Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Int J Infect Dis ; 118: 83-88, 2022 May.
Article in English | MEDLINE | ID: covidwho-1838851

ABSTRACT

BACKGROUND: This study examines the impact of the COVID-19 pandemic on health care-associated infection (HAI) incidence in low- and middle-income countries (LMICs). METHODS: Patients from 7 LMICs were followed up during hospital intensive care unit (ICU) stays from January 2019 to May 2020. HAI rates were calculated using the International Nosocomial Infection Control Consortium (INICC) Surveillance Online System applying the Centers for Disease Control and Prevention's National Healthcare Safety Network (CDC-NHSN) criteria. Pre-COVID-19 rates for 2019 were compared with COVID-19 era rates for 2020 for central line-associated bloodstream infections (CLABSIs), catheter-associated urinary tract infections (CAUTIs), ventilator-associated events (VAEs), mortality, and length of stay (LOS). RESULTS: A total of 7,775 patients were followed up for 49,506 bed days. The 2019 to 2020 rate comparisons were 2.54 and 4.73 CLABSIs per 1,000 central line days (risk ratio [RR] = 1.85, p = .0006), 9.71 and 12.58 VAEs per 1,000 mechanical ventilator days (RR = 1.29, p = .10), and 1.64 and 1.43 CAUTIs per 1,000 urinary catheter days (RR = 1.14; p = .69). Mortality rates were 15.2% and 23.2% for 2019 and 2020 (RR = 1.42; p < .0001), respectively. Mean LOS for 2019 and 2020 were 6.02 and 7.54 days (RR = 1.21, p < .0001), respectively. DISCUSSION: This study documents an increase in HAI rates in 7 LMICs during the first 5 months of the COVID-19 pandemic and highlights the need to reprioritize and return to conventional infection prevention practices.


Subject(s)
COVID-19 , Cross Infection , Pneumonia, Ventilator-Associated , Urinary Tract Infections , COVID-19/epidemiology , Cross Infection/epidemiology , Cross Infection/prevention & control , Delivery of Health Care , Developing Countries , Female , Humans , Intensive Care Units , Male , Pandemics , Pneumonia, Ventilator-Associated/epidemiology , Prospective Studies , Urinary Tract Infections/epidemiology
2.
Antimicrob Resist Infect Control ; 11(1): 67, 2022 05 07.
Article in English | MEDLINE | ID: covidwho-1833352

ABSTRACT

BACKGROUND: The COVID-19 pandemic may have had a substantial impact on the incidence of device-associated healthcare-associated infections (HAI), in particular in intensive care units (ICU). A significant increase of HAI was reported by US hospitals when comparing incidence rates from 2019 and 2020. The objective of this study was to investigate the development of the most relevant device-associated HAI in German ICUs during the year 2020 as compared to 2019. METHODS: We utilized the data of the ICU component of the German National Reference Center for Surveillance of Nosocomial Infections (KISS = Krankenhaus-Infektions-Surveillance-System) for the period 2019-2020. We focused on central line-associated bloodstream infections (CLABSI), catheter-associated urinary tract infections (CAUTI), ventilator-associated lower respiratory infections (VALRTI) and bloodstream infections associated with the use of Extracorporeal-Life-Support-Systems (ECLSABSI). Device use was defined as the number device days per 100 patient days; device-associated infection rates as the number of device-associated infections per 1000 device days. To compare the pooled means between the years and quarters we calculated rate ratios of device-associated infection rates with 95% confidence intervals by Poisson regression models. RESULTS: The number of participating ICUs in the surveillance system decreased from 982 in 2019 to 921 in 2020 (6.2%). Device utilization rates increased significantly for central lines and ventilator use. VALRTI rates and CAUTI rates decreased in 2020 compared with 2019, however, no increase was shown for CLABSI or ECLSABSI. This result was also confirmed when the corresponding quarters per year were analyzed. CONCLUSIONS: The lack of an increase in device-associated healthcare associated infections (HAI) in German ICUs may be due to the lower overall incidence of COVID-19 cases in Germany in 2020 compared with US, to a very high availability of ICU beds per 100,000 inhabitants compared with many other countries, and a change in the ICU patient mix due to numerous elective procedures that were postponed during the first two waves. The primary reason seems to be that only 7% of all ICU patients in Germany in 2020 were COVID-19 patients.


Subject(s)
COVID-19 , Catheter-Related Infections , Cross Infection , Pneumonia, Ventilator-Associated , Sepsis , Urinary Tract Infections , COVID-19/epidemiology , Catheter-Related Infections/epidemiology , Cross Infection/epidemiology , Female , Humans , Intensive Care Units , Male , Pandemics , Pneumonia, Ventilator-Associated/epidemiology , Prospective Studies , Sepsis/epidemiology , Urinary Tract Infections/epidemiology
3.
Crit Care Med ; 50(5): 825-836, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1788543

ABSTRACT

OBJECTIVES: Ventilator-associated lower respiratory tract infections (VA-LRTIs) are associated with prolonged length of stay and increased mortality. We aimed to investigate the occurrence of bacterial VA-LRTI among mechanically ventilated COVID-19 patients and compare these findings to non-COVID-19 cohorts throughout the first and second wave of the pandemic. DESIGN: Retrospective cohort study. SETTING: Karolinska University Hospital, Stockholm, Sweden. PATIENTS: All patients greater than or equal to 18 years treated with mechanical ventilation between January 1, 2011, and December 31, 2020. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The cohort consisted of 20,223 ICU episodes (479 COVID-19), with a VA-LRTI incidence proportion of 30% (129/426) in COVID-19 and 18% (1,081/5,907) in non-COVID-19 among patients ventilated greater than or equal to 48 hours. The median length of ventilator treatment for COVID-19 patients was 10 days (interquartile range, 5-18 d), which was significantly longer than for all other investigated specific diagnoses. The VA-LRTI incidence rate per 1,000 ventilator days at risk was 31 (95% CI, 26-37) for COVID-19 and 34 (95% CI, 32-36) for non-COVID-19. With COVID-19 as reference, adjusted subdistribution hazard ratios for VA-LRTI was 0.29-0.50 (95% CI, < 1) for influenza, bacterial pneumonia, acute respiratory distress syndrome, and severe sepsis, but 1.38 (95% CI, 1.15-1.65) for specific noninfectious diagnoses. Compared with COVID-19 in the first wave of the pandemic, COVID-19 in the second wave had adjusted subdistribution hazard ratio of 1.85 (95% CI, 1.14-2.99). In early VA-LRTI Staphylococcus aureus was more common and Streptococcus pneumoniae, Haemophilus influenzae, and Escherichia coli less common in COVID-19 patients, while Serratia species was more often identified in late VA-LRTI. CONCLUSIONS: COVID-19 is associated with exceptionally long durations of mechanical ventilation treatment and high VA-LRTI occurrence proportions. The incidence rate of VA-LRTI was compared with the pooled non-COVID-19 cohort, however, not increased in COVID-19. Significant differences in the incidence of VA-LRTI occurred between the first and second wave of the COVID-19 pandemic.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Respiratory Tract Infections , Staphylococcal Infections , COVID-19/epidemiology , COVID-19/therapy , Humans , Pandemics , Pneumonia, Ventilator-Associated/epidemiology , Respiratory System , Respiratory Tract Infections/epidemiology , Retrospective Studies , Staphylococcal Infections/epidemiology , Ventilators, Mechanical
5.
Curr Opin Crit Care ; 28(1): 74-82, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1672366

ABSTRACT

PURPOSE OF REVIEW: We conducted a systematic literature review to summarize the available evidence regarding the incidence, risk factors, and clinical characteristics of ventilator-associated pneumonia (VAP) in patients undergoing mechanical ventilation because of acute respiratory distress syndrome secondary to SARS-CoV-2 infection (C-ARDS). RECENT FINDINGS: Sixteen studies (6484 patients) were identified. Bacterial coinfection was uncommon at baseline (<15%) but a high proportion of patients developed positive bacterial cultures thereafter leading to a VAP diagnosis (range 21-64%, weighted average 50%). Diagnostic criteria varied between studies but most signs of VAP have substantial overlap with the signs of C-ARDS making it difficult to differentiate between bacterial colonization versus superinfection. Most episodes of VAP were associated with Gram-negative bacteria. Occasional cases were also attributed to herpes virus reactivations and pulmonary aspergillosis. Potential factors driving high VAP incidence rates include immunoparalysis, prolonged ventilation, exposure to immunosuppressants, understaffing, lapses in prevention processes, and overdiagnosis. SUMMARY: Covid-19 patients who require mechanical ventilation for ARDS have a high risk (>50%) of developing VAP, most commonly because of Gram-negative bacteria. Further work is needed to elucidate the disease-specific risk factors for VAP, strategies for prevention, and how best to differentiate between bacterial colonization versus superinfection.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Respiratory Distress Syndrome , Humans , Pneumonia, Ventilator-Associated/epidemiology , Respiration, Artificial , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/etiology , SARS-CoV-2
7.
Curr Opin Anaesthesiol ; 35(2): 236-241, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1672285

ABSTRACT

PURPOSE OF REVIEW: The decision to undergo early tracheostomy in critically ill patients has been the subject of multiple studies in recent years, including several meta-analyses and a large-scale examination of the National in-patient Sampling (NIS) database. The research has focused on different patient populations, and identified common outcomes measures related to ventilation. At the crux of the new research is the decision to undergo an additional invasive procedure, mainly tracheostomy, rather than attempt endotracheal tube ventilation with or without early extubation. Notably, recent research indicates that neurological and SARS-CoV-2 (COVID-19) patients seem to have an exaggerated benefit from early tracheostomy. RECENT FINDINGS: Recent studies of patients undergoing early tracheostomy have shown decreases in ventilator associated pneumonia, ventilator duration and duration of ICU stay. However, these studies have shown mixed data with respect to mortality and length of hospitalization. Such advantages only become apparent with large-scale examination. Confounding the overall discussion is that the research has focused on heterogeneous groups, including neurosurgical ICU patients, general ICU patients, and most recently, intubated COVID-19 patients. SUMMARY: Specific populations such as neurosurgical and COVID-19 patients have clearly defined benefits following early tracheostomy. Although the benefit is less pronounced, there does seem to be an advantage in general ICU patients with regards to ventilator-free days and lower incidence of ventilator-associated pneumonia. In these patients, large-scale examination points to a clear mortality benefit.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Critical Illness/therapy , Humans , Intensive Care Units , Length of Stay , Pneumonia, Ventilator-Associated/epidemiology , Pneumonia, Ventilator-Associated/prevention & control , Respiration, Artificial/adverse effects , SARS-CoV-2 , Tracheostomy/adverse effects , Tracheostomy/methods
8.
Curr Opin Infect Dis ; 35(2): 170-175, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1642444

ABSTRACT

PURPOSE OF REVIEW: The first studies on COVID-19 patients with acute respiratory distress syndrome (ARDS) described a high rate of secondary bacterial ventilator-associated pneumonia (VAP). The specificity of VAP diagnoses in these patients are reviewed, including their actual rate. RECENT FINDINGS: Published studies described high rates of bacterial VAP among COVID-19 patients with ARDS, and these VAP episodes are usually severe and of specifically poor prognosis with high mortality. Indeed, Severe acute respiratory syndrome - coronavirus disease 19 (SARS-CoV2) infection elicits alterations that may explain a high risk of VAP. In addition, breaches in the aseptic management of patients might have occurred when the burden of care was heavy. In addition, VAP in these patients is more frequently suspected, and more often investigated with diagnostic tools based on molecular techniques. SUMMARY: VAP is frequented and of particularly poor prognosis in COVID-19 patients with ARDS. It can be explained by SARS-CoV-2 pathophysiology, and also breaches in the aseptic procedures. In addition, tools based on molecular techniques allow an early diagnosis and unmask VAP usually underdiagnosed by traditional culture-based methods. The impact of molecular technique-based diagnostics in improving antibacterial therapy and COVID-19 prognosis remain to be evaluated.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Humans , Pneumonia, Ventilator-Associated/diagnosis , Pneumonia, Ventilator-Associated/epidemiology , Pneumonia, Ventilator-Associated/microbiology , RNA, Viral , Respiration, Artificial , SARS-CoV-2
9.
Semin Respir Crit Care Med ; 43(2): 243-247, 2022 04.
Article in English | MEDLINE | ID: covidwho-1637081

ABSTRACT

Although few studies evaluated the incidence of hospital-acquired pneumonia (HAP) or ventilator-associated tracheobronchitis in COVID-19 patients, several studies evaluated the incidence of ventilator-associated pneumonia (VAP) in these patients. Based on the results of a large multicenter European study, VAP incidence is higher in patients with SARS-CoV-2 pneumonia (36.1%), as compared with those with influenza pneumonia (22.2%), or no viral infection at intensive care unit (ICU) admission (16.5%). Potential explanation for the high incidence of VAP in COVID-19 patients includes long duration of invasive mechanical ventilation, high incidence of acute respiratory distress syndrome, and immune-suppressive treatment. Specific risk factors for VAP, including SARS-CoV-2-related pulmonary lesions, and bacteria-virus interaction in lung microbiota might also play a role in VAP pathogenesis. VAP is associated with increased mortality, duration of mechanical ventilation, and ICU length of stay in COVID-19 patients. Further studies should focus on the incidence of HAP especially in ICU non-ventilated patients, better determine the pathophysiology of these infections, and evaluate the accuracy of currently available treatment guidelines in COVID-19 patients.


Subject(s)
Bronchitis , COVID-19 , Pneumonia, Ventilator-Associated , Tracheitis , Bronchitis/epidemiology , Bronchitis/etiology , COVID-19/complications , COVID-19/epidemiology , COVID-19/therapy , Hospitals , Humans , Intensive Care Units , Pneumonia, Ventilator-Associated/epidemiology , Respiration, Artificial/adverse effects , SARS-CoV-2 , Tracheitis/epidemiology , Tracheitis/etiology , Ventilators, Mechanical
12.
Crit Care Med ; 50(3): 449-459, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1511044

ABSTRACT

OBJECTIVES: Little is known about the epidemiology of ventilator-acquired pneumonia among coronavirus disease 2019 patients such as incidence or etiological agents. Some studies suggest a higher risk of ventilator-associated pneumonia in this specific population. DESIGN: Cohort exposed/nonexposed study among the REA-REZO surveillance network. SETTING: Multicentric; ICUs in France. PATIENTS: The coronavirus disease 2019 patients at admission were matched on the age, sex, center of inclusion, presence of antimicrobial therapy at admission, patient provenance, time from ICU admission to mechanical ventilation, and Simplified Acute Physiology Score II at admission to the patients included between 2016 and 2019 within the same surveillance network (1:1). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The overall incidence of ventilator-associated pneumonia, the cumulative incidence, and hazard rate of the first and the second ventilator-associated pneumonia were estimated. In addition, the ventilator-associated pneumonia microbiological ecology and specific resistant pattern in coronavirus disease 2019 exposed and nonexposed patients were compared. Medication data were not collected. A total of 1,879 patients were included in each group. The overall incidence of ventilator-associated pneumonia was higher among coronavirus disease 2019 exposed patients (25.5; 95% CI [23.7-27.45] vs 15.4; 95% CI [13.7-17.3] ventilator-associated pneumonia per 1,000 ventilation days). The cumulative incidence was higher for the first and the second ventilator-associated pneumonia among the coronavirus disease 2019 exposed patients (respective Gray test p < 0.0001 and 0.0167). The microbiological ecology and resistance were comparable between groups with a predominance of Enterobacterales and nonfermenting Gram-negative bacteria. The documented resistance pattern was similar between groups, except for a lower rate of methicillin-resistant Staphylococcus aureus in the coronavirus disease 2019 exposed patient (6% vs 23%; p = 0.013). CONCLUSIONS: There was a higher incidence of ventilator-associated pneumonia occurring among coronavirus disease 2019 patient compared with the general ICU population, with a similar microbiological ecology and resistance pattern.


Subject(s)
COVID-19/epidemiology , Intensive Care Units/statistics & numerical data , Pneumonia, Ventilator-Associated/epidemiology , Respiration, Artificial/adverse effects , Aged , Drug Resistance, Bacterial , Female , France/epidemiology , Humans , Male , Middle Aged , Pneumonia, Ventilator-Associated/microbiology , Prospective Studies , SARS-CoV-2 , Simplified Acute Physiology Score
13.
Monaldi Arch Chest Dis ; 92(2)2021 Sep 28.
Article in English | MEDLINE | ID: covidwho-1444406

ABSTRACT

The Coronavirus disease 19 (COVID-19) pandemic is associated with an unprecedented requirement for intensive care unit (ICU) admission, invasive mechanical ventilation, and thereby significantly increasing the risk of secondary nosocomial pneumonia, ventilator-associated pneumonia (VAP). Our study aims to identify the overall incidence of VAP, common organisms associated with it, and outcome in COVID-19 patients in comparison to the non-SARS-CoV-2 infected critically ill ventilated COVID-19 patients. A comprehensive screening was conducted using major electronic databases), from January 1st 2020 to May 31st 2021, as per the PRISMA statement. In our rapid review, we included a total of 34 studies (involving 8901 cases. Overall VAP was reported in 48.15 % (95% CI 42.3%-54%) mechanically ventilated COVID-19 patients and the mortality rate was 51.4% (95% CI 42.5%-60%). COVID-19 patients had increased risk of VAP and mortality in comparison to other non-SARS-CoV-2 viral pneumonia (OR=2.33; 95%CI 1.75-3.11; I2=15%, and OR=1.46; 95%CI 1.15-1.86; I2=0% respectively). Critically ill COVID-19 patients are prone to develop VAP, which worsens the outcome.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Viruses , COVID-19/epidemiology , Critical Illness , Humans , Intensive Care Units , Pneumonia, Ventilator-Associated/epidemiology , Pneumonia, Ventilator-Associated/prevention & control
14.
Am J Infect Control ; 49(12): 1474-1480, 2021 12.
Article in English | MEDLINE | ID: covidwho-1415168

ABSTRACT

BACKGROUND: Mechanical ventilators are essential biomedical devices for the respiratory support of patients with SARS-CoV-2 infection. These devices can be transmitters of bacterial pathogens. Therefore, it is necessary to implement effective disinfection procedures. The aim of this work was to show the impact of the modification of a cleaning and disinfection method of mechanical ventilators of patients with SARS-CoV-2 and ventilator-associated pneumonia. METHODS: A total of 338 mechanical ventilators of patients infected with SARS-CoV-2 and ESKAPE bacteria were divided in two groups. Group A and B were subjected to cleaning and disinfection with superoxidation solution-Cl/enzymatic detergent and isopropyl alcohol, respectively. Both groups were cultured for the detection of ESKAPE bacteria. The isolates were subjected to tests for identification, resistance, adherence, and genomic typing. RESULTS: Contamination rates of 21.6% (n = 36) were identified in group A. The inspiratory limb was the circuit involved in most cases of postdisinfection contamination. Acinetobacter baumanni, Pseudomonas aeruginosa, and multi-resistant Klebsiella pneumoniae were the pathogens involved in the contamination cases. The pathogens were highly adherent and in the case of A. baumanni, clonal dispersion was detected in 14 ventilators. Disinfection with enzymatic detergents allows a 100% reduction in contamination rates. CONCLUSIONS: The implementation of cleaning and disinfection with enzymatic detergents/isopropyl alcohol of mechanical ventilators of patients with SARS-CoV-2 and ESKAPE bacteria had a positive impact on postdisinfection microbial contamination rates.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Disinfection , Humans , Pneumonia, Ventilator-Associated/epidemiology , Pneumonia, Ventilator-Associated/prevention & control , SARS-CoV-2 , Ventilators, Mechanical
15.
Infect Control Hosp Epidemiol ; 43(1): 12-25, 2022 01.
Article in English | MEDLINE | ID: covidwho-1392703

ABSTRACT

OBJECTIVES: To determine the impact of the coronavirus disease 2019 (COVID-19) pandemic on healthcare-associated infection (HAI) incidence in US hospitals, national- and state-level standardized infection ratios (SIRs) were calculated for each quarter in 2020 and compared to those from 2019. METHODS: Central-line-associated bloodstream infections (CLABSIs), catheter-associated urinary tract infections (CAUTIs), ventilator-associated events (VAEs), select surgical site infections, and Clostridioides difficile and methicillin-resistant Staphylococcus aureus (MRSA) bacteremia laboratory-identified events reported to the National Healthcare Safety Network for 2019 and 2020 by acute-care hospitals were analyzed. SIRs were calculated for each HAI and quarter by dividing the number of reported infections by the number of predicted infections, calculated using 2015 national baseline data. Percentage changes between 2019 and 2020 SIRs were calculated. Supporting analyses, such as an assessment of device utilization in 2020 compared to 2019, were also performed. RESULTS: Significant increases in the national SIRs for CLABSI, CAUTI, VAE, and MRSA bacteremia were observed in 2020. Changes in the SIR varied by quarter and state. The largest increase was observed for CLABSI, and significant increases in VAE incidence and ventilator utilization were seen across all 4 quarters of 2020. CONCLUSIONS: This report provides a national view of the increases in HAI incidence in 2020. These data highlight the need to return to conventional infection prevention and control practices and build resiliency in these programs to withstand future pandemics.


Subject(s)
COVID-19 , Catheter-Related Infections , Cross Infection , Methicillin-Resistant Staphylococcus aureus , Pneumonia, Ventilator-Associated , Catheter-Related Infections/epidemiology , Cross Infection/epidemiology , Cross Infection/prevention & control , Delivery of Health Care , Humans , Pneumonia, Ventilator-Associated/epidemiology , Pneumonia, Ventilator-Associated/prevention & control , SARS-CoV-2
16.
Intensive Care Med ; 47(2): 188-198, 2021 02.
Article in English | MEDLINE | ID: covidwho-1384370

ABSTRACT

PURPOSE: Although patients with SARS-CoV-2 infection have several risk factors for ventilator-associated lower respiratory tract infections (VA-LRTI), the reported incidence of hospital-acquired infections is low. We aimed to determine the relationship between SARS-CoV-2 pneumonia, as compared to influenza pneumonia or no viral infection, and the incidence of VA-LRTI. METHODS: Multicenter retrospective European cohort performed in 36 ICUs. All adult patients receiving invasive mechanical ventilation > 48 h were eligible if they had: SARS-CoV-2 pneumonia, influenza pneumonia, or no viral infection at ICU admission. VA-LRTI, including ventilator-associated tracheobronchitis (VAT) and ventilator-associated pneumonia (VAP), were diagnosed using clinical, radiological and quantitative microbiological criteria. All VA-LRTI were prospectively identified, and chest-X rays were analyzed by at least two physicians. Cumulative incidence of first episodes of VA-LRTI was estimated using the Kalbfleisch and Prentice method, and compared using Fine-and Gray models. RESULTS: 1576 patients were included (568 in SARS-CoV-2, 482 in influenza, and 526 in no viral infection groups). VA-LRTI incidence was significantly higher in SARS-CoV-2 patients (287, 50.5%), as compared to influenza patients (146, 30.3%, adjusted sub hazard ratio (sHR) 1.60 (95% confidence interval (CI) 1.26 to 2.04)) or patients with no viral infection (133, 25.3%, adjusted sHR 1.7 (95% CI 1.2 to 2.39)). Gram-negative bacilli were responsible for a large proportion (82% to 89.7%) of VA-LRTI, mainly Pseudomonas aeruginosa, Enterobacter spp., and Klebsiella spp. CONCLUSIONS: The incidence of VA-LRTI is significantly higher in patients with SARS-CoV-2 infection, as compared to patients with influenza pneumonia, or no viral infection after statistical adjustment, but residual confounding may still play a role in the effect estimates.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Respiratory Tract Infections , Aged , COVID-19/epidemiology , Europe , Female , Humans , Incidence , Influenza, Human/epidemiology , Male , Middle Aged , Pneumonia, Ventilator-Associated/epidemiology , Respiratory Tract Infections/epidemiology , Retrospective Studies , Ventilators, Mechanical
17.
Crit Care ; 25(1): 177, 2021 05 25.
Article in English | MEDLINE | ID: covidwho-1352667

ABSTRACT

BACKGROUND: Patients with SARS-CoV-2 infection are at higher risk for ventilator-associated pneumonia (VAP). No study has evaluated the relationship between VAP and mortality in this population, or compared this relationship between SARS-CoV-2 patients and other populations. The main objective of our study was to determine the relationship between VAP and mortality in SARS-CoV-2 patients. METHODS: Planned ancillary analysis of a multicenter retrospective European cohort. VAP was diagnosed using clinical, radiological and quantitative microbiological criteria. Univariable and multivariable marginal Cox's regression models, with cause-specific hazard for duration of mechanical ventilation and ICU stay, were used to compare outcomes between study groups. Extubation, and ICU discharge alive were considered as events of interest, and mortality as competing event. FINDINGS: Of 1576 included patients, 568 were SARS-CoV-2 pneumonia, 482 influenza pneumonia, and 526 no evidence of viral infection at ICU admission. VAP was associated with significantly higher risk for 28-day mortality in SARS-CoV-2 (adjusted HR 1.70 (95% CI 1.16-2.47), p = 0.006), and influenza groups (1.75 (1.03-3.02), p = 0.045), but not in the no viral infection group (1.07 (0.64-1.78), p = 0.79). VAP was associated with significantly longer duration of mechanical ventilation in the SARS-CoV-2 group, but not in the influenza or no viral infection groups. VAP was associated with significantly longer duration of ICU stay in the 3 study groups. No significant difference was found in heterogeneity of outcomes related to VAP between the 3 groups, suggesting that the impact of VAP on mortality was not different between study groups. INTERPRETATION: VAP was associated with significantly increased 28-day mortality rate in SARS-CoV-2 patients. However, SARS-CoV-2 pneumonia, as compared to influenza pneumonia or no viral infection, did not significantly modify the relationship between VAP and 28-day mortality. CLINICAL TRIAL REGISTRATION: The study was registered at ClinicalTrials.gov, number NCT04359693.


Subject(s)
COVID-19/mortality , COVID-19/therapy , Pneumonia, Ventilator-Associated/epidemiology , Aged , Europe/epidemiology , Female , Hospital Mortality , Humans , Intensive Care Units , Length of Stay/statistics & numerical data , Male , Middle Aged , Respiration, Artificial/statistics & numerical data , Retrospective Studies
18.
J Infect Public Health ; 14(10): 1375-1380, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1347714

ABSTRACT

BACKGROUND: The pandemic of coronavirus disease (COVID-19) has caused huge number of patients admitted to intensive care units (ICUs) in a critical need to mechanical ventilation. Ventilator associated pneumonia (VAP) has been noticed as a common complication in these patients with unfavorable outcomes. The current study aimed to assess bacterial and fungal VAP in COVID-19 patients admitted to ICUs during the second wave and to identify the possible risk factors. METHODS: Respiratory samples were collected from 197 critically ill COVID-19 patients under mechanical ventilation. Bacterial and fungal superinfections were diagnosed by microbiological cultures with subsequent antimicrobial susceptibility testing of the isolates using available kits. RESULTS: All specimens 197/197 (100%) were positive for bacterial infections, while fungal elements were detected in 134/197 (68%) of specimens. The most frequently isolated bacteria were pan drug resistant (PDR) Klebsiella pneumoniae (41.1%), followed by multi drug resistant (MDR) Acinetobacter baumannii (27.4%). On the other hand, Candida species represented the most frequently isolated fungi (75.4%) followed by molds including Aspergillus (16.4%) and Mucor (8.2%) species. Possible risk factors for fungal VAP included underlying diabetes mellitus (95% confidence interval [CI] 1.09-3.31; p = 0.02), chest disease (95% CI 1.01-3.32; p = 0.05), hypothyroidism (95% CI 1.01-4.78; p = 0.05), and longer duration of mechanical ventilation (p < 0.001). Furthermore, all patients 134/134 (100%) who developed fungal VAP, were already under treatment with corticosteroids and Tocilizumab. CONCLUSION: Bacterial and fungal VAP in critically ill COVID-19 patients is a serious problem in the current pandemic. Urgent and strategic steps to keep it under control are compulsory.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Bacteria , Critical Illness , Fungi , Humans , Intensive Care Units , Pneumonia, Ventilator-Associated/epidemiology , SARS-CoV-2
19.
Ann Am Thorac Soc ; 19(1): 82-89, 2022 01.
Article in English | MEDLINE | ID: covidwho-1282331

ABSTRACT

Rationale: Ventilator-associated event (VAE) surveillance provides an objective means to measure and compare complications that develop during mechanical ventilation by identifying patients with sustained increases in ventilator settings after a period of stable or decreasing ventilator settings. The impact of the coronavirus disease (COVID-19) pandemic on VAE rates and characteristics is unknown. Objectives: To compare the incidence, causes, and outcomes of VAE during the COVID-19 pandemic year versus prepandemic years and among ventilated patients with and without COVID-19. Methods: In this retrospective cohort study of mechanically ventilated adults at four academic and community hospitals in Massachusetts, we compared VAE incidence rates between March 1 and August 31 for each year from 2017 to 2020 (corresponding to the time frame of the pandemic first wave in 2020) and among COVID-19-positive and COVID-19-negative patients in 2020. The medical records of 200 randomly selected patients with VAEs in 2020 (100 with COVID-19 and 100 without COVID-19) were analyzed to compare conditions precipitating VAEs in patients with versus without COVID-19. Results: VAEs per 100 episodes of mechanical ventilation were more common in 2020 than in prior years (11.2 vs. 6.7; P < 0.01) but the rate of VAEs per 1,000 ventilator-days was similar (14.2 vs. 12.7; P = 0.08). VAEs were more frequent in COVID-19-positive patients than in COVID-19-negative patients in 2020 (29.0 vs. 7.1 per 100 ventilator episodes [P < 0.01] and 17.2 vs. 12.2 per 1,000 ventilator-days [P < 0.01]). Compared with patients without COVID-19 with VAEs, patients with COVID-19 and VAEs had similar rates of infection-related ventilator-associated complications, longer median durations of mechanical ventilation (22 vs. 14 d; P < 0.01), and similar in-hospital mortality (30% vs. 38%; P = 0.15). Progressive acute respiratory distress syndrome (ARDS) accounted for 53% of VAEs in patients with COVID-19, whereas it accounted for 14% of VAEs among patients without COVID-19. Conclusions: VAE rates per 100 episodes of mechanical ventilation and per 1,000 ventilator-days were higher among COVID-19-positive patients than among COVID-19-negative patients. Over 50% of VAEs in patients with COVID-19 were caused by progressive ARDS, whereas less than 15% of VAEs in patients without COVID-19 were caused by progressive ARDS. These findings provide insight into the natural history of COVID-19 in ventilated patients and may inform targeted strategies to mitigate complications in this population.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Adult , Humans , Incidence , Pandemics , Pneumonia, Ventilator-Associated/epidemiology , Respiration, Artificial , Retrospective Studies , SARS-CoV-2 , Ventilators, Mechanical/adverse effects
20.
Antimicrob Resist Infect Control ; 10(1): 87, 2021 06 04.
Article in English | MEDLINE | ID: covidwho-1259218

ABSTRACT

BACKGROUND: During the intensive care units' (ICUs) reorganization that was forced by the COVID-19 emergency, attention to traditional infection control measures may have been reduced. Nevertheless, evidence on the effect of the COVID-19 pandemic on healthcare-associated infections (HAIs) is still limited and mixed. In this study, we estimated the pandemic impact on HAI incidence and investigated the HAI type occurring in COVID-19 patients. METHODS: Patients admitted to the main ICU of the Umberto I teaching hospital of Rome from March 1st and April 4th 2020 were compared with patients hospitalized in 2019. We assessed the association of risk factors and time-to-first event through multivariable Fine and Grey's regression models, that consider the competitive risk of death on the development of HAI (Model 1) or device related-HAI (dr-HAI, Model 2) and provide estimates of the sub-distribution hazard ratio (SHR) and its associated confidence interval (CI). A subgroup analysis was performed on the 2020 cohort. RESULTS: Data from 104 patients were retrieved. Overall, 59 HAIs were recorded, 32 of which occurred in the COVID-19 group. Patients admitted in 2020 were found to be positively associated with both HAI and dr-HAI onset (SHR: 2.66, 95% CI 1.31-5.38, and SHR: 10.0, 95% CI 1.84-54.41, respectively). Despite being not confirmed at the multivariable analysis, a greater proportion of dr-HAIs seemed to occur in COVID-19 patients, especially ventilator-associated pneumonia, and catheter-related urinary tract infections. CONCLUSIONS: We observed an increase in the incidence of patients with HAIs, especially dr-HAIs, mainly sustained by COVID-19 patients. A greater susceptibility of these patients to device-related infections was hypothesized, but further studies are needed.


Subject(s)
COVID-19/epidemiology , Cross Infection/epidemiology , Intensive Care Units/statistics & numerical data , Aged , Catheter-Related Infections/epidemiology , Critical Care , Delivery of Health Care , Female , Hospitalization , Hospitals, Teaching , Humans , Incidence , Infection Control , Male , Middle Aged , Pandemics , Pneumonia, Ventilator-Associated/epidemiology , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL