi Sad (outpatient facility) was conducted from May 18, 2021 to December 7, 2021. Both nasopharyngeal (NP) and oropharyngeal (OP) samples from each participant were collected. RESULTS: A total of 1042 samples from 521 study subjects (1 NP and 1 OP sample from each person) were collected. Sixteen samples from the same number of persons (3.1%, 95% confidence interval: 1.76%-4.94%) were culture positive for the presence of Spn. Overall, the median age of study participants was 71 years (range, 50-93 years; 90th percentile, 77 years), and most (197/521, 37.8%) of them were 70-79 years of age. A majority of the study subjects were: females (324/521; 62.2%), sampled during May and June 2021 (376/521, 72.2%), those who did not have contact with children aged 0-10 years in the family (403/521; 77.4%), without smokers in the household (443/521; 85.0%), and those who did not receive vaccine against Spn (519/521; 99.6%). Out of 16 Spn positive samples, for six participants, Spn carriage serotypes were obtained and there were four vaccine (6A, 11A, 15B, and 18C) serotypes, and two (6C and 35F) non-vaccine serotypes. Remaining 10 (62.50%) samples were non-typeable isolates of pneumococci. Among four vaccine serotypes, two (6A and 18C) were represented in PCV13, and 18C along with the other two (11A and 15B) in PPSV23 vaccine. The highest level of resistance of Spn isolates was observed for erythromycin, (10 or 62.50%), and tetracycline, (7 or 43.75%), one isolate showed resistance to penicillin, ampicillin, and amoxicillin/amoxicillin-clavulanic acid, while none of them were resistant to ceftriaxone, trimethoprim/sulfamethoxazole and levofloxacin. There were three multi-drug resistant isolates; one was identified as 6C (non-vaccine serotype), and two other were non-typeable isolates of Spn. CONCLUSIONS: In this first study conducted in Serbia on Spn carriage in adults ≥50 years of age, we found low prevalence of Spn carriage and identified 6 serotypes of Spn, four of which were represented in vaccines. These results may support future Spn colonization studies among middle-aged and older adults.
Subject(s)
COVID-19 , Pneumococcal Infections , Aged , Aged, 80 and over , Amoxicillin-Potassium Clavulanate Combination , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , COVID-19/epidemiology , Carrier State/epidemiology , Ceftriaxone , Child , Delivery of Health Care , Erythromycin , Female , Humans , Infant , Levofloxacin , Middle Aged , Nasopharynx , Outpatients , Pandemics , Penicillins , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines , Serbia/epidemiology , Serogroup , Streptococcus pneumoniae , Tetracyclines , Trimethoprim, Sulfamethoxazole Drug CombinationABSTRACT
We analyzed the effect of COVID-19 on healthcare demand and invasive pneumococcal disease in children in Catalonia, Spain. Compared with 2018-2019, we noted large reductions in healthcare activities and incidence of invasive pneumococcal disease in 2020. These changes likely resulted from nonpharmaceutical measures implemented during the COVID-19 pandemic.
Subject(s)
COVID-19 , Pneumococcal Infections , Child , Humans , Infant , Spain/epidemiology , Streptococcus pneumoniae , COVID-19/epidemiology , Pandemics , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Incidence , Pneumococcal Vaccines , Vaccines, ConjugateABSTRACT
BACKGROUND: In Nepal, Streptococcus pneumoniae (pneumococcus) is a common cause of bacterial pneumonia in children, and is a major health concern. There are few data on the effect of vaccination on the disease or colonisation with pneumococci in the nasopharynx of children in this setting. The 10-valent pneumococcal conjugate vaccine (PCV10) was introduced into the routine infant immunisation schedule in Nepal in 2015. We aimed to investigate the effect of the introduction of PCV10 on pneumococcal carriage and disease in children in Nepal. METHODS: We did an observational cohort study in children in Nepal. The hospital surveillance study took place in Patan Hospital, Kathmandu, and community studies in healthy children took place in Kathmandu and Okhaldhunga district. For the surveillance study, all children admitted to Patan Hospital between March 20, 2014, and Dec 31, 2019, aged between 2 months and 14 years with clinician-suspected pneumonia, were eligible for enrolment. For the community study, healthy children aged 0-8 weeks, 6-23 months, and 24-59 months were recruited from Kathmandu, and healthy children aged 6-23 months were recruited from Okhaldhunga. We assessed the programmatic effect of PCV10 introduction using surveillance for nasopharyngeal colonisation, pneumonia, and invasive bacterial disease from 1·5 years before vaccine introduction and 4·5 years after vaccine introduction. For the surveillance study, nasopharyngeal swabs, blood cultures, and chest radiographs were obtained from children admitted to Patan Hospital with suspected pneumonia or invasive bacterial disease. For the community study, nasopharyngeal swabs were obtained from healthy children in the urban and rural settings. Pneumonia outcomes were analysed using log-binomial models and adjusted prevalence ratios (aPR) comparing each calendar year after the introduction of the vaccine into the national programme with the pre-vaccine period (2014-15), adjusted for calendar month, age, and sex. FINDINGS: Between March 20, 2014, and Dec 31, 2019, we enrolled 2051 children with suspected pneumonia, and 11â354 healthy children (8483 children aged 6-23 months, 761 aged 24-59 months, and 2110 aged 0-8 weeks) to assess nasopharyngeal colonisation. Among clinical pneumonia cases younger than 2 years, vaccine serotype carriage declined 82% (aPR 0·18 [95% CI 0·07-0·50]) by 2019. There was no decrease in vaccine serotype carriage in cases among older unvaccinated age groups. Carriage of the additional serotypes in PCV13 was 2·2 times higher by 2019 (aPR 2·17 [95% CI 1·16-4·05]), due to increases in serotypes 19A and 3. Vaccine serotype carriage in healthy children declined by 75% in those aged 6-23 months (aPR 0·25 [95% CI 0·19-0·33]) but not in those aged 24-59 months (aPR 0·59 [0·29-1·19]). A decrease in overall vaccine serotype carriage of 61% by 2019 (aPR 0·39 [95% CI 0·18-0·85]) was also observed in children younger than 8 weeks who were not yet immunised. Carriage of the additional PCV13 serotypes in children aged 6-23 months increased after PCV10 introduction for serotype 3 and 19A, but not for serotype 6A. The proportion of clinical pneumonia cases with endpoint consolidation on chest radiographs declined from 41% in the pre-vaccine period to 25% by 2018, but rose again in 2019 to 36%. INTERPRETATION: The introduction of the PCV10 vaccine into the routine immunisation programme in Nepal has reduced vaccine serotype carriage in both healthy children and children younger than 2 years with pneumonia. Increases in serotypes 19A and 3 highlight the importance of continued surveillance to monitor the effect of vaccine programmes. This analysis demonstrates a robust approach to assessing vaccine effect in situations in which pneumococcal disease endpoint effectiveness studies are not possible. FUNDING: Gavi, the Vaccine Alliance and the World Health Organization.
Subject(s)
Pneumococcal Infections , Pneumonia , Carrier State/epidemiology , Child , Cohort Studies , Humans , Infant , Nepal/epidemiology , Pneumococcal Infections/epidemiology , Pneumococcal Infections/microbiology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines , Streptococcus pneumoniaeABSTRACT
BACKGROUND: The incidence of invasive pneumococcal disease (IPD) declined during the COVID-19 pandemic. Previous studies hypothesized that this was due to reduced pneumococcal transmission resulting from nonpharmaceutical interventions. We used multiple ongoing cohort surveillance projects in children <5 years to test this hypothesis. METHODS: The first SARS-CoV-2 cases were detected in February 2020, resulting in a full lockdown, followed by several partial restrictions. Data from ongoing surveillance projects captured the incidence dynamics of community-acquired alveolar pneumonia (CAAP), nonalveolar lower respiratory infections necessitating chest X-rays (NA-LRIs), nasopharyngeal pneumococcal carriage in nonrespiratory visits, nasopharyngeal respiratory virus detection (by polymerase chain reaction), and nationwide IPD. Monthly rates (January 2020 through February 2021 vs mean monthly rates 2016-2019 [expected rates]) adjusted for age and ethnicity were compared. RESULTS: CAAP and bacteremic pneumococcal pneumonia were strongly reduced (incidence rate ratios [IRRs]: .07 and .19, respectively); NA-LRIs and nonpneumonia IPD were also reduced by a lesser magnitude (IRRs: .46 and .42, respectively). In contrast, pneumococcal carriage prevalence was only slightly reduced, and density of colonization and pneumococcal serotype distributions were similar to previous years. The decline in pneumococcus-associated disease was temporally associated with a full suppression of respiratory syncytial virus, influenza viruses, and human metapneumovirus, often implicated as co-pathogens with pneumococcus. In contrast, adenovirus, rhinovirus, and parainfluenza activities were within or above expected levels. CONCLUSIONS: Reductions in pneumococcal and pneumococcus-associated diseases occurring during the COVID-19 pandemic in Israel were not predominantly related to reduced pneumococcal carriage and density but were strongly associated with the disappearance of specific respiratory viruses.
Subject(s)
COVID-19 , Community-Acquired Infections , Pneumococcal Infections , Respiratory Syncytial Virus, Human , Viruses , COVID-19/epidemiology , Child , Child, Preschool , Cohort Studies , Communicable Disease Control , Community-Acquired Infections/epidemiology , Humans , Infant , Israel/epidemiology , Pandemics , Pneumococcal Infections/epidemiology , Pneumococcal Vaccines , Prospective Studies , SARS-CoV-2 , Seasons , Streptococcus pneumoniaeABSTRACT
BACKGROUND: Given the significant role of penicillin-nonsusceptible Streptococcus pneumoniae in inducing severe infectious diseases, identifying serotypes and genotypes that can mediate antimicrobial resistance has become a pillar of treatment strategies. This study aims to determine the correlation between the minimum inhibitory concentration of antimicrobial agents and amino acid mutations in penicillin-binding proteins. Moreover, molecular serotyping and multiple-locus variable number tandem repeat analysis typing were first-ever performed to characterize the invasive penicillin-nonsusceptible S. pneumoniae isolates in Iran. METHODS: Of 149 isolates, antimicrobial susceptibility tests were performed against penicillin, ceftriaxone, and cefotaxime by the MIC Test Strip, and sequence analysis of the pbp genes was performed through PCR-sequencing method. All penicillin-nonsusceptible S. pneumoniae isolates were serotyped and genotyped by sequential multiplex PCR and multiple-locus variable-number tandem repeat analysis, respectively. RESULTS: Among pneumococcal isolates, 53 isolates were classified as penicillin-nonsusceptible S. pneumoniae, of which 38 (71.7%) and 15 (28.3%) were resistant and intermediate to penicillin, respectively. Furthermore, ceftriaxone- and cefotaxime-nonsusceptible pneumococci constituted 33 (62.2%) and 29 cases (54.7%), respectively. Of note, there were 8 and 41 different serotypes and multiple-locus variable-number tandem repeat analysis types, respectively. CONCLUSIONS: Due to the increasing resistance to antimicrobial agents, the most efficient approach to preventing pneumococcal infection mortality as vaccine-preventable diseases is focusing on wide-spectrum vaccination. Based on our findings, the 13-valent pneumococcal conjugate vaccine could considerably reduce the incidence of invasive pneumococcal diseases due to the high rate of serotype coverage.
Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Anti-Bacterial Agents/pharmacology , Cefotaxime/pharmacology , Ceftriaxone/pharmacology , Ceftriaxone/therapeutic use , Heptavalent Pneumococcal Conjugate Vaccine , Humans , Microbial Sensitivity Tests , Penicillins/pharmacology , Penicillins/therapeutic use , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines , Serotyping , Streptococcus pneumoniae/geneticsABSTRACT
During July-December 2021, after COVID-19 restrictions were removed in England, invasive pneumococcal disease incidence in children <15 years of age was higher (1.96/100,000 children) than during the same period in 2020 (0.7/100,000 children) and in prepandemic years 2017-2019 (1.43/100,000 children). Childhood vaccine coverage should be maintained to protect the population.
Subject(s)
COVID-19 , Pneumococcal Infections , COVID-19/epidemiology , Child , England/epidemiology , Humans , Incidence , Infant , Pandemics , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal VaccinesABSTRACT
We evaluated compliance to the ACIP pneumococcal vaccination recommendations issued in 2014 for adults aged ≥ 65 years and in 2012 for adults with high-risk (HR) conditions. The MarketScan® Commercial and Medicare Supplemental databases (January 2007-June 2019) were used to identify the cohorts of interest. Analyses for adults aged ≥ 65 years were adjusted to account for missing vaccination history. Two HR cohorts were identified. The HR1 cohort included patients with immunocompromising conditions, functional or anatomic asplenia, cerebrospinal fluid leak, or cochlear implant. The HR2 cohort included patients with chronic heart, lung, or liver disease; diabetes mellitus; alcoholism; cirrhosis; or cigarette smoking. Full compliance for those aged ≥ 65 years or in the HR1 cohort was defined as receipt of PCV13 and PPSV23, and partial compliance was defined as receipt of PCV13 or PPSV23. For those in the HR2 cohort, full compliance was defined as receipt of PPSV23. Annual compliance rates were estimated using the Kaplan-Meier method. Among those aged ≥ 65 years, partial compliance at 4 years post index was 53% and full compliance was 17% in adjusted analyses. In subjects ≥ 65 years receiving the first vaccination, 42% received the second vaccination by year 4. For the HR1 cohort, partial compliance was 19% and full compliance was 5% at 6 years post index date. For the HR2 cohort, full compliance was 20% at 6 years, with the highest rate in patients with diabetes (27%) and the lowest rate in patients with alcoholism (8%). Additional efforts are needed to maximize compliance to the ACIP pneumococcal vaccine recommendations among adults ≥ 65 years of age and adults with HR conditions including streamlined recommendations and single-dose vaccines. These efforts may subsequently reduce the incidence and burden of pneumococcal disease.
Subject(s)
Advisory Committees , Pneumococcal Infections , Aged , Humans , Immunocompromised Host , Medicare , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines , United States , Vaccination , Vaccines, ConjugateABSTRACT
Invasive pneumococcal disease (IPD) is a severe infection caused by Streptococcus pneumoniae. This study explores the influence of COVID-19 on IPD occurrence in Japan by using the time trend analysis. We found that the IPD trend changed dramatically after the emergence of COVID-19; first, the number of IPD cases decreased. Second, the seasonality of IPD disappeared after the COVID-19 pandemic. Interestingly, the number of IPD cases increased between the waves of COVID-19.
Subject(s)
COVID-19 , Pneumococcal Infections , COVID-19/epidemiology , Humans , Incidence , Infant , Japan/epidemiology , Pandemics , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines , SerogroupABSTRACT
Importance: An association between pneumococcal nasopharyngeal carriage and invasive pneumococcal disease (IPD) has been previously established. However, it is unclear whether the decrease in IPD incidence observed after implementation of nonpharmaceutical interventions (NPIs) during the COVID-19 pandemic was associated with concomitant changes in pneumococcal carriage and respiratory viral infections. Objective: To assess changes in IPD incidence after the implementation of NPIs during the COVID-19 pandemic and examine their temporal association with changes in pneumococcal carriage rate and respiratory viral infections (specifically respiratory syncytial virus [RSV] and influenza cases) among children in France. Design, Setting, and Participants: This cohort study used interrupted time series analysis of data from ambulatory and hospital-based national continuous surveillance systems of pneumococcal carriage, RSV and influenza-related diseases, and IPD between January 1, 2007, and March 31, 2021. Participants included 11 944 children younger than 15 years in France. Exposures: Implementation of NPIs during the COVID-19 pandemic. Main Outcomes and Measures: The estimated fraction of IPD change after implementation of NPIs and the association of this change with concomitant changes in pneumococcal carriage rate and RSV and influenza cases among children younger than 15 years. The estimated fraction of change was analyzed using a quasi-Poisson regression model. Results: During the study period, 5113 children (median [IQR] age, 1.0 [0.6-4.0] years; 2959 boys [57.9%]) had IPD, and 6831 healthy children (median [IQR] age, 1.5 [0.9-3.9] years; 3534 boys [51.7%]) received a swab test. Data on race and ethnicity were not collected. After NPI implementation, IPD incidence decreased by 63% (95% CI, -82% to -43%; P < .001) and was similar for non-13-valent pneumococcal conjugate vaccine serotypes with both high disease potential (-63%; 95% CI, -77% to -48%; P < .001) and low disease potential (-53%; 95% CI, -70% to -35%; P < .001). The overall pneumococcal carriage rate did not significantly change after NPI implementation (-12%; 95% CI, -37% to 12%; P = .32), nor did the carriage rate for non-PCV13 serotypes with high disease potential (-26%; 95% CI, -100% to 52%; P = .50) or low disease potential (-7%; 95% CI, -34% to 20%; P = .61). After NPI implementation, the estimated number of influenza cases decreased by 91% (95% CI, -74% to -97%; P < .001), and the estimated number of RSV cases decreased by 74% (95% CI, -55% to -85%; P < .001). Overall, the decrease in influenza and RSV cases accounted for 53% (95% CI, -28% to -78%; P < .001) and 40% (95% CI, -15% to -65%; P = .002) of the decrease in IPD incidence during the NPI period, respectively. The decrease in IPD incidence was not associated with pneumococcal carriage, with carriage accounting for only 4% (95% CI, -7% to 15%; P = .49) of the decrease. Conclusions and Relevance: In this cohort study of data from multiple national continuous surveillance systems, a decrease in pediatric IPD incidence occurred after the implementation of NPIs in France; this decrease was associated with a decrease in viral infection cases rather than pneumococcal carriage rate. The association between pneumococcal carriage and IPD was potentially modified by changes in the number of RSV and influenza cases, suggesting that interventions targeting respiratory viruses, such as immunoprophylaxis or vaccines for RSV and influenza, may be able to prevent a large proportion of pediatric IPD cases.
Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Pneumococcal Infections , Viruses , COVID-19/epidemiology , Child , Cohort Studies , Humans , Infant , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Male , Pandemics , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Streptococcus pneumoniaeABSTRACT
BACKGROUND: Infants are at highest risk of pneumococcal disease. Their added protection through herd effects is a key part in the considerations on optimal pneumococcal vaccination strategies. Yet, little is currently known about the main transmission pathways to this vulnerable age group. Hence, this study investigates pneumococcal transmission routes to infants in the coastal city of Nha Trang, Vietnam. METHODS AND FINDINGS: In October 2018, we conducted a nested cross-sectional contact and pneumococcal carriage survey in randomly selected 4- to 11-month-old infants across all 27 communes of Nha Trang. Bayesian logistic regression models were used to estimate age specific carriage prevalence in the population, a proxy for the probability that a contact of a given age could lead to pneumococcal exposure for the infant. We used another Bayesian logistic regression model to estimate the correlation between infant carriage and the probability that at least one of their reported contacts carried pneumococci, controlling for age and locality. In total, 1,583 infants between 4 and 13 months old participated, with 7,428 contacts reported. Few infants (5%, or 86 infants) attended day care, and carriage prevalence was 22% (353 infants). Most infants (61%, or 966 infants) had less than a 25% probability to have had close contact with a pneumococcal carrier on the surveyed day. Pneumococcal infection risk and contact behaviour were highly correlated: If adjusted for age and locality, the odds of an infant's carriage increased by 22% (95% confidence interval (CI): 15 to 29) per 10 percentage points increase in the probability to have had close contact with at least 1 pneumococcal carrier. Moreover, 2- to 6-year-old children contributed 51% (95% CI: 39 to 63) to the total direct pneumococcal exposure risks to infants in this setting. The main limitation of this study is that exposure risk was assessed indirectly by the age-dependent propensity for carriage of a contact and not by assessing carriage of such contacts directly. CONCLUSIONS: In this study, we observed that cross-sectional contact and infection studies could help identify pneumococcal transmission routes and that preschool-age children may be the largest reservoir for pneumococcal transmission to infants in Nha Trang, Vietnam.
Subject(s)
Carrier State , Pneumococcal Infections , Bayes Theorem , Carrier State/epidemiology , Child , Child, Preschool , Cross-Sectional Studies , Humans , Infant , Nasopharynx , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines , Streptococcus pneumoniae , Vietnam/epidemiologyABSTRACT
Measures to limit SARS-CoV-2 transmission in 2020 reduced other viral infections. Among 7 US children's hospitals, invasive pneumococcal disease cumulative incidence decreased by 46% in 2020 vs 2017-2019. Limited droplet transmission of pneumococci and preceding viral pathogens may be responsible.
Subject(s)
COVID-19 , Pandemics , Pneumococcal Infections , COVID-19/epidemiology , COVID-19/prevention & control , Child , Humans , Incidence , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , United States/epidemiologyABSTRACT
PURPOSE: The impact of SARS-CoV-2 pandemic on other pathogens is largely unknown. We aimed to compare the prevalence of vaccine-preventable invasive bacterial infections before and during the pandemic in Piedmont (Italy). METHODS: We defined the monthly incidence of S. pneumoniae, H. influenzae and N. meningitides-invasive diseases from January 2010 to June 2021. Then, we compared the mean monthly cases during the previous 5 years (2015-2019) and the monthly cases in 2020 or 2021. RESULTS: We found significant reductions for invasive pneumococcal diseases (IPDs) in adults and H. influenzae-invasive diseases in 2020 and 2021 in comparison to the previous years, but not for invasive meningococcal diseases and IPDs in children. CONCLUSIONS: Further data are needed to confirm these findings and define possible post-pandemic evolutions in the epidemiology of vaccine-preventable invasive bacterial diseases.