Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Curr Opin Anaesthesiol ; 35(2): 236-241, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1672285

ABSTRACT

PURPOSE OF REVIEW: The decision to undergo early tracheostomy in critically ill patients has been the subject of multiple studies in recent years, including several meta-analyses and a large-scale examination of the National in-patient Sampling (NIS) database. The research has focused on different patient populations, and identified common outcomes measures related to ventilation. At the crux of the new research is the decision to undergo an additional invasive procedure, mainly tracheostomy, rather than attempt endotracheal tube ventilation with or without early extubation. Notably, recent research indicates that neurological and SARS-CoV-2 (COVID-19) patients seem to have an exaggerated benefit from early tracheostomy. RECENT FINDINGS: Recent studies of patients undergoing early tracheostomy have shown decreases in ventilator associated pneumonia, ventilator duration and duration of ICU stay. However, these studies have shown mixed data with respect to mortality and length of hospitalization. Such advantages only become apparent with large-scale examination. Confounding the overall discussion is that the research has focused on heterogeneous groups, including neurosurgical ICU patients, general ICU patients, and most recently, intubated COVID-19 patients. SUMMARY: Specific populations such as neurosurgical and COVID-19 patients have clearly defined benefits following early tracheostomy. Although the benefit is less pronounced, there does seem to be an advantage in general ICU patients with regards to ventilator-free days and lower incidence of ventilator-associated pneumonia. In these patients, large-scale examination points to a clear mortality benefit.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Critical Illness/therapy , Humans , Intensive Care Units , Length of Stay , Pneumonia, Ventilator-Associated/epidemiology , Pneumonia, Ventilator-Associated/prevention & control , Respiration, Artificial/adverse effects , SARS-CoV-2 , Tracheostomy/adverse effects , Tracheostomy/methods
2.
Crit Care ; 25(1): 305, 2021 08 24.
Article in English | MEDLINE | ID: covidwho-1582036

ABSTRACT

BACKGROUND: Awake prone position is an emerging rescue therapy applied in patients undergoing noninvasive ventilation (NIV) for acute hypoxemic respiratory failure (ARF) related to novel coronavirus disease (COVID-19). Although applied to stabilize respiratory status, in awake patients, the application of prone position may reduce comfort with a consequent increase in the workload imposed on respiratory muscles. Thus, we primarily ascertained the effect of awake prone position on diaphragmatic thickening fraction, assessed through ultrasound, in COVID-19 patients undergoing NIV. METHODS: We enrolled all COVID-19 adult critically ill patients, admitted to intensive care unit (ICU) for hypoxemic ARF and undergoing NIV, deserving of awake prone positioning as a rescue therapy. Exclusion criteria were pregnancy and any contraindication to awake prone position and NIV. On ICU admission, after NIV onset, in supine position, and at 1 h following awake prone position application, diaphragmatic thickening fraction was obtained on the right side. Across all the study phases, NIV was maintained with the same setting present at study entry. Vital signs were monitored throughout the entire study period. Comfort was assessed through numerical rating scale (0 the worst comfort and 10 the highest comfort level). Data were presented in median and 25th-75th percentile range. RESULTS: From February to May 2021, 20 patients were enrolled and finally analyzed. Despite peripheral oxygen saturation improvement [96 (94-97)% supine vs 98 (96-99)% prone, p = 0.008], turning to prone position induced a worsening in comfort score from 7.0 (6.0-8.0) to 6.0 (5.0-7.0) (p = 0.012) and an increase in diaphragmatic thickening fraction from 33.3 (25.7-40.5)% to 41.5 (29.8-50.0)% (p = 0.025). CONCLUSIONS: In our COVID-19 patients assisted by NIV in ICU, the application of awake prone position improved the oxygenation at the expense of a greater diaphragmatic thickening fraction compared to supine position. Trial registration ClinicalTrials.gov, number NCT04904731. Registered on 05/25/2021, retrospectively registered. https://clinicaltrials.gov/ct2/show/NCT04904731 .


Subject(s)
COVID-19/therapy , Noninvasive Ventilation/methods , Patient Positioning , Prone Position , Respiration, Artificial/methods , Wakefulness , Adult , Diaphragm , Female , Humans , Intensive Care Units , Male , Pneumonia, Ventilator-Associated/prevention & control , Prospective Studies
4.
BMJ Open ; 11(9): e048591, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1495462

ABSTRACT

INTRODUCTION: Pre-emptive inhaled antibiotics may be effective to reduce the occurrence of ventilator-associated pneumonia among critically ill patients. Meta-analysis of small sample size trials showed a favourable signal. Inhaled antibiotics are associated with a reduced emergence of antibiotic resistant bacteria. The aim of this trial is to evaluate the benefit of a 3-day course of inhaled antibiotics among patients undergoing invasive mechanical ventilation for more than 3 days on the occurrence of ventilator-associated pneumonia. METHODS AND ANALYSIS: Academic, investigator-initiated, parallel two group arms, double-blind, multicentre superiority randomised controlled trial. Patients invasively ventilated more than 3 days will be randomised to receive 20 mg/kg inhaled amikacin daily for 3 days or inhaled placebo (0.9% Sodium Chloride). Occurrence of ventilator-associated pneumonia will be recorded based on a standardised diagnostic framework from randomisation to day 28 and adjudicated by a centralised blinded committee. ETHICS AND DISSEMINATION: The protocol and amendments have been approved by the regional ethics review board and French competent authorities (Comité de protection des personnes Ouest I, No.2016-R29). All patients will be included after informed consent according to French law. Results will be disseminated in international scientific journals. TRIAL REGISTRATION NUMBERS: EudraCT 2016-001054-17 and NCT03149640.


Subject(s)
Amikacin , Pneumonia, Ventilator-Associated , Administration, Inhalation , Amikacin/administration & dosage , Double-Blind Method , Humans , Multicenter Studies as Topic , Pneumonia, Ventilator-Associated/prevention & control , Randomized Controlled Trials as Topic , Respiration, Artificial/adverse effects , Treatment Outcome
5.
Monaldi Arch Chest Dis ; 92(2)2021 Sep 28.
Article in English | MEDLINE | ID: covidwho-1444406

ABSTRACT

The Coronavirus disease 19 (COVID-19) pandemic is associated with an unprecedented requirement for intensive care unit (ICU) admission, invasive mechanical ventilation, and thereby significantly increasing the risk of secondary nosocomial pneumonia, ventilator-associated pneumonia (VAP). Our study aims to identify the overall incidence of VAP, common organisms associated with it, and outcome in COVID-19 patients in comparison to the non-SARS-CoV-2 infected critically ill ventilated COVID-19 patients. A comprehensive screening was conducted using major electronic databases), from January 1st 2020 to May 31st 2021, as per the PRISMA statement. In our rapid review, we included a total of 34 studies (involving 8901 cases. Overall VAP was reported in 48.15 % (95% CI 42.3%-54%) mechanically ventilated COVID-19 patients and the mortality rate was 51.4% (95% CI 42.5%-60%). COVID-19 patients had increased risk of VAP and mortality in comparison to other non-SARS-CoV-2 viral pneumonia (OR=2.33; 95%CI 1.75-3.11; I2=15%, and OR=1.46; 95%CI 1.15-1.86; I2=0% respectively). Critically ill COVID-19 patients are prone to develop VAP, which worsens the outcome.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Viruses , COVID-19/epidemiology , Critical Illness , Humans , Intensive Care Units , Pneumonia, Ventilator-Associated/epidemiology , Pneumonia, Ventilator-Associated/prevention & control
6.
Am J Infect Control ; 49(12): 1474-1480, 2021 12.
Article in English | MEDLINE | ID: covidwho-1415168

ABSTRACT

BACKGROUND: Mechanical ventilators are essential biomedical devices for the respiratory support of patients with SARS-CoV-2 infection. These devices can be transmitters of bacterial pathogens. Therefore, it is necessary to implement effective disinfection procedures. The aim of this work was to show the impact of the modification of a cleaning and disinfection method of mechanical ventilators of patients with SARS-CoV-2 and ventilator-associated pneumonia. METHODS: A total of 338 mechanical ventilators of patients infected with SARS-CoV-2 and ESKAPE bacteria were divided in two groups. Group A and B were subjected to cleaning and disinfection with superoxidation solution-Cl/enzymatic detergent and isopropyl alcohol, respectively. Both groups were cultured for the detection of ESKAPE bacteria. The isolates were subjected to tests for identification, resistance, adherence, and genomic typing. RESULTS: Contamination rates of 21.6% (n = 36) were identified in group A. The inspiratory limb was the circuit involved in most cases of postdisinfection contamination. Acinetobacter baumanni, Pseudomonas aeruginosa, and multi-resistant Klebsiella pneumoniae were the pathogens involved in the contamination cases. The pathogens were highly adherent and in the case of A. baumanni, clonal dispersion was detected in 14 ventilators. Disinfection with enzymatic detergents allows a 100% reduction in contamination rates. CONCLUSIONS: The implementation of cleaning and disinfection with enzymatic detergents/isopropyl alcohol of mechanical ventilators of patients with SARS-CoV-2 and ESKAPE bacteria had a positive impact on postdisinfection microbial contamination rates.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Disinfection , Humans , Pneumonia, Ventilator-Associated/epidemiology , Pneumonia, Ventilator-Associated/prevention & control , SARS-CoV-2 , Ventilators, Mechanical
7.
Infect Control Hosp Epidemiol ; 43(1): 12-25, 2022 01.
Article in English | MEDLINE | ID: covidwho-1392703

ABSTRACT

OBJECTIVES: To determine the impact of the coronavirus disease 2019 (COVID-19) pandemic on healthcare-associated infection (HAI) incidence in US hospitals, national- and state-level standardized infection ratios (SIRs) were calculated for each quarter in 2020 and compared to those from 2019. METHODS: Central-line-associated bloodstream infections (CLABSIs), catheter-associated urinary tract infections (CAUTIs), ventilator-associated events (VAEs), select surgical site infections, and Clostridioides difficile and methicillin-resistant Staphylococcus aureus (MRSA) bacteremia laboratory-identified events reported to the National Healthcare Safety Network for 2019 and 2020 by acute-care hospitals were analyzed. SIRs were calculated for each HAI and quarter by dividing the number of reported infections by the number of predicted infections, calculated using 2015 national baseline data. Percentage changes between 2019 and 2020 SIRs were calculated. Supporting analyses, such as an assessment of device utilization in 2020 compared to 2019, were also performed. RESULTS: Significant increases in the national SIRs for CLABSI, CAUTI, VAE, and MRSA bacteremia were observed in 2020. Changes in the SIR varied by quarter and state. The largest increase was observed for CLABSI, and significant increases in VAE incidence and ventilator utilization were seen across all 4 quarters of 2020. CONCLUSIONS: This report provides a national view of the increases in HAI incidence in 2020. These data highlight the need to return to conventional infection prevention and control practices and build resiliency in these programs to withstand future pandemics.


Subject(s)
COVID-19 , Catheter-Related Infections , Cross Infection , Methicillin-Resistant Staphylococcus aureus , Pneumonia, Ventilator-Associated , Catheter-Related Infections/epidemiology , Cross Infection/epidemiology , Cross Infection/prevention & control , Delivery of Health Care , Humans , Pneumonia, Ventilator-Associated/epidemiology , Pneumonia, Ventilator-Associated/prevention & control , SARS-CoV-2
9.
Clinics ; 76: e2659, 2021. tab, graf
Article in English | WHO COVID, LILACS (Americas) | ID: covidwho-1270465

ABSTRACT

This study aimed to compare the effectiveness of 0.12% chlorhexidine alone and 0.12% chlorhexidine in combination with toothbrushing to prevent ventilator-associated pneumonia (VAP) in mechanically ventilated patients. The Embase, Latin American and Caribbean Health Science Literature, PubMed, Scientific Electronic Library Online, Scopus, LIVIVO, Web of Science, Cochrane Library, OpenThesis, and Open Access Thesis and Dissertations databases were used. Only randomized controlled trials without restrictions on the year or language of publication were included. Two reviewers assessed the risk of bias using the Joanna Briggs Institute Critical Appraisal Tool. A meta-analysis using a random-effects model estimated the combined relative risk (RR). The Grading of Recommendations, Assessment, Development and Evaluations approach was used to assess the certainty of the evidence. Initially, 2,337 studies were identified, of which 4 were considered in the systematic review and 3 in the meta-analysis (total sample: 796 patients). The studies were published between 2009 and 2017. All eligible studies had a low risk of bias. The meta-analysis revealed that the risk of VAP was 24% lower in patients receiving chlorhexidine combined with toothbrushing than in those receiving chlorhexidine alone (RR: 0.76; 95% confidence interval: 0.55-1.06), with moderate certainty of evidence and without statistical significance. In conclusion, considering the limitations of this study, a standard protocol for the prevention of VAP is not yet recommended. More studies with larger sample sizes are needed to draw strong conclusions. However, considering that toothbrushing is a simple intervention, it should be a common practice in mechanically ventilated patients, especially among patients with coronavirus disease.


Subject(s)
Humans , Pneumonia, Ventilator-Associated/prevention & control , Respiration, Artificial , Toothbrushing , Chlorhexidine , Intensive Care Units
10.
Nurs Forum ; 56(4): 905-915, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1258980

ABSTRACT

INTRODUCTION: Prevention of ventilator associated pneumonia (VAP) is the focus in critical care units. Immunocompromised patients, older adults, and postoperative patients are at greater risk for VAP. With the dynamic changes in the empirical world, updated evidence must be used to guide the standard of practice. This literature review assimilates the recent evidence for VAP prevention. METHOD: The Preferred Reporting Items for Systematic Reviews and Meta-analysis framework guided the selection of the included research articles. Medline, EBSCO host, CINAHL, UpToDate and Google Scholar databases explored, for relevant publications between 2010 and 2020. The quality of evidence for the 14 studies selected were rated using the hierarchy of quantitative research designs. RESULTS: Evidence-based VAP preventive strategies are prevention of aspiration, minimizing ventilator days, reducing the pathogen load, safe endotracheal suction practices, and pharmaceutical preventive measures. The mandates for VAP preventive measures among coronavirus disease 2019 (COVID-19) patients is included. CONCLUSION: Though some of these themes identify with the past, the nuances in their implementation are highlights of this review. The review reiterates the need to revisit ambiguous practices implemented for VAP prevention. Adherence to evidence-based practices, by education, training, and reduction of workload is the key to VAP prevention.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Aged , Humans , Intensive Care Units , Pneumonia, Ventilator-Associated/prevention & control , SARS-CoV-2
12.
Am J Infect Control ; 49(8): 1075-1077, 2021 08.
Article in English | MEDLINE | ID: covidwho-1086738

ABSTRACT

This case study is part of a series centered on the Centers for Disease Control and Prevention/National Healthcare Safety Network (NHSN) healthcare-associated infection (HAI) surveillance definitions. This specific case study focuses on the application of the Pneumonia (PNEU), Ventilator-associated event (VAE), and Bloodstream infections (BSI) surveillance definitions to a patient with COVID-19. The intent of the case study series is to foster standardized application of the NHSN HAI surveillance definitions among Infection Preventionists (IPs) and encourage accurate determination of HAI events.


Subject(s)
COVID-19 , Catheter-Related Infections , Cross Infection , Pneumonia, Ventilator-Associated , Catheter-Related Infections/epidemiology , Catheter-Related Infections/prevention & control , Cross Infection/epidemiology , Cross Infection/prevention & control , Data Accuracy , Delivery of Health Care , Humans , Infection Control , Pneumonia, Ventilator-Associated/epidemiology , Pneumonia, Ventilator-Associated/prevention & control , SARS-CoV-2 , United States
SELECTION OF CITATIONS
SEARCH DETAIL