Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 302
Filter
Add filters

Document Type
Year range
3.
Vascul Pharmacol ; 130: 106680, 2020 07.
Article in English | MEDLINE | ID: covidwho-1386723

ABSTRACT

Angiotensin-converting enzyme (ACE) and its homologue, ACE2, have been mostly associated with hypertensive disorder. However, recent pandemia of SARS-CoV-2 has put these proteins at the center of attention, as this virus has been shown to exploit ACE2 protein to enter cells. Clear difference in the response of affected patients to this virus has urged researchers to find the molecular basis and pathophysiology of the cell response to this virus. Different levels of expression and function of ACE proteins, underlying disorders, consumption of certain medications and the existence of certain genomic variants within ACE genes are possible explanations for the observed difference in the response of individuals to the SARS-CoV-2 infection. In the current review, we discuss the putative mechanisms for this observation.


Subject(s)
Coronavirus Infections/enzymology , Peptidyl-Dipeptidase A/biosynthesis , Pneumonia, Viral/enzymology , COVID-19 , Coronavirus Infections/genetics , Coronavirus Infections/pathology , Humans , Pandemics , Peptidyl-Dipeptidase A/blood , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/genetics , Pneumonia, Viral/pathology
5.
Fertil Steril ; 114(2): 223-232, 2020 08.
Article in English | MEDLINE | ID: covidwho-1385570

ABSTRACT

OBJECTIVE: To determine the susceptibility of the endometrium to infection by-and thereby potential damage from-SARS-CoV-2. DESIGN: Analysis of SARS-Cov-2 infection-related gene expression from endometrial transcriptomic data sets. SETTING: Infertility research department affiliated with a public hospital. PATIENT(S): Gene expression data from five studies in 112 patients with normal endometrium collected throughout the menstrual cycle. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Gene expression and correlation between viral infectivity genes and age throughout the menstrual cycle. RESULT(S): Gene expression was high for TMPRSS4, CTSL, CTSB, FURIN, MX1, and BSG; medium for TMPRSS2; and low for ACE2. ACE2, TMPRSS4, CTSB, CTSL, and MX1 expression increased toward the window of implantation. TMPRSS4 expression was positively correlated with ACE2, CTSB, CTSL, MX1, and FURIN during several cycle phases; TMPRSS2 was not statistically significantly altered across the cycle. ACE2, TMPRSS4, CTSB, CTSL, BSG, and MX1 expression increased with age, especially in early phases of the cycle. CONCLUSION(S): Endometrial tissue is likely safe from SARS-CoV-2 cell entry based on ACE2 and TMPRSS2 expression, but susceptibility increases with age. Further, TMPRSS4, along with BSG-mediated viral entry into cells, could imply a susceptible environment for SARS-CoV-2 entry via different mechanisms. Additional studies are warranted to determine the true risk of endometrial infection by SARS-CoV-2 and implications for fertility treatments.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/metabolism , Endometrium/metabolism , Endometrium/virology , Gene Expression Regulation, Viral , Pneumonia, Viral/metabolism , Adult , Age Factors , Angiotensin-Converting Enzyme 2 , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/genetics , Female , Humans , Menstrual Cycle , Middle Aged , Pandemics , Peptidyl-Dipeptidase A/biosynthesis , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/genetics , Risk Assessment/methods , SARS-CoV-2 , Virus Internalization , Young Adult
6.
Clin Immunol ; 215: 108426, 2020 06.
Article in English | MEDLINE | ID: covidwho-1385285
7.
Cell ; 181(6): 1194-1199, 2020 06 11.
Article in English | MEDLINE | ID: covidwho-1385209

ABSTRACT

SARS-CoV-2 infection displays immense inter-individual clinical variability, ranging from silent infection to lethal disease. The role of human genetics in determining clinical response to the virus remains unclear. Studies of outliers-individuals remaining uninfected despite viral exposure and healthy young patients with life-threatening disease-present a unique opportunity to reveal human genetic determinants of infection and disease.


Subject(s)
Coronavirus Infections/genetics , Coronavirus Infections/immunology , Genetic Predisposition to Disease , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Age Factors , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Disease Resistance , Genetic Association Studies , Genetic Diseases, Inborn/immunology , Genetic Variation , Genome, Human , Host-Pathogen Interactions , Humans , Infections/genetics , Infections/immunology , Infections/physiopathology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/physiopathology , SARS-CoV-2
8.
Viruses ; 12(10)2020 10 16.
Article in English | MEDLINE | ID: covidwho-1389518

ABSTRACT

To address the expression pattern of the SARS-CoV-2 receptor ACE2 and the viral priming protease TMPRSS2 in the respiratory tract, this study investigated RNA sequencing transcriptome profiling of samples of airway and oral mucosa. As shown, ACE2 has medium levels of expression in both small airway epithelium and masticatory mucosa, and high levels of expression in nasal epithelium. The expression of ACE2 is low in mucosal-associated invariant T (MAIT) cells and cannot be detected in alveolar macrophages. TMPRSS2 is highly expressed in small airway epithelium and nasal epithelium and has lower expression in masticatory mucosa. Our results provide the molecular basis that the nasal mucosa is the most susceptible locus in the respiratory tract for SARS-CoV-2 infection and consequently for subsequent droplet transmission and should be the focus for protection against SARS-CoV-2 infection.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/genetics , Peptidyl-Dipeptidase A/biosynthesis , Pneumonia, Viral/genetics , Serine Endopeptidases/biosynthesis , Virus Internalization , Angiotensin-Converting Enzyme 2 , COVID-19 , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Epithelium/metabolism , Epithelium/virology , Gene Expression , Gene Expression Profiling , Humans , Nasal Mucosa/metabolism , Nasal Mucosa/virology , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Respiratory System/metabolism , Respiratory System/virology , SARS-CoV-2 , Serine Endopeptidases/genetics
10.
Pharmacol Res ; 157: 104820, 2020 07.
Article in English | MEDLINE | ID: covidwho-1318923

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic has become a huge threaten to global health, which raise urgent demand of developing efficient therapeutic strategy. The aim of the present study is to dissect the chemical composition and the pharmacological mechanism of Qingfei Paidu Decoction (QFPD), a clinically used Chinese medicine for treating COVID-19 patients in China. Through comprehensive analysis by liquid chromatography coupled with high resolution mass spectrometry (MS), a total of 129 compounds of QFPD were putatively identified. We also constructed molecular networking of mass spectrometry data to classify these compounds into 14 main clusters, in which exhibited specific patterns of flavonoids (45 %), glycosides (15 %), carboxylic acids (10 %), and saponins (5 %). The target network model of QFPD, established by predicting and collecting the targets of identified compounds, indicated a pivotal role of Ma Xing Shi Gan Decoction (MXSG) in the therapeutic efficacy of QFPD. Supportively, through transcriptomic analysis of gene expression after MXSG administration in rat model of LPS-induced pneumonia, the thrombin and Toll-like receptor (TLR) signaling pathway were suggested to be essential pathways for MXSG mediated anti-inflammatory effects. Besides, changes in content of major compounds in MXSG during decoction were found by the chemical analysis. We also validate that one major compound in MXSG, i.e. glycyrrhizic acid, inhibited TLR agonists induced IL-6 production in macrophage. In conclusion, the integration of in silico and experimental results indicated that the therapeutic effects of QFPD against COVID-19 may be attributed to the anti-inflammatory effects of MXSG, which supports the rationality of the compatibility of TCM.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Pneumonia, Viral/drug therapy , Animals , Anti-Inflammatory Agents/analysis , Anti-Inflammatory Agents/pharmacology , COVID-19 , Cells, Cultured , Computer Simulation , Coronavirus Infections/genetics , Gene Expression/drug effects , Glycyrrhizic Acid/pharmacology , Humans , Interleukin-6/metabolism , Lipopeptides/antagonists & inhibitors , Lipopeptides/pharmacology , Lipopolysaccharides , Male , Pandemics , Pneumonia/chemically induced , Pneumonia/metabolism , Pneumonia, Viral/genetics , Rats , SARS-CoV-2 , Signal Transduction/drug effects , Thrombin/metabolism , Toll-Like Receptors/metabolism
11.
J Med Virol ; 93(8): 5182-5187, 2021 08.
Article in English | MEDLINE | ID: covidwho-1298501

ABSTRACT

Infections due to human herpesvirus 6 (HHV-6) are frequent during early childhood. Usually, they have a favorable clinical course. Conversely, HHV-6 congenital infections occur in about 1% of neonates and may present with more severe clinical pictures. HHV-6 can be found in lung tissues and bronchoalveolar lavage (BAL) samples from patients with pneumonia and in immunocompromised patients can cause mild to severe pneumonia. In neonates, the role of HHV-6 in the genesis of severe pneumonia is poorly defined still now. We describe a healthy infant with a late-onset (15 days of life) severe interstitial pneumonia and heavy HHV-6 genome load, persistently detected in its BAL fluid. The baby underwent high-frequency oscillatory ventilation, hydroxychloroquine, steroids, and ganciclovir for 6 weeks and at 9 months she died. Next-generation sequencing of genes known to cause neonatal respiratory insufficiency revealed the presence of a "probably pathogenetic" heterozygous variant in the autosomal recessive DRC1 gene, a heterozygous variant of unknown significance (VUS) in the autosomal recessive RSPH9 gene, and a heterozygous VUS in the autosomal recessive MUC5B gene. HHV-6 infection should be considered in the differential diagnosis of late-onset severe respiratory distress in neonates and the co-occurrence of genetic predisposing factors or modifiers should be tested by specific molecular techniques. The intensity of HHV-6 genome load in BAL fluid could be an indicator of the response to antiviral therapy.


Subject(s)
Genetic Predisposition to Disease/genetics , Lung Diseases, Interstitial/genetics , Roseolovirus Infections/genetics , Cytoskeletal Proteins/genetics , Fatal Outcome , Female , Genetic Variation , Herpesvirus 6, Human/genetics , Herpesvirus 6, Human/isolation & purification , Heterozygote , Humans , Infant, Newborn , Lung Diseases, Interstitial/therapy , Lung Diseases, Interstitial/virology , Microtubule-Associated Proteins/genetics , Mucin-5B/genetics , Pneumonia, Viral/genetics , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Roseolovirus Infections/therapy , Roseolovirus Infections/virology , Viral Load
13.
Eur J Clin Invest ; 50(7): e13259, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-1084256

ABSTRACT

BACKGROUND: The clinical features of COVID-19 pneumonia range from a mild illness to patients with a very severe illness with acute hypoxemic respiratory failure requiring ventilation and Intensive Care Unit admission. AIMS: To provide a brief overview of the existing evidence for such differences in host response and outcome, and generate hypotheses for divergent patterns and avenues for future research, by highlighting similarities and differences in histopathological appearance between COVID-19 and influenza as well as previous coronavirus outbreaks, and by discussing predisposition through genetics and underlying disease. MATERIALS AND METHOD: We assessed the available early literature for histopathological patterns of COVID-19 pneumonia and underlying risk factors. RESULT: The histopathological spectrum of COVID-19 pneumonia includes variable patterns of epithelial damage, vascular complications, fibrosis and inflammation. Risk factors for a fatal disease include older age, respiratory disease, diabetes mellitus, obesity and hypertension. DISCUSSION: While some risk factors and their potential role in COVID-19 pneumonia are increasingly recognized, little is known about the mechanisms behind episodes of sudden deterioration or the infrequent idiosyncratic clinical demise in otherwise healthy and young subjects. CONCLUSION: The answer to many of the remaining questions regarding COVID-19 pneumonia pathogenesis may in time be provided by genotyping as well careful clinical, serological, radiological and histopathological phenotyping.


Subject(s)
Coronavirus Infections/pathology , Edema/pathology , Inflammation/pathology , Pneumonia, Viral/pathology , Respiratory Mucosa/pathology , Thrombosis/pathology , Age Factors , Angiotensin-Converting Enzyme 2 , Betacoronavirus , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Diabetes Mellitus/epidemiology , Fibrosis , Genetic Predisposition to Disease , HLA Antigens/genetics , Humans , Hypertension/epidemiology , Inflammation/immunology , Influenza, Human/pathology , Obesity/epidemiology , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Polymorphism, Genetic , Respiratory Mucosa/immunology , Respiratory System/pathology , Risk Factors , SARS-CoV-2 , Serine Endopeptidases/genetics , Severe Acute Respiratory Syndrome/pathology
16.
Nat Biotechnol ; 38(9): 1073-1078, 2020 09.
Article in English | MEDLINE | ID: covidwho-1023948

ABSTRACT

A robust serological test to detect neutralizing antibodies to SARS-CoV-2 is urgently needed to determine not only the infection rate, herd immunity and predicted humoral protection, but also vaccine efficacy during clinical trials and after large-scale vaccination. The current gold standard is the conventional virus neutralization test requiring live pathogen and a biosafety level 3 laboratory. Here, we report a SARS-CoV-2 surrogate virus neutralization test that detects total immunodominant neutralizing antibodies targeting the viral spike (S) protein receptor-binding domain in an isotype- and species-independent manner. Our simple and rapid test is based on antibody-mediated blockage of the interaction between the angiotensin-converting enzyme 2 (ACE2) receptor protein and the receptor-binding domain. The test, which has been validated with two cohorts of patients with COVID-19 in two different countries, achieves 99.93% specificity and 95-100% sensitivity, and differentiates antibody responses to several human coronaviruses. The surrogate virus neutralization test does not require biosafety level 3 containment, making it broadly accessible to the wider community for both research and clinical applications.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/genetics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2 , Antibodies/immunology , Antibodies/pharmacology , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , Neutralization Tests , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Protein Interaction Domains and Motifs/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
17.
Nature ; 590(7847): 635-641, 2021 02.
Article in English | MEDLINE | ID: covidwho-1019856

ABSTRACT

Some patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop severe pneumonia and acute respiratory distress syndrome1 (ARDS). Distinct clinical features in these patients have led to speculation that the immune response to virus in the SARS-CoV-2-infected alveolus differs from that in other types of pneumonia2. Here we investigate SARS-CoV-2 pathobiology by characterizing the immune response in the alveoli of patients infected with the virus. We collected bronchoalveolar lavage fluid samples from 88 patients with SARS-CoV-2-induced respiratory failure and 211 patients with known or suspected pneumonia from other pathogens, and analysed them using flow cytometry and bulk transcriptomic profiling. We performed single-cell RNA sequencing on 10 bronchoalveolar lavage fluid samples collected from patients with severe coronavirus disease 2019 (COVID-19) within 48 h of intubation. In the majority of patients with SARS-CoV-2 infection, the alveolar space was persistently enriched in T cells and monocytes. Bulk and single-cell transcriptomic profiling suggested that SARS-CoV-2 infects alveolar macrophages, which in turn respond by producing T cell chemoattractants. These T cells produce interferon-γ to induce inflammatory cytokine release from alveolar macrophages and further promote T cell activation. Collectively, our results suggest that SARS-CoV-2 causes a slowly unfolding, spatially limited alveolitis in which alveolar macrophages containing SARS-CoV-2 and T cells form a positive feedback loop that drives persistent alveolar inflammation.


Subject(s)
COVID-19/immunology , COVID-19/virology , Macrophages, Alveolar/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2/pathogenicity , T-Lymphocytes/immunology , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , COVID-19/genetics , Cohort Studies , Humans , Interferon-gamma/immunology , Interferons/immunology , Interferons/metabolism , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/virology , Pneumonia, Viral/genetics , RNA-Seq , SARS-CoV-2/immunology , Signal Transduction/immunology , Single-Cell Analysis , T-Lymphocytes/metabolism , Time Factors
18.
Eur J Pharmacol ; 886: 173447, 2020 Nov 05.
Article in English | MEDLINE | ID: covidwho-1005871

ABSTRACT

Coronavirus Disease 2019 (COVID-19) caused by a Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) was first reported in Wuhan, China at the end of December 2019. SARS-CoV-2 is a highly pathogenic zoonotic virus and closely related to the Severe Acute Respiratory Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV). The COVID-19 was declared as a global pandemic due to its high infectiousness, and worldwide morbidities and mortalities. The Chinese scientists at the start of the outbreak reported genome sequences, which made the characterization of glycoproteins and other structural proteins possible. Moreover, researchers across the world have widely focused on understanding basic biology, developing vaccines, and therapeutic drugs against the COVID-19. However, until now, no promising treatment options, as well as vaccines, are available. In this review, we have described SARS-CoV-2's genome, transmission, and pathogenicity. We also discussed novel potential therapeutic agents that can help to treat the COVID-19 patients.


Subject(s)
Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Animals , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/genetics , Disease Susceptibility , Genomics , Humans , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/genetics
19.
Cleve Clin J Med ; 87(11): 664-670, 2020 11 02.
Article in English | MEDLINE | ID: covidwho-1000386

ABSTRACT

While promising, convalescent plasma remains experimental and is not proven effective for COVID-19. In addition, many questions remain regarding the accuracy and predictive value of antibody testing of donors and patients, optimal donor selection, optimal timing, and selection of patients most likely to benefit. Until these questions are answered, convalescent plasma should ideally be used in the context of well-designed clinical trials.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques/methods , Coronavirus Infections , Pandemics , Pneumonia, Viral , Time-to-Treatment , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Clinical Trials as Topic , Coronavirus Infections/diagnosis , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Donor Selection , Humans , Immunization, Passive/adverse effects , Immunization, Passive/methods , Patient Selection , Pneumonia, Viral/diagnosis , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Pneumonia, Viral/therapy , Predictive Value of Tests , Reproducibility of Results , Risk Assessment , SARS-CoV-2 , Treatment Outcome
20.
Immunol Rev ; 296(1): 205-219, 2020 07.
Article in English | MEDLINE | ID: covidwho-998975

ABSTRACT

This article provides a review of studies evaluating the role of host (and viral) genetics (including variation in HLA genes) in the immune response to coronaviruses, as well as the clinical outcome of coronavirus-mediated disease. The initial sections focus on seasonal coronaviruses, SARS-CoV, and MERS-CoV. We then examine the state of the knowledge regarding genetic polymorphisms and SARS-CoV-2 and COVID-19. The article concludes by discussing research areas with current knowledge gaps and proposes several avenues for future scientific exploration in order to develop new insights into the immunology of SARS-CoV-2.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Disease Resistance/genetics , Genetic Predisposition to Disease , Host-Pathogen Interactions/genetics , Pneumonia, Viral/immunology , Animals , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/genetics , Coronavirus Infections/virology , Host-Pathogen Interactions/immunology , Humans , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , SARS Virus/immunology , SARS Virus/pathogenicity , SARS-CoV-2 , Severe Acute Respiratory Syndrome/genetics , Severe Acute Respiratory Syndrome/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...