Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
PLoS One ; 17(5): e0269005, 2022.
Article in English | MEDLINE | ID: covidwho-1923703

ABSTRACT

BACKGROUND: Inflammatory biomarkers are associated with severity of coronavirus disease 2019 (COVID-19). However, direct comparisons of their utility in COVID-19 versus other respiratory infections are largely missing. OBJECTIVE: We aimed to investigate the prognostic utility of various inflammatory biomarkers in COVID-19 compared to patients with other respiratory infections. MATERIALS AND METHODS: Patients presenting to the emergency department with symptoms suggestive of COVID-19 were prospectively enrolled. Levels of Interleukin-6 (IL-6), c-reactive protein (CRP), procalcitonin, ferritin, and leukocytes were compared between COVID-19, other viral respiratory infections, and bacterial pneumonia. Primary outcome was the need for hospitalisation, secondary outcome was the composite of intensive care unit (ICU) admission or death at 30 days. RESULTS: Among 514 patients with confirmed respiratory infections, 191 (37%) were diagnosed with COVID-19, 227 (44%) with another viral respiratory infection (viral controls), and 96 (19%) with bacterial pneumonia (bacterial controls). All inflammatory biomarkers differed significantly between diagnoses and were numerically higher in hospitalized patients, regardless of diagnoses. Discriminative accuracy for hospitalisation was highest for IL-6 and CRP in all three diagnoses (in COVID-19, area under the curve (AUC) for IL-6 0.899 [95%CI 0.850-0.948]; AUC for CRP 0.922 [95%CI 0.879-0.964]). Similarly, IL-6 and CRP ranged among the strongest predictors for ICU admission or death at 30 days in COVID-19 (AUC for IL-6 0.794 [95%CI 0.694-0.894]; AUC for CRP 0.807 [95%CI 0.721-0.893]) and both controls. Predictive values of inflammatory biomarkers were generally higher in COVID-19 than in controls. CONCLUSION: In patients with COVID-19 and other respiratory infections, inflammatory biomarkers harbour strong prognostic information, particularly IL-6 and CRP. Their routine use may support early management decisions.


Subject(s)
COVID-19 , Pneumonia, Bacterial , Respiratory Tract Infections , Biomarkers , C-Reactive Protein/metabolism , COVID-19/diagnosis , Humans , Interleukin-6 , Pneumonia, Bacterial/diagnosis , Prospective Studies
2.
Adv Ther ; 39(7): 3061-3071, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1906545

ABSTRACT

The COVID-19 pandemic has drawn considerable attention to viral pneumonia from clinicians, public health authorities, and the general public. With dozens of viruses able to cause pneumonia in humans, differentiating viral from bacterial pneumonia can be very challenging in clinical practice using traditional diagnostic methods. Precision medicine is a medical model in which decisions, practices, interventions, and therapies are adapted to the individual patient on the basis of their predicted response or risk of disease. Precision medicine approaches hold promise as a way to improve outcomes for patients with viral pneumonia. This review describes the latest advances in the use of precision medicine for diagnosing and treating viral pneumonia in adults and discusses areas where further research is warranted.


Subject(s)
COVID-19 , Pneumonia, Bacterial , Pneumonia, Viral , Humans , Pandemics , Pneumonia, Bacterial/diagnosis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/therapy , Precision Medicine/methods
4.
Microbiol Spectr ; 9(3): e0069521, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1597074

ABSTRACT

Bacterial pneumonia is a challenging coronavirus disease 2019 (COVID-19) complication for intensive care unit (ICU) clinicians. Upon its implementation, the FilmArray pneumonia plus (FA-PP) panel's practicability for both the diagnosis and antimicrobial therapy management of bacterial pneumonia was assessed in ICU patients with COVID-19. Respiratory samples were collected from patients who were mechanically ventilated at the time bacterial etiology and antimicrobial resistance were determined using both standard-of-care (culture and antimicrobial susceptibility testing [AST]) and FA-PP panel testing methods. Changes to targeted and/or appropriate antimicrobial therapy were reviewed. We tested 212 samples from 150 patients suspected of bacterial pneumonia. Etiologically, 120 samples were positive by both methods, two samples were culture positive but FA-PP negative (i.e., negative for on-panel organisms), and 90 were negative by both methods. FA-PP detected no culture-growing organisms (mostly Staphylococcus aureus or Pseudomonas aeruginosa) in 19 of 120 samples or antimicrobial resistance genes in two culture-negative samples for S. aureus organisms. Fifty-nine (27.8%) of 212 samples were from empirically treated patients. Antibiotics were discontinued in 5 (33.3%) of 15 patients with FA-PP-negative samples and were escalated/deescalated in 39 (88.6%) of 44 patients with FA-PP-positive samples. Overall, antibiotics were initiated in 87 (72.5%) of 120 pneumonia episodes and were not administered in 80 (87.0%) of 92 nonpneumonia episodes. Antimicrobial-resistant organisms caused 78 (60.0%) of 120 episodes. Excluding 19 colistin-resistant Acinetobacter baumannii episodes, AST confirmed appropriate antibiotic receipt in 101 (84.2%) of 120 episodes for one or more FA-PP-detected organisms. Compared to standard-of-care testing, the FA-PP panel may be of great value in the management of COVID-19 patients at risk of developing bacterial pneumonia in the ICU. IMPORTANCE Since bacterial pneumonia is relatively frequent, suspicion of it in COVID-19 patients may prompt ICU clinicians to overuse (broad-spectrum) antibiotics, particularly when empirical antibiotics do not cover the suspected pathogen. We showed that a PCR-based, culture-independent laboratory assay allows not only accurate diagnosis but also streamlining of antimicrobial therapy for bacterial pneumonia episodes. We report on the actual implementation of rapid diagnostics and its real-life impact on patient treatment, which is a gain over previously published studies on the topic. A better understanding of the role of that or similar PCR assays in routine ICU practice may lead us to appreciate the effectiveness of their implementation during the COVID-19 pandemic.


Subject(s)
COVID-19/complications , Hospitals , Multiplex Polymerase Chain Reaction/methods , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/drug therapy , Aged , Anti-Bacterial Agents/therapeutic use , Bacteria/genetics , COVID-19/diagnosis , COVID-19 Testing/methods , Critical Illness , Female , Humans , Intensive Care Units , Male , Middle Aged , Pandemics , Patient Acuity , Pneumonia, Bacterial/microbiology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
5.
IEEE/ACM Trans Comput Biol Bioinform ; 18(6): 2775-2780, 2021.
Article in English | MEDLINE | ID: covidwho-1559565

ABSTRACT

A novel coronavirus (COVID-19) recently emerged as an acute respiratory syndrome, and has caused a pneumonia outbreak world-widely. As the COVID-19 continues to spread rapidly across the world, computed tomography (CT) has become essentially important for fast diagnoses. Thus, it is urgent to develop an accurate computer-aided method to assist clinicians to identify COVID-19-infected patients by CT images. Here, we have collected chest CT scans of 88 patients diagnosed with COVID-19 from hospitals of two provinces in China, 100 patients infected with bacteria pneumonia, and 86 healthy persons for comparison and modeling. Based on the data, a deep learning-based CT diagnosis system was developed to identify patients with COVID-19. The experimental results showed that our model could accurately discriminate the COVID-19 patients from the bacteria pneumonia patients with an AUC of 0.95, recall (sensitivity) of 0.96, and precision of 0.79. When integrating three types of CT images, our model achieved a recall of 0.93 with precision of 0.86 for discriminating COVID-19 patients from others. Moreover, our model could extract main lesion features, especially the ground-glass opacity (GGO), which are visually helpful for assisted diagnoses by doctors. An online server is available for online diagnoses with CT images by our server (http://biomed.nscc-gz.cn/model.php). Source codes and datasets are available at our GitHub (https://github.com/SY575/COVID19-CT).


Subject(s)
COVID-19/diagnostic imaging , COVID-19/diagnosis , Deep Learning , Diagnosis, Computer-Assisted/statistics & numerical data , Tomography, X-Ray Computed/statistics & numerical data , Case-Control Studies , China , Computational Biology , Diagnosis, Differential , Humans , Models, Statistical , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/diagnostic imaging , SARS-CoV-2
6.
Diagn Microbiol Infect Dis ; 101(3): 115476, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1544965

ABSTRACT

Among critically ill COVID-19 patients, bacterial coinfections may occur, and timely appropriate therapy may be limited with culture-based microbiology due to turnaround time and diagnostic yield challenges (e.g. antibiotic pre-exposure). We performed a systematic review and meta-analysis of the impact of BioFire® FilmArray® Pneumonia Panel in detecting bacteria and clinical management among critically ill COVID-19 patients admitted to the ICU. Seven studies with 558 patients were included. Antibiotic use before respiratory sampling occurred in 28-79% of cases. The panel incidence of detections was 33% (95% CI 0.25 to 0.41, I2=32%) while culture yielded 18% (95% CI 0.02 to 0.45; I2=93%). The panel was associated with approximately a 1 and 2 day decrease in turnaround for identification and common resistance targets, respectively. The panel may be an important tool for clinicians to improve antimicrobial use in critically ill COVID-19 patients.


Subject(s)
COVID-19/complications , COVID-19/pathology , Coinfection/diagnosis , Pneumonia, Bacterial/complications , Pneumonia, Bacterial/diagnosis , SARS-CoV-2/isolation & purification , Critical Illness , Humans , Molecular Diagnostic Techniques , Pneumonia, Bacterial/microbiology , Sensitivity and Specificity
7.
Clin Microbiol Infect ; 28(1): 13-22, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1445304

ABSTRACT

BACKGROUND: Point-of-care tests could be essential in differentiating bacterial and viral acute community-acquired lower respiratory tract infections and driving antibiotic stewardship in the community. OBJECTIVES: To assess diagnostic test accuracy of point-of-care tests in community settings for acute community-acquired lower respiratory tract infections. DATA SOURCES: Multiple databases (MEDLINE, EMBASE, Web of Science, Cochrane Library, Open Gray) from inception to 31 May 2021, without language restrictions. STUDY ELIGIBILITY CRITERIA: Diagnostic test accuracy studies involving patients at primary care, outpatient clinic, emergency department and long-term care facilities with a clinical suspicion of acute community-acquired lower respiratory tract infections. The comparator was any test used as a comparison to the index test. In order not to limit the study inclusion, the comparator was not defined a priori. ASSESSMENT OF RISK OF BIAS: Four investigators independently extracted data, rated risk of bias, and assessed the quality using QUADAS-2. METHODS OF DATA SYNTHESIS: The measures of diagnostic test accuracy were calculated with 95% CI. RESULTS: A total of 421 studies addressed at least one point-of-care test. The diagnostic performance of molecular tests was higher compared with that of rapid diagnostic tests for all the pathogens studied. The accuracy of stand-alone signs and symptoms or biomarkers was poor. Lung ultrasound showed high sensitivity and specificity (90% for both) for the diagnosis of bacterial pneumonia. Rapid antigen-based diagnostic tests for influenza, respiratory syncytial virus, human metapneumovirus, and Streptococcus pneumoniae had sub-optimal sensitivity (range 49%-84%) but high specificity (>80%). DISCUSSION: Physical examination and host biomarkers are not sufficiently reliable as stand-alone tests to differentiate between bacterial and viral pneumonia. Lung ultrasound shows higher accuracy than chest X-ray for bacterial pneumonia at emergency department. Rapid antigen-based diagnostic tests cannot be considered fully reliable because of high false-negative rates. Overall, molecular tests for all the pathogens considered were found to be the most accurate.


Subject(s)
Pneumonia, Bacterial/diagnosis , Pneumonia, Viral , Point-of-Care Testing , Bias , Biomarkers , Diagnosis, Differential , Humans , Pneumonia, Viral/diagnosis , Sensitivity and Specificity , Ultrasonography
8.
Diagn Microbiol Infect Dis ; 101(3): 115507, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1345315

ABSTRACT

The FilmArray Pneumonia Panel has proven to be an effective tool for rapid detection of main respiratory pathogens. However, its rational use needs appropriate knowledge and formation regarding its indication and interpretation. Herein, we provide some advices to help with success of its daily routine use, particularly in critically ill ventilated COVID-19 patients. Clinical Trial registration number: NCT04453540.


Subject(s)
COVID-19/complications , Critical Illness , Molecular Diagnostic Techniques/methods , Pneumonia, Bacterial/complications , Respiration, Artificial , SARS-CoV-2 , Algorithms , Coinfection/diagnosis , Humans , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/microbiology
9.
Int J Infect Dis ; 108: 568-573, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1298674

ABSTRACT

OBJECTIVES: This study aimed to evaluate the performance of FilmArray Pneumonia Panel Plus (FA-PP) for the detection of typical bacterial pathogens in respiratory samples from patients hospitalized in intensive care units (ICUs). METHODS: FA-PP was implemented for clinical use in the microbiology laboratory in March 2020. A retrospective analysis on a consecutive cohort of adult patients hospitalized in ICUs between March 2020 and May 2020 was undertaken. The respiratory samples included sputum, blind bronchoalveolar lavage (BBAL) and protected specimen brush (PSB). Conventional culture and FA-PP were performed in parallel. RESULTS: In total, 147 samples from 92 patients were analysed; 88% had coronavirus disease 2019 (COVID-19). At least one pathogen was detected in 46% (68/147) of samples by FA-PP and 39% (57/147) of samples by culture. The overall percentage agreement between FA-PP and culture results was 98% (93-100%). Bacteria with semi-quantitative FA-PP results ≥105 copies/mL for PSB samples, ≥106 copies/mL for BBAL samples and ≥107 copies/mL for sputum samples reached clinically significant thresholds for growth in 90%, 100% and 91% of cultures, respectively. FA-PP detected resistance markers, including mecA/C, blaCTX-M and blaVIM. The median turnaround time was significantly shorter for FA-PP than for culture. CONCLUSIONS: FA-PP may constitute a faster approach to the diagnosis of bacterial pneumonia in patients hospitalized in ICUs.


Subject(s)
COVID-19 , Pneumonia, Bacterial , Pneumonia , Adult , Bacteria , Humans , Intensive Care Units , Pneumonia, Bacterial/diagnosis , Retrospective Studies , SARS-CoV-2
10.
Int J Infect Dis ; 108: 568-573, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1258385

ABSTRACT

OBJECTIVES: This study aimed to evaluate the performance of FilmArray Pneumonia Panel Plus (FA-PP) for the detection of typical bacterial pathogens in respiratory samples from patients hospitalized in intensive care units (ICUs). METHODS: FA-PP was implemented for clinical use in the microbiology laboratory in March 2020. A retrospective analysis on a consecutive cohort of adult patients hospitalized in ICUs between March 2020 and May 2020 was undertaken. The respiratory samples included sputum, blind bronchoalveolar lavage (BBAL) and protected specimen brush (PSB). Conventional culture and FA-PP were performed in parallel. RESULTS: In total, 147 samples from 92 patients were analysed; 88% had coronavirus disease 2019 (COVID-19). At least one pathogen was detected in 46% (68/147) of samples by FA-PP and 39% (57/147) of samples by culture. The overall percentage agreement between FA-PP and culture results was 98% (93-100%). Bacteria with semi-quantitative FA-PP results ≥105 copies/mL for PSB samples, ≥106 copies/mL for BBAL samples and ≥107 copies/mL for sputum samples reached clinically significant thresholds for growth in 90%, 100% and 91% of cultures, respectively. FA-PP detected resistance markers, including mecA/C, blaCTX-M and blaVIM. The median turnaround time was significantly shorter for FA-PP than for culture. CONCLUSIONS: FA-PP may constitute a faster approach to the diagnosis of bacterial pneumonia in patients hospitalized in ICUs.


Subject(s)
COVID-19 , Pneumonia, Bacterial , Pneumonia , Adult , Bacteria , Humans , Intensive Care Units , Pneumonia, Bacterial/diagnosis , Retrospective Studies , SARS-CoV-2
11.
J Med Virol ; 93(5): 3113-3121, 2021 May.
Article in English | MEDLINE | ID: covidwho-1196540

ABSTRACT

The clinical symptoms of community-acquired pneumonia (CAP) and coronavirus disease 2019 (COVID-19)-associated pneumonia are similar. Effective predictive markers are needed to differentiate COVID-19 pneumonia from CAP in the current pandemic conditions. Copeptin, a 39-aminoacid glycopeptide, is a C-terminal part of the precursor pre-provasopressin (pre-proAVP). The activation of the AVP system stimulates copeptin secretion in equimolar amounts with AVP. This study aims to determine serum copeptin levels in patients with CAP and COVID-19 pneumonia and to analyze the power of copeptin in predicting COVID-19 pneumonia. The study consists of 98 patients with COVID-19 and 44 patients with CAP. The basic demographic and clinical data of all patients were recorded, and blood samples were collected. The receiver operating characteristic (ROC) curve was generated and the area under the ROC curve (AUC) was measured to evaluate the discriminative ability. Serum copeptin levels were significantly higher in COVID-19 patients compared to CAP patients (10.2 ± 4.4 ng/ml and 7.1 ± 3.1 ng/ml; p < .001). Serum copeptin levels were positively correlated with leukocyte, neutrophil, and platelet count (r = -.21, p = .012; r = -.21, p = .013; r = -.20, p = .018; respectively). The multivariable logistic regression analysis revealed that increased copeptin (odds ratio [OR] = 1.183, 95% confidence interval [CI], 1.033-1.354; p = .015) and CK-MB (OR = 1.052, 95% CI, 1.013-1.092; p = .008) levels and decreased leukocyte count (OR = 0.829, 95% CI, 0.730-0.940; p = .004) were independent predictors of COVID-19 pneumonia. A cut-off value of 6.83 ng/ml for copeptin predicted COVID-19 with a sensitivity of 78% and a specificity of 73% (AUC: 0.764% 95 Cl: 0.671-0.856, p < .001). Copeptin could be a promising and useful biomarker to be used to distinguish COVID-19 patients from CAP patients.


Subject(s)
COVID-19/diagnosis , Glycopeptides/blood , Pneumonia, Bacterial/diagnosis , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Community-Acquired Infections , Female , Glycopeptides/metabolism , Humans , Logistic Models , Male , Middle Aged
12.
BMJ Case Rep ; 14(4)2021 Apr 07.
Article in English | MEDLINE | ID: covidwho-1172742

ABSTRACT

Necrotising myositis is a rare complication of Group A Streptococcus infection requiring early and aggressive surgical management to prevent mortality. However, early diagnosis is difficult due to non-specific initial presentation and a low index of clinical suspicion given the paucity of cases. We highlight these challenges and present a case of a 22-year-old woman presenting with cough, fever and severe limb pain refractory to analgesia during the COVID-19 pandemic. We outline potential confounding factors that can delay intervention and offer diagnostic tools that can aid clinical diagnosis of necrotising myositis. In reporting this case, we hope to raise awareness among clinicians to avoid these pitfalls.


Subject(s)
Fasciitis, Necrotizing/diagnosis , Pneumonia, Bacterial/diagnosis , Streptococcal Infections/diagnosis , COVID-19 , Extremities/pathology , Fasciitis, Necrotizing/therapy , Female , Humans , Pneumonia, Bacterial/therapy , Streptococcal Infections/therapy , Streptococcus pyogenes , Young Adult
14.
Epidemiol Infect ; 149: e62, 2021 02 17.
Article in English | MEDLINE | ID: covidwho-1127117

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a newly emerged disease with various clinical manifestations and imaging features. The diagnosis of COVID-19 depends on a positive nucleic acid amplification test by real-time reverse transcription-polymerase chain reaction (RT-PCR) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the clinical manifestations and imaging features of COVID-19 are non-specific, and nucleic acid test for SARS-CoV-2 can have false-negative results. It is presently believed that detection of specific antibodies to SARS-CoV-2 is an effective screening and diagnostic indicator for SARS-CoV-2 infection. Thus, a combination of nucleic acid and specific antibody tests for SARS-CoV-2 will be more effective to diagnose COVID-19, especially to exclude suspected cases.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Pneumonia, Bacterial/diagnosis , SARS-CoV-2/isolation & purification , Adult , Anti-Bacterial Agents/therapeutic use , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/drug therapy , COVID-19/pathology , Diagnosis, Differential , Female , Humans , Lung/diagnostic imaging , Lung/pathology , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/pathology , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Treatment Outcome , Young Adult
15.
Eur J Clin Microbiol Infect Dis ; 40(12): 2479-2485, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1116614

ABSTRACT

The study was undertaken to evaluate the performance of Unyvero Hospitalized Pneumonia (HPN) panel application, a multiplex PCR-based method for the detection of bacterial pathogens from lower respiratory tract (LRT) samples, obtained from COVID-19 patients with suspected secondary hospital-acquired pneumonia. Residual LRT samples obtained from critically ill COVID-19 patients with predetermined microbiological culture results were tested using the Unyvero HPN Application. Performance evaluation of the HPN Application was carried out using the standard-of-care (SoC) microbiological culture findings as the reference method. Eighty-three LRT samples were used in the evaluation. The HPN Application had a full concordance with SoC findings in 59/83 (71%) samples. The new method detected additional bacterial species in 21 (25%) and failed at detecting a bacterial species present in lower respiratory culture in 3 (3.6%) samples. Overall the sensitivity, specificity, positive, and negative predictive values of the HPN Application were 95.1% (95%CI 96.5-98.3%), 98.3% (95% CI 97.5-98.9%), 71.6% (95% CI 61.0-80.3%), and 99.8% (95% CI 99.3-99.9%), respectively. In conclusion, the HPN Application demonstrated higher diagnostic yield in comparison with the culture and generated results within 5 h.


Subject(s)
Bacteria/isolation & purification , COVID-19/complications , Cross Infection/microbiology , Multiplex Polymerase Chain Reaction/methods , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/microbiology , Adult , Aged , Bacteria/classification , Bacteria/genetics , COVID-19/virology , Cross Infection/etiology , Female , Hospitals , Humans , Lung/microbiology , Male , Middle Aged , Pneumonia, Bacterial/etiology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Sweden
16.
Can Respir J ; 2020: 8715756, 2020.
Article in English | MEDLINE | ID: covidwho-1066954

ABSTRACT

Background: Nonresponding pneumonia is responsible for the most mortality of community-acquired pneumonia (CAP). However, thus far, it is not clear whether viral infection plays an important role in the etiology of nonresponding CAP and whether there is a significant difference in the clinical characteristics between viral and nonviral nonresponding CAP. Methods: From 2016 to 2019, nonresponding CAP patients were retrospectively enrolled in our study. All patients received bronchoalveolar lavage (BAL) and virus detection in BAL fluid by multiplex real-time polymerase chain reaction (PCR), and clinical, laboratory, and radiographic data were collected. Results: A total of 43 patients were included. The median age was 62 years, and 65.1% of patients were male. Overall, 20 patients (46.5%) were identified with viral infection. Of these viruses, influenza virus (n = 8) and adenovirus (n = 7) were more frequently detected, and others included herpes simplex virus, human enterovirus, cytomegalovirus, human coronavirus 229E, rhinovirus, and parainfluenza virus. Compared with nonviral nonresponding CAP, only ground-glass opacity combined with consolidation was a more common imaging manifestation in viral nonresponding CAP. However, no obvious differences were found in clinical and laboratory findings between the presence and the absence of viral infections. Conclusions: Viral infections were particularly frequent in adults with nonresponding CAP. The ground-glass opacity combined with consolidation was a specific imaging manifestation for viral nonresponding CAP, while the clinical and laboratory data showed no obvious differences between viral and nonviral nonresponding CAP.


Subject(s)
Bronchoalveolar Lavage Fluid/virology , Multiplex Polymerase Chain Reaction , Pneumonia, Viral/diagnosis , Real-Time Polymerase Chain Reaction , Adolescent , Adult , Aged , Aged, 80 and over , Anti-Bacterial Agents/therapeutic use , Community-Acquired Infections/diagnosis , Community-Acquired Infections/virology , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/drug therapy , Pneumonia, Viral/virology , Retrospective Studies , Young Adult
18.
Diagn Microbiol Infect Dis ; 99(2): 115169, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1064997

ABSTRACT

We evaluated simple laboratory variables to discriminate COVID-19 from bacterial pneumonia or influenza and for the prospective grading of COVID-19. Multivariate logistic regression and receiver operating characteristic curve were used to estimate the diagnostic performance of the significant discriminating variables. A comparative analysis was performed with different severity. The leukocytosis (P = 0.017) and eosinopenia (P = 0.001) were discriminating variables between COVID-19 and bacterial pneumonia with area under the curve (AUC) of 0.778 and 0.825. Monocytosis (P = 0.003), the decreased lymphocyte-to-monocyte ratio (P < 0.001), and the increased neutrophil-to-lymphocyte ratio (NLR) (P = 0.028) were predictive of influenza with AUC of 0.723, 0.895, and 0.783, respectively. Serum amyloid protein, lactate dehydrogenase, CD3+ cells, and the fibrinogen degradation products had a good correlation with the severity of COVID-19 graded by age (≥50) and NLR (≥3.13). Simple laboratory variables are helpful for rapid diagnosis on admission and hierarchical management of COVID-19 patients.


Subject(s)
COVID-19/diagnosis , Influenza, Human/diagnosis , Pneumonia, Bacterial/diagnosis , Severity of Illness Index , Adolescent , Adult , Amyloidogenic Proteins/blood , Child , Child, Preschool , Diagnosis, Differential , Eosinophilia/pathology , Female , Fibrinogen/metabolism , Humans , L-Lactate Dehydrogenase/blood , Leukocytosis/pathology , Lymphocyte Count , Male , Middle Aged , Monocytes/cytology , Neutrophils/cytology , Retrospective Studies , SARS-CoV-2 , Young Adult
19.
J Antimicrob Chemother ; 76(5): 1323-1331, 2021 04 13.
Article in English | MEDLINE | ID: covidwho-1035641

ABSTRACT

BACKGROUND: COVID-19 is infrequently complicated by bacterial co-infection, but antibiotic prescriptions are common. We used community-acquired pneumonia (CAP) as a benchmark to define the processes that occur in bacterial pulmonary infections, testing the hypothesis that baseline inflammatory markers and their response to antibiotic therapy could distinguish bacterial co-infection from COVID-19. METHODS: Retrospective cohort study of CAP (lobar consolidation on chest radiograph) and COVID-19 (PCR detection of SARS-CoV-2) patients admitted to Royal Free Hospital (RFH) and Barnet Hospital (BH), serving as independent discovery and validation cohorts. All CAP and >90% COVID-19 patients received antibiotics on hospital admission. RESULTS: We identified 106 CAP and 619 COVID-19 patients at RFH. Compared with COVID-19, CAP was characterized by elevated baseline white cell count (WCC) [median 12.48 (IQR 8.2-15.3) versus 6.78 (IQR 5.2-9.5) ×106 cells/mL, P < 0.0001], C-reactive protein (CRP) [median 133.5 (IQR 65-221) versus 86.0 (IQR 42-160) mg/L, P < 0.0001], and greater reduction in CRP 48-72 h into admission [median ΔCRP -33 (IQR -112 to +3.5) versus +14 (IQR -15.5 to +70.5) mg/L, P < 0.0001]. These observations were recapitulated in the independent validation cohort at BH (169 CAP and 181 COVID-19 patients). A multivariate logistic regression model incorporating WCC and ΔCRP discriminated CAP from COVID-19 with AUC 0.88 (95% CI 0.83-0.94). Baseline WCC >8.2 × 106 cells/mL or falling CRP identified 94% of CAP cases, and excluded bacterial co-infection in 46% of COVID-19 patients. CONCLUSIONS: We propose that in COVID-19, absence of both elevated baseline WCC and antibiotic-related decrease in CRP can exclude bacterial co-infection and facilitate antibiotic stewardship efforts.


Subject(s)
COVID-19/complications , Coinfection/diagnosis , Pneumonia, Bacterial/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Anti-Bacterial Agents/therapeutic use , Biomarkers/blood , C-Reactive Protein/analysis , Community-Acquired Infections/diagnosis , Diagnosis, Differential , Female , Humans , Inflammation , Leukocyte Count , Male , Middle Aged , Retrospective Studies , Young Adult
20.
Diagn Microbiol Infect Dis ; 99(1): 115183, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1023526

ABSTRACT

The FilmArray® Pneumonia Plus (FA-PP) panel can provide rapid identifications and semiquantitative results for many pathogens. We performed a prospective single-center study in 43 critically ill patients with coronavirus disease 2019 (COVID-19) in which we performed 96 FA-PP tests and cultures of blind bronchoalveolar lavage (BBAL). FA-PP detected 1 or more pathogens in 32% (31/96 of samples), whereas culture methods detected at least 1 pathogen in 35% (34/96 of samples). The most prevalent bacteria detected were Pseudomonas aeruginosa (n = 14) and Staphylococcus aureus (n = 11) on both FA-PP and culture. The FA-PP results from BBAL in critically ill patients with COVID-19 were consistent with bacterial culture findings for bacteria present in the FA-PP panel, showing sensitivity, specificity, and positive and negative predictive value of 95%, 99%, 82%, and 100%, respectively. Median turnaround time for FA-PP was 5.5 h, which was significantly shorter than for standard culture (26 h) and antimicrobial susceptibility testing results (57 h).


Subject(s)
Bacteria/isolation & purification , Bacteriological Techniques/methods , COVID-19/complications , Multiplex Polymerase Chain Reaction/methods , Pneumonia, Bacterial/diagnosis , Aged , Bacteria/classification , Bacteria/genetics , Bronchoalveolar Lavage Fluid/microbiology , Critical Illness , Female , Humans , Male , Middle Aged , Pneumonia, Bacterial/microbiology , SARS-CoV-2 , Sensitivity and Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL