Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Am J Case Rep ; 23: e936264, 2022 Jun 03.
Article in English | MEDLINE | ID: covidwho-1897189

ABSTRACT

BACKGROUND Legionella infection is a common cause of atypical pneumonia, known as Legionnaires' disease when infection extends to extrapulmonary involvement, which often leads to hospitalization. The triad of Legionella pneumonia, rhabdomyolysis, and renal failure displays a rare yet fatal complication without prompt management. CASE REPORT Our patient was a 62-year-old man with no significant medical history who developed Legionnaires' disease with severely elevated creatinine phosphokinase (CPK) of 9614 mcg/L, consistent with rhabdomyolysis. He experienced severe headache, anorexia, and hematuria, which prompted him to seek medical care. Pertinent social history included recent flooding in his neighborhood, which surrounded the outer perimeter of his home. His clinical manifestations and laboratory findings were consistent with Legionella infection, with concomitant acute kidney injury. A chest X-ray revealed hazy left perihilar opacities concerning for atypical pneumonia. Immediate interventions of hydration and antigen-directed azithromycin were initiated to prevent rapid decompensation. His clinical symptoms resolved without further complications, and he was not transferred to the Intensive Care Unit (ICU). CONCLUSIONS Legionella-induced rhabdomyolysis is an uncommon association that can lead to acute kidney failure and rapid clinical deterioration. Early and aggressive management with fluid repletion and appropriate antibiotics can improve clinical manifestations and hospital length of stay. Our patient's reduction in CPK levels and clinical improvement confirmed that extrapulmonary involvement in Legionella infection can lead to rhabdomyolysis. It is important for healthcare providers to recognize the clinical triad of Legionella pneumonia, rhabdomyolysis, and renal failure as prompt and timely management to reduce associated morbidity.


Subject(s)
Acute Kidney Injury , Influenza, Human , Legionnaires' Disease , Pneumonia, Mycoplasma , Rhabdomyolysis , Acute Kidney Injury/complications , Acute Kidney Injury/therapy , Azithromycin , Humans , Influenza, Human/complications , Legionnaires' Disease/complications , Legionnaires' Disease/diagnosis , Legionnaires' Disease/therapy , Male , Middle Aged , Rhabdomyolysis/complications , Rhabdomyolysis/therapy
3.
Front Cell Infect Microbiol ; 12: 854505, 2022.
Article in English | MEDLINE | ID: covidwho-1847155

ABSTRACT

Objective: Mycoplasma pneumoniae (M. pneumoniae) is an important pathogen of community acquired pneumonia. With the outbreak of coronavirus disease 2019 (COVID-19), the prevalence of some infectious respiratory diseases has varied. Epidemiological features of M. pneumoniae in children from Beijing (China) before and during the COVID-19 pandemic were investigated. Methods: Between June 2016 and May 2021, a total of 569,887 children with respiratory infections from Children's Hospital Affiliated to Capital Institute of Pediatrics (Beijing, China) were included in this study. M. pneumoniae specific-IgM antibody in serum specimens of these patients was tested by a rapid immunochromatographic assay kit. The relevant clinical data of M. pneumoniae-positive cases were also collected, and analyzed by RStudio software. Results: The results showed that 13.08% of collected samples were positive for M. pneumoniae specific-IgM antibody. The highest annual positive rate was 17.59% in 2019, followed by 12.48% in 2018, 12.31% in 2017, and 11.73% in 2016, while the rate dropped to 8.9% in 2020 and 4.95% in 2021, with significant difference. Among the six years, the positive rates in summer and winter seasons were significantly higher than those in spring and autumn seasons (p < 0.001). The positive rate was the highest in school-age children (22.20%), and lowest in the infant group (8.76%, p < 0.001). The positive rate in boys (11.69%) was lower than that in girls (14.80%, p < 0.001). There were no significant differences in different seasons, age groups, or genders before and during the COVID-19 pandemic (p > 0.05). Conclusions: Our study demonstrated that an M. pneumoniae outbreak started from the summer of 2019 in Beijing. After the COVID-19 pandemic outbreak in the end of 2019, the M. pneumoniae positive rates dropped dramatically. This may be due to the restrictive measures of the COVID-19 pandemic, which effectively controlled the transmission of M. pneumoniae. The relationships between M. pneumoniae positive rates and season, age, and gender were not statistically significant before and during the COVID-19 pandemic.


Subject(s)
COVID-19 , Pneumonia, Mycoplasma , Beijing/epidemiology , COVID-19/epidemiology , Child , Female , Humans , Immunoglobulin M , Infant , Male , Mycoplasma pneumoniae , Pandemics , Pneumonia, Mycoplasma/epidemiology , Prevalence
4.
Euro Surveill ; 27(19)2022 05.
Article in English | MEDLINE | ID: covidwho-1847113

ABSTRACT

BackgroundMycoplasma pneumoniae respiratory infections are transmitted by aerosol and droplets in close contact.AimWe investigated global M. pneumoniae incidence after implementation of non-pharmaceutical interventions (NPIs) against COVID-19 in March 2020.MethodsWe surveyed M. pneumoniae detections from laboratories and surveillance systems (national or regional) across the world from 1 April 2020 to 31 March 2021 and compared them with cases from corresponding months between 2017 and 2020. Macrolide-resistant M. pneumoniae (MRMp) data were collected from 1 April 2017 to 31 March 2021.ResultsThirty-seven sites from 21 countries in Europe, Asia, America and Oceania submitted valid datasets (631,104 tests). Among the 30,617 M. pneumoniae detections, 62.39% were based on direct test methods (predominantly PCR), 34.24% on a combination of PCR and serology (no distinction between methods) and 3.37% on serology alone (only IgM considered). In all countries, M. pneumoniae incidence by direct test methods declined significantly after implementation of NPIs with a mean of 1.69% (SD ± 3.30) compared with 8.61% (SD ± 10.62) in previous years (p < 0.01). Detection rates decreased with direct but not with indirect test methods (serology) (-93.51% vs + 18.08%; p < 0.01). Direct detections remained low worldwide throughout April 2020 to March 2021 despite widely differing lockdown or school closure periods. Seven sites (Europe, Asia and America) reported MRMp detections in one of 22 investigated cases in April 2020 to March 2021 and 176 of 762 (23.10%) in previous years (p = 0.04).ConclusionsThis comprehensive collection of M. pneumoniae detections worldwide shows correlation between COVID-19 NPIs and significantly reduced detection numbers.


Subject(s)
COVID-19 , Pneumonia, Mycoplasma , COVID-19/epidemiology , Communicable Disease Control , Humans , Macrolides , Mycoplasma pneumoniae/genetics , Pandemics , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/epidemiology
5.
Respir Med Res ; 81: 100892, 2022 May.
Article in English | MEDLINE | ID: covidwho-1805072

ABSTRACT

BACKGROUND: Chest computed tomography (CT) was reported to improve the diagnosis of community-acquired pneumonia (CAP) as compared to chest X-ray (CXR). The aim of this study is to describe the CT-patterns of CAP in a large population visiting the emergency department and to see if some of them are more frequently missed on CXR. MATERIALS AND METHODS: This is an ancillary analysis of the prospective multicenter ESCAPED study including 319 patients. We selected the 163 definite or probable CAP based on adjudication committee classification; 147 available chest CT scans were reinterpreted by 3 chest radiologists to identify CAP patterns. These CT-patterns were correlated to epidemiological, biological and microbiological data, and compared between false negative and true positive CXR CAP. RESULTS: Six patterns were identified: lobar pneumonia (51/147, 35%), including 35 with plurifocal involvement; lobular pneumonia (43/147, 29%); unilobar infra-segmental consolidation (24/147, 16%); bronchiolitis (16/147, 11%), including 4 unilobar bronchiolitis; atelectasis and bronchial abnormalities (8/147, 5.5%); interstitial pneumonia (5/147, 3.5%). Bacteria were isolated in 41% of patients with lobar pneumonia-pattern (mostly Streptococcus pneumoniae and Mycoplasma pneumonia) versus 19% in other patients (p = 0.01). Respiratory viruses were equally distributed within all patterns. CXR was falsely negative in 46/147 (31%) patients. Lobar pneumonia was significantly less missed on CXR than other patterns (p = 0.003), especially lobular pneumonia and unilobar infra-segmental consolidation, missed in 35% and 58% of cases, respectively. CONCLUSION: Lobar and lobular pneumonias are the most frequent CT-patterns. Lobar pneumonia is appropriately detected on CXR and mainly due to Streptococcus pneumoniae or Mycoplasma pneumoniae. Chest CT is very useful to identify CAP in other CT-patterns. Prior the COVID pandemic, CAP was rarely responsible for interstitial opacities on CT.


Subject(s)
Bronchiolitis , COVID-19 , Community-Acquired Infections , Pneumonia, Mycoplasma , Pneumonia, Pneumococcal , Community-Acquired Infections/diagnostic imaging , Community-Acquired Infections/epidemiology , Emergency Service, Hospital , Humans , Pneumonia, Mycoplasma/diagnostic imaging , Pneumonia, Mycoplasma/epidemiology , Pneumonia, Pneumococcal/diagnostic imaging , Pneumonia, Pneumococcal/epidemiology , Prospective Studies , Streptococcus pneumoniae , Tomography, X-Ray Computed/methods
6.
Front Cell Infect Microbiol ; 12: 843463, 2022.
Article in English | MEDLINE | ID: covidwho-1779935

ABSTRACT

Background: Since the outbreak of COVID-19, a series of preventive and control measures in China have been used to effectively curb the spread of COVID-19. This study aimed to analyze the epidemiological characteristics of Mycoplasma pneumoniae (MP) and Chlamydia pneumoniae (CP) in hospitalized children with acute respiratory tract infection during the COVID-19 pandemic. Methods: MP IgM antibody and CP IgM antibody were detected in all hospitalized children due to acute respiratory tract infection in the Children's Hospital Affiliated to Zhejiang University from January 2019 to December 2020. These data were compared between 2019 and 2020 based on age and month. Results: The overall detection rate of MP and CP in 2020 was significantly lower than that in 2019 (MP: 21.5% vs 32.9%, P<0.001; CP: 0.3% vs 0.9%, P<0.001). This study found a 4-fold reduction in the number of children positive for MP and a 7.5-fold reduction in the number of children positive for CP from 2019 to 2020. The positive cases were concentrated in children aged >1 year old. In 2019, the positive rate of MP was detected more commonly in children 3 years of age or older than in younger children. In 2020, the higher positive rate of MP reached a peak in the 3- to 6-year age group (35.3%). CP was detected predominantly in children aged 6 years older in 2019 and 2020, with positive rates of 4.8% and 2.6%, respectively. Meanwhile, the positive rates of MP in 2019 were detected more commonly in July, August and September, with 47.2%, 46.7% and 46.3%, respectively. Nevertheless, the positive rates of MP from February to December 2020 apparently decreased compared to those in 2019. The positive rates of CP were evenly distributed throughout the year, with 0.5%-1.6% in 2019 and 0.0%-2.1% in 2020. Conclusions: A series of preventive and control measures for SARS-CoV-2 during the COVID-19 pandemic can not only contain the spread of SARS-CoV-2 but also sharply improve the infection of other atypical pathogens, including MP and CP.


Subject(s)
COVID-19 , Chlamydophila Infections , Chlamydophila pneumoniae , Pneumonia, Mycoplasma , Respiratory Tract Infections , Aged , COVID-19/epidemiology , Child , Child, Hospitalized , Chlamydophila Infections/epidemiology , Epidemiologic Studies , Humans , Immunoglobulin M , Infant , Mycoplasma pneumoniae , Pandemics , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/epidemiology , Respiratory Tract Infections/epidemiology , SARS-CoV-2
7.
BMC Infect Dis ; 22(1): 330, 2022 Apr 04.
Article in English | MEDLINE | ID: covidwho-1775313

ABSTRACT

BACKGROUND: Respiratory infections among children, particularly community-acquired pneumonia (CAP), is a major disease with a high frequency among outpatient and inpatient visits. The causes of CAP vary depending on individual susceptibility, the epidemiological characteristics of the community, and the season. We performed this study to establish a nationwide surveillance network system and identify the causative agents for CAP and antibiotic resistance in Korean children with CAP. METHODS: The monitoring network was composed of 28 secondary and tertiary medical institutions. Upper and lower respiratory samples were assayed using a culture or polymerase chain reaction (PCR) from August 2018 to May 2020. RESULTS: A total of 1023 cases were registered in patients with CAP, and PCR of atypical pneumonia pathogens revealed 422 cases of M. pneumoniae (41.3%). Respiratory viruses showed a positivity rate of 65.7% by multiplex PCR test, and human rhinovirus was the most common virus, with 312 cases (30.5%). Two hundred sixty four cases (25.8%) were isolated by culture, including 131 cases of S. aureus (12.8%), 92 cases of S. pneumoniae (9%), and 20 cases of H. influenzae (2%). The cultured, isolated bacteria may be colonized pathogen. The proportion of co-detection was 49.2%. The rate of antibiotic resistance showed similar results as previous reports. CONCLUSIONS: This study will identify the pathogens that cause respiratory infections and analyze the current status of antibiotic resistance to provide scientific evidence for management policies of domestic respiratory infections. Additionally, in preparation for new epidemics, including COVID-19, monitoring respiratory infections in children and adolescents has become more important, and research on this topic should be continuously conducted in the future.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia, Mycoplasma , Adolescent , Child , Community-Acquired Infections/microbiology , Humans , Multiplex Polymerase Chain Reaction/methods , Staphylococcus aureus
8.
Am J Emerg Med ; 54: 324.e5-324.e7, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1748330

ABSTRACT

Mycoplasma pneumoniae-induced rash and mucositis (MIRM) is a recently defined clinical entity characterized by pneumonia caused by M. pneumoniae with associated mucositis and frequent cutaneous lesions of a characteristic pattern. Although often similar in presentation, MIRM has distinct clinical and histologic features that are different from erythema multiforme and Stevens-Johnson syndrome/toxic epidermal necrolysis. We report a case of MIRM in a nine-year-old boy.


Subject(s)
Erythema Multiforme , Exanthema , Mucositis , Pneumonia, Mycoplasma , Stevens-Johnson Syndrome , Child , Erythema Multiforme/diagnosis , Exanthema/etiology , Humans , Male , Mucositis/complications , Mycoplasma pneumoniae , Pneumonia, Mycoplasma/complications , Pneumonia, Mycoplasma/diagnosis , Stevens-Johnson Syndrome/etiology
10.
Microbiol Spectr ; 10(1): e0155021, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1685499

ABSTRACT

Mycoplasma pneumoniae is a common pathogen causing respiratory disease in children. We sought to investigate the epidemiology of M. pneumoniae among outpatient children with mild respiratory tract infections (RTIs) during the coronavirus disease 2019 (COVID-19) pandemic. Eligible patients were prospectively enrolled from January 2020 to June 2021. Throat swabs were tested for M. pneumoniae RNA. M. pneumoniae IgM was tested by a colloidal gold assay. Macrolide resistance and the effect of the COVID-19 countermeasures on M. pneumoniae prevalence were assessed. Symptom scores, treatments, and outcomes were evaluated. Eight hundred sixty-two eligible children at 15 centers in China were enrolled. M. pneumoniae was detected in 78 (9.0%) patients. Seasonally, M. pneumoniae peaked in the first spring and dropped dramatically to extremely low levels over time until the next summer. Decreases in COVID-19 prevalence were significantly associated with decreases in M. pneumoniae prevalence (r = 0.76, P = 0.001). The macrolide resistance rate was 7.7%. The overall sensitivity and specificity of the colloidal gold assay used in determining M. pneumoniae infection were 32.1% and 77.9%, respectively. No more benefits for improving the severity of symptoms and outcomes were observed in M. pneumoniae-infected patients treated with a macrolide than in those not treated with a macrolide during follow-up. The prevalences of M. pneumoniae and macrolide resistance in outpatient children with mild RTIs were at low levels in the early stage of the COVID-19 pandemic but may have rebounded recently. The colloidal gold assay for M. pneumoniae IgM may be not appropriate for diagnosis of M. pneumoniae infection. Macrolides should be used with caution among outpatients with mild RTIs. IMPORTANCE This is the first and largest prospective, multicenter, active, population-based surveillance study of the epidemiology of Mycoplasma pneumoniae among outpatient children with mild respiratory tract infections (RTIs) during the COVID-19 pandemic. Nationwide measures like strict face mask wearing and restrictions on population movement implemented to prevent the spread of COVID-19 might also effectively prevent the spread of M. pneumoniae. The prevalence of M. pneumoniae and the proportion of drug-resistant M. pneumoniae isolates in outpatient children with mild RTIs were at low levels in the early stage of the COVID-19 pandemic but may have rebounded recently. The colloidal gold assay for M. pneumoniae IgM may be not appropriate for screening and diagnosis of M. pneumoniae infection. Macrolides should be used with caution among outpatients with mild RTIs.


Subject(s)
Mycoplasma pneumoniae/isolation & purification , Pneumonia, Mycoplasma/microbiology , Respiratory Tract Infections/microbiology , Adolescent , Adult , Anti-Bacterial Agents/therapeutic use , COVID-19/epidemiology , Child , Child, Preschool , China/epidemiology , Drug Resistance, Bacterial , Female , Humans , Infant , Macrolides/therapeutic use , Male , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/physiology , Outpatients/statistics & numerical data , Pneumonia, Mycoplasma/drug therapy , Pneumonia, Mycoplasma/epidemiology , Prospective Studies , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/epidemiology , Young Adult
11.
BMC Med Imaging ; 22(1): 21, 2022 02 06.
Article in English | MEDLINE | ID: covidwho-1666633

ABSTRACT

OBJECTIVE: The purpose of this study was to compare imaging features between COVID-19 and mycoplasma pneumonia (MP). MATERIALS AND METHODS: The data of patients with mild COVID-19 and MP who underwent chest computed tomography (CT) examination from February 1, 2020 to April 17, 2020 were retrospectively analyzed. The Pneumonia-CT-LKM-PP model based on a deep learning algorithm was used to automatically quantify the number, volume, and involved lobes of pulmonary lesions, and longitudinal changes in quantitative parameters were assessed in three CT follow-ups. RESULTS: A total of 10 patients with mild COVID-19 and 13 patients with MP were included in this study. There was no difference in lymphocyte counts at baseline between the two groups (1.43 ± 0.45 vs. 1.44 ± 0.50, p = 0.279). C-reactive protein levels were significantly higher in MP group than in COVID-19 group (p < 0.05). The number, volume, and involved lobes of pulmonary lesions reached a peak in 7-14 days in the COVID-19 group, but there was no peak or declining trend over time in the MP group (p < 0.05). CONCLUSION: Based on the longitudinal changes of quantitative CT, pulmonary lesions peaked at 7-14 days in patients with COVID-19, and this may be useful to distinguish COVID-19 from MP and evaluate curative effects and prognosis.


Subject(s)
COVID-19/diagnostic imaging , Pneumonia, Mycoplasma/diagnostic imaging , Tomography, X-Ray Computed , Adult , Evaluation Studies as Topic , Female , Humans , Longitudinal Studies , Male , Middle Aged , Retrospective Studies
12.
Anal Biochem ; 635: 114445, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1565506

ABSTRACT

The outbreak of COVID-19 makes epidemic prevention and control become a growing global concern. Nucleic acid amplification testing (NAAT) can realize early and rapid detection of targets, thus it is considered as an ideal approach for detecting pathogens of severe acute infectious diseases. Rapid acquisition of high-quality target nucleic acid is the prerequisite to ensure the efficiency and accuracy of NAAT. Herein, we proposed a simple system in which magnetic nanoparticles (MNPs) based nucleic acid extraction was carried out in a plastic Pasteur pipette. Different from traditional approaches, this proposed system could be finished in 15 min without the supports of any electrical instruments. Furthermore, this system was superior to traditional MNPs based extraction methods in the aspects of rapid extraction and enhancing the sensitivity of a NAAT method, accelerated denaturation bubbles mediated strand exchange amplification (ASEA), to the pathogens from various artificial samples. Finally, this Pasteur pipette system was utilized for pathogen detection in actual samples of throat swabs, cervical swabs and gastric mucosa, the diagnosis results of which were identical with that provided by hospital. This rapid, easy-performing and efficiency extraction method ensures the applications of the NAAT in pathogen detection in regions with restricted resources.


Subject(s)
Infections/diagnosis , Magnetite Nanoparticles , Nucleic Acid Amplification Techniques/methods , Nucleic Acids/isolation & purification , COVID-19/diagnosis , Helicobacter Infections/diagnosis , Helicobacter pylori/isolation & purification , Human papillomavirus 16/isolation & purification , Humans , Papillomavirus Infections/diagnosis , Pneumonia, Mycoplasma/diagnosis , SARS-CoV-2/isolation & purification
13.
J Med Virol ; 94(1): 303-309, 2022 01.
Article in English | MEDLINE | ID: covidwho-1544346

ABSTRACT

Emerging evidence shows co-infection with atypical bacteria in coronavirus disease 2019 (COVID-19) patients. Respiratory illness caused by atypical bacteria such as Mycoplasma pneumoniae, Chlamydia pneumoniae, and Legionella pneumophila may show overlapping manifestations and imaging features with COVID-19 causing clinical and laboratory diagnostic issues. We conducted a prospective study to identify co-infections with SARS-CoV-2 and atypical bacteria in an Indian tertiary hospital. From June 2020 to January 2021, a total of 194 patients with laboratory-confirmed COVID-19 were also tested for atypical bacterial pathogens. For diagnosing M. pneumoniae, a real-time polymerase chain reaction (PCR) assay and serology (IgM ELISA) were performed. C. pneumoniae diagnosis was made based on IgM serology. L. pneumophila diagnosis was based on PCR or urinary antigen testing. Clinical and epidemiological features of SARS-CoV-2 and atypical bacteria-positive and -negative patient groups were compared. Of the 194 patients admitted with COVID-19, 17 (8.8%) were also diagnosed with M. pneumoniae (n = 10) or C. pneumoniae infection (n = 7). Confusion, headache, and bilateral infiltrate were found more frequently in the SARS CoV-2 and atypical bacteria co-infection group. Patients in the M. pneumoniae or C. pneumoniae co-infection group were more likely to develop ARDS, required ventilatory support, had a longer hospital length of stay, and higher fatality rate compared to patients with only SARS-CoV-2. Our report highlights co-infection with bacteria causing atypical pneumonia should be considered in patients with SARS-CoV-2 depending on the clinical context. Timely identification of co-existing pathogens can provide pathogen-targeted treatment and prevent fatal outcomes of patients infected with SARS-CoV-2 during the current pandemic.


Subject(s)
Atypical Bacterial Forms/isolation & purification , COVID-19/pathology , Chlamydophila Infections/epidemiology , Coinfection/epidemiology , Legionnaires' Disease/epidemiology , Pneumonia, Mycoplasma/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Chlamydophila pneumoniae/isolation & purification , Female , Humans , India , Legionella pneumophila/isolation & purification , Length of Stay , Male , Middle Aged , Mycoplasma pneumoniae/isolation & purification , Prospective Studies , SARS-CoV-2 , Severity of Illness Index , Young Adult
14.
Clin Infect Dis ; 73(9): e3261-e3265, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1501030

ABSTRACT

We describe 4 cases of Chlamydia psittaci pneumonia among medical staff in a coronavirus disease 2019 (COVID-19) screening ward, as well as the experience of dealing with this nosocomial infection event. Atypical pneumonia, in addition to COVID-19, should be considered when clustering cases occur, even during a COVID-19 pneumonia pandemic.


Subject(s)
COVID-19 , Chlamydophila psittaci , Pneumonia, Mycoplasma , Chlamydophila psittaci/genetics , Cluster Analysis , Humans , SARS-CoV-2
15.
Pediatr Dermatol ; 38(5): 1222-1225, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1405194

ABSTRACT

Reactive infectious mucocutaneous eruption (RIME) was proposed as new terminology to encompass postinfectious mucocutaneous eruptions. The term includes all postinfectious mucocutaneous eruptions such as the widely reported Mycoplasma pneumoniae-induced rash and mucositis (MIRM). Very few reports in the literature regarding recurrent RIME are found. We present two adolescent cases of recurrent RIME that involve SARS-CoV-2 and influenza A where the latter is a newly reported infectious trigger; in both patients, the initial episode was likely triggered by Mycoplasma pneumoniae (MP) infection.


Subject(s)
COVID-19 , Exanthema , Influenza, Human , Pneumonia, Mycoplasma , Adolescent , Humans , Mycoplasma pneumoniae , Pneumonia, Mycoplasma/complications , Pneumonia, Mycoplasma/diagnosis , SARS-CoV-2
17.
Future Microbiol ; 16(11): 769-776, 2021 07.
Article in English | MEDLINE | ID: covidwho-1308246

ABSTRACT

The current study presents two patients who lived in a rural family with close contact and suffered from rapidly progressive pneumonia. Chest computed tomography images and lymphocytopenia indicated the possibility of COVID-19 infection, but antibody and nucleic acid tests excluded this possibility. Negative results were obtained from corresponding tests for pneumococcal, adenovirus, fungal and legionella infection. Metagenomics analysis and subsequent antibody tests confirmed mycoplasma pneumonia. After treating with moxifloxacin, both patients recovered well and left the hospital. In terms of complicated infectious disease, consideration of atypical pathogens and medical and epidemiological history were important for differential diagnosis of COVID-19; metagenomics analysis was useful to provide direct references for diagnosis.


Subject(s)
Moxifloxacin/therapeutic use , Pneumonia, Mycoplasma/diagnosis , Adolescent , Adult , COVID-19 , DNA, Bacterial , Diagnosis, Differential , Feces/microbiology , Female , Humans , Male , Metagenomics , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/isolation & purification , Pneumonia, Mycoplasma/drug therapy , Sputum/microbiology , Young Adult
18.
Curr Rheumatol Rep ; 23(7): 53, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1292177

ABSTRACT

PURPOSE OF REVIEW: This article presents a comprehensive narrative review of reactive arthritis (ReA) with focus on articles published between 2018 and 2020. We discuss the entire spectrum of microbial agents known to be the main causative agents of ReA, those reported to be rare infective agents, and those reported to be new candidates causing the disease. The discussion is set within the context of changing disease terminology, definition, and classification over time. Further, we include reports that present at least a hint of effective antimicrobial therapy for ReA as documented in case reports or in double-blind controlled studies. Additional information is included on microbial products detected in the joint, as well as on the positivity of HLA-B27. RECENT FINDINGS: Recent reports of ReA cover several rare causative microorganism such as Neisseria meningitides, Clostridium difficile, Escherichia coli, Hafnia alvei, Blastocytosis, Giardia lamblia, Cryptosporidium, Cyclospora cayetanensis, Entamoeba histolytica/dispar, Strongyloides stercoralis, ß-haemolytic Streptococci, Mycobacterium tuberculosis, Mycoplasma pneumoniae, Mycobacterium bovis bacillus Calmette-Guerin, and Rickettsia rickettsii. The most prominent new infectious agents implicated as causative in ReA are Staphylococcus lugdunensis, placenta- and umbilical cord-derived Wharton's jelly, Rothia mucilaginosa, and most importantly the SARS-CoV-2 virus. In view of the increasingly large spectrum of causative agents, diagnostic consideration for the disease must include the entire panel of post-infectious arthritides termed ReA. Diagnostic procedures cannot be restricted to the well-known HLA-B27-associated group of ReA, but must also cover the large number of rare forms of arthritis following infections and vaccinations, as well as those elicited by the newly identified members of the ReA group summarized herein. Inclusion of these newly identified etiologic agents must necessitate increased research into the pathogenic mechanisms variously involved, which will engender important insights for treatment and management of ReA.


Subject(s)
Arthritis, Reactive/microbiology , COVID-19 , Clostridium Infections , Enterobacteriaceae Infections , Staphylococcal Infections , Streptococcal Infections , Arthritis, Reactive/genetics , Blastocystis Infections , Cryptosporidiosis , Cyclosporiasis , Entamoebiasis , Escherichia coli Infections , Giardiasis , HLA-B27 Antigen/genetics , Humans , Meningococcal Infections , Pneumonia, Mycoplasma , Rocky Mountain Spotted Fever , SARS-CoV-2 , Strongyloidiasis , Tuberculosis
19.
World J Pediatr ; 17(3): 263-271, 2021 06.
Article in English | MEDLINE | ID: covidwho-1279501

ABSTRACT

BACKGROUND: The aim of this study is to explore the characteristics of Kawasaki disease (KD) and concurrent pathogens due to a stay-at-home isolation policy during coronavirus disease 2019 (COVID-19) epidemic. METHODS: All patients with KD admitted between February and April in 2015-2020, were classified into before (group 1, in 2015-2019) and after (group 2, in 2020) isolation groups. A total of 4742 patients [with KD (n = 98) and non-KD (n = 4644)] referred to Mycoplasma pneumoniae (MP) and virus detection were analyzed in 2020. Clinical characteristics, laboratory data, and 13 pathogens were analyzed retrospectively. RESULTS: Group 2 had a significantly increased incidence of KD (0.11%) with 107 patients compared to that of group 1 (0.03%) with 493 patients. The comparisons of oral mucosal change, strawberry tongue, desquamation of the fingertips, cervical lymphadenopathy and neutrophil percentage decreased in group 2 compared to group 1. The infection rate of MP increased significantly in group 2 (34.7%) compared to group 1 (19.3%), while the positive rate of viruses decreased significantly in group 2 (5.3%) compared to group 1 (14.3%). In 2020, the positive rate of MP infection increased significantly in patients with KD compared to the increase in patients with non-KD. The infection rate of MP for younger children aged less than 3 years old was higher in group 2 than in group 1. CONCLUSION: Compared with the characteristics of KD from 2015 to 2019 years, the incidence of KD was increased in 2020 and was accompanied by a high incidence of MP infection, especially in younger children (less than 3 years old) during the isolation due to COVID-19 pandemic.


Subject(s)
COVID-19/epidemiology , Mucocutaneous Lymph Node Syndrome/epidemiology , Physical Distancing , Pneumonia, Mycoplasma/epidemiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/microbiology , Adolescent , Child , Child, Preschool , Female , Humans , Incidence , Infant , Male , Pandemics , Retrospective Studies , SARS-CoV-2 , Virus Diseases/epidemiology , Virus Diseases/virology
20.
J Microbiol Immunol Infect ; 54(5): 801-807, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1275504

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) manifests symptoms as common etiologies of respiratory tract infections (RTIs). During the pandemic of COVID-19, identifying the etiologies correctly from patients with RTI symptoms was crucial in not only disease control but preventing healthcare system from collapsing. By applying sensitive PCR-based molecular assays, we detected the etiologic agents and delineated the epidemiologic picture of RTIs in the early phase of COVID-19 pandemic. METHODS: From December 2019 to February 2020, we screened patients presented with RTIs using multiplex PCR-based diagnostic assays. Data from pediatric and adult patients were compared with different months and units in the hospital. RESULTS: Of all 1631 patients including 1445 adult and 186 pediatric patients screened, 8 viruses and 4 bacteria were identified. Positive rates were 25% in December, 37% in January, and 20% in February, with pediatric patients having higher positive rates than adults (Ps < 0.001). In pediatric patients, RhV/EnV was the most commonly detected, followed by parainfluenza viruses. Most Mycoplasma pneumoniae infection occurred in pediatric patients. RhV/EnV was the most commonly detected agent in pediatric patients admitted to intensive care units (ICUs), while influenza accounted for the majority of adult cases with critical illness. Noticeably, seasonal coronavirus ranked second in both adult and pediatric patients with ICU admission. CONCLUSION: While we focused on the pandemic of COVID-19, common etiologies still accounted for the majority of RTIs and lead to severe diseases, including other seasonal coronaviruses.


Subject(s)
COVID-19/epidemiology , Disease Outbreaks , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/etiology , Adult , COVID-19/diagnosis , Child , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Multiplex Polymerase Chain Reaction , Pandemics , Parainfluenza Virus 1, Human , Parainfluenza Virus 2, Human , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/epidemiology , Retrospective Studies , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Seasons , Taiwan/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL