Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 2.139
Filter
Add filters

Document Type
Year range
3.
Ann Intern Med ; 174(6): 811-821, 2021 06.
Article in English | MEDLINE | ID: covidwho-1456489

ABSTRACT

BACKGROUND: The clinical significance of the antibody response after SARS-CoV-2 infection remains unclear. PURPOSE: To synthesize evidence on the prevalence, levels, and durability of detectable antibodies after SARS-CoV-2 infection and whether antibodies to SARS-CoV-2 confer natural immunity. DATA SOURCES: MEDLINE (Ovid), Embase, CINAHL, Cochrane Central Register of Controlled Trials, ClinicalTrials.gov, World Health Organization global literature database, and Covid19reviews.org from 1 January through 15 December 2020, limited to peer-reviewed publications available in English. STUDY SELECTION: Primary studies characterizing the prevalence, levels, and duration of antibodies in adults with SARS-CoV-2 infection confirmed by reverse transcriptase polymerase chain reaction (RT-PCR); reinfection incidence; and unintended consequences of antibody testing. DATA EXTRACTION: Two investigators sequentially extracted study data and rated quality. DATA SYNTHESIS: Moderate-strength evidence suggests that most adults develop detectable levels of IgM and IgG antibodies after infection with SARS-CoV-2 and that IgG levels peak approximately 25 days after symptom onset and may remain detectable for at least 120 days. Moderate-strength evidence suggests that IgM levels peak at approximately 20 days and then decline. Low-strength evidence suggests that most adults generate neutralizing antibodies, which may persist for several months like IgG. Low-strength evidence also suggests that older age, greater disease severity, and presence of symptoms may be associated with higher antibody levels. Some adults do not develop antibodies after SARS-CoV-2 infection for reasons that are unclear. LIMITATIONS: Most studies were small and had methodological limitations; studies used immunoassays of variable accuracy. CONCLUSION: Most adults with SARS-CoV-2 infection confirmed by RT-PCR develop antibodies. Levels of IgM peak early in the disease course and then decline, whereas IgG peaks later and may remain detectable for at least 120 days. PRIMARY FUNDING SOURCE: Agency for Healthcare Research and Quality. (PROSPERO: CRD42020207098).


Subject(s)
Antibodies, Viral/blood , Antibody Formation , COVID-19/immunology , Pneumonia, Viral/immunology , SARS-CoV-2/immunology , Antibody Specificity/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Pneumonia, Viral/virology , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity
6.
Pharmazie ; 75(8): 375-380, 2020 08 01.
Article in English | MEDLINE | ID: covidwho-1435671

ABSTRACT

Diabetes mellitus (DM) is one of the major risk factors for COVID-19 complications as it is one of the chronic immune-compromising conditions especially if patients have uncontrolled diabetes, poor HbA1c and/or irregular blood glucose levels. Diabetic patients' mortality rates with COVID-19 are higher than those of cardiovascular or cancer patients. Recently, Bacillus Calmette-Guérin (BCG) vaccine has shown successful results in reversing diabetes in both rats and clinical trials based on different mechanisms from aerobic glycolysis to beta cells regeneration. BCG is a multi-face vaccine that has been used extensively in protection from tuberculosis (TB) and leprosy and has been repositioned for treatment of bladder cancer, diabetes and multiple sclerosis. Recently, COVID-19 epidemiological studies confirmed that universal BCG vaccination reduced morbidity and mortality in certain geographical areas. Countries without universal policies of BCG vaccination (Italy, Nederland, USA) have been more severely affected compared to countries with universal and long-standing BCG policies that have shown low numbers of reported COVID-19 cases. Some countries have started clinical trials that included a single dose BCG vaccine as prophylaxis from COVID-19 or an attempt to minimize its side effects. This proposed research aims to use BCG vaccine as a double-edged weapon countering both COVID-19 and diabetes, not only as protection but also as therapeutic vaccination. The work includes a case study of regenerated pancreatic beta cells based on improved C-peptide and PCPRI laboratory findings after BCG vaccination for a 9 year old patient. The patient was re-vaccinated based on a negative tuberculin test and no scar at the site of injection of the 1st BCG vaccination at birth. The authors suggest and invite the scientific community to take into consideration the concept of direct BCG re-vaccination (after 4 weeks) because of the reported gene expressions and exaggerated innate immunity consequently. As the diabetic MODY-5 patient (mutation of HNF1B, Val2Leu) was on low dose Riomet® while eliminating insulin gradually, a simple analytical method for metformin assay was recommended to ensure its concentration before use as it is not approved yet by the Egyptian QC labs.


Subject(s)
BCG Vaccine/administration & dosage , Coronavirus Infections/immunology , Diabetes Mellitus/immunology , Insulin-Secreting Cells/cytology , Pneumonia, Viral/immunology , Animals , BCG Vaccine/immunology , COVID-19 , Child , Coronavirus Infections/complications , Diabetes Mellitus/physiopathology , Humans , Male , Pandemics , Pneumonia, Viral/complications , Rats , Regeneration/immunology , Risk Factors , Vaccination/methods
7.
J Clin Invest ; 130(11): 6151-6157, 2020 11 02.
Article in English | MEDLINE | ID: covidwho-1435146

ABSTRACT

Emerging data indicate that complement and neutrophils contribute to the maladaptive immune response that fuels hyperinflammation and thrombotic microangiopathy, thereby increasing coronavirus 2019 (COVID-19) mortality. Here, we investigated how complement interacts with the platelet/neutrophil extracellular traps (NETs)/thrombin axis, using COVID-19 specimens, cell-based inhibition studies, and NET/human aortic endothelial cell (HAEC) cocultures. Increased plasma levels of NETs, tissue factor (TF) activity, and sC5b-9 were detected in patients. Neutrophils of patients yielded high TF expression and released NETs carrying active TF. Treatment of control neutrophils with COVID-19 platelet-rich plasma generated TF-bearing NETs that induced thrombotic activity of HAECs. Thrombin or NETosis inhibition or C5aR1 blockade attenuated platelet-mediated NET-driven thrombogenicity. COVID-19 serum induced complement activation in vitro, consistent with high complement activity in clinical samples. Complement C3 inhibition with compstatin Cp40 disrupted TF expression in neutrophils. In conclusion, we provide a mechanistic basis for a pivotal role of complement and NETs in COVID-19 immunothrombosis. This study supports strategies against severe acute respiratory syndrome coronavirus 2 that exploit complement or NETosis inhibition.


Subject(s)
Betacoronavirus , Complement Membrane Attack Complex , Coronavirus Infections , Extracellular Traps , Neutrophils , Pandemics , Pneumonia, Viral , Thromboplastin , Thrombosis , Aged , Betacoronavirus/immunology , Betacoronavirus/metabolism , COVID-19 , Complement Activation/drug effects , Complement Membrane Attack Complex/immunology , Complement Membrane Attack Complex/metabolism , Coronavirus Infections/blood , Coronavirus Infections/immunology , Extracellular Traps/immunology , Extracellular Traps/metabolism , Female , Humans , Male , Middle Aged , Neutrophils/immunology , Neutrophils/metabolism , Peptides, Cyclic/pharmacology , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/blood , Receptor, Anaphylatoxin C5a/immunology , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Thrombin/immunology , Thrombin/metabolism , Thromboplastin/immunology , Thromboplastin/metabolism , Thrombosis/blood , Thrombosis/immunology , Thrombosis/virology
8.
Cell Rep ; 37(1): 109798, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1415262

ABSTRACT

Despite the worldwide effect of the coronavirus disease 2019 (COVID-19) pandemic, the underlying mechanisms of fatal viral pneumonia remain elusive. Here, we show that critical COVID-19 is associated with enhanced eosinophil-mediated inflammation when compared to non-critical cases. In addition, we confirm increased T helper (Th)2-biased adaptive immune responses, accompanying overt complement activation, in the critical group. Moreover, enhanced antibody responses and complement activation are associated with disease pathogenesis as evidenced by formation of immune complexes and membrane attack complexes in airways and vasculature of lung biopsies from six fatal cases, as well as by enhanced hallmark gene set signatures of Fcγ receptor (FcγR) signaling and complement activation in myeloid cells of respiratory specimens from critical COVID-19 patients. These results suggest that SARS-CoV-2 infection may drive specific innate immune responses, including eosinophil-mediated inflammation, and subsequent pulmonary pathogenesis via enhanced Th2-biased immune responses, which might be crucial drivers of critical disease in COVID-19 patients.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Complement System Proteins/immunology , Eosinophils/immunology , Inflammation/immunology , Pneumonia, Viral/immunology , SARS-CoV-2/immunology , Adaptive Immunity , Adult , Aged , Aged, 80 and over , Antigen-Antibody Complex/metabolism , COVID-19/metabolism , COVID-19/virology , Complement Activation , Complement Membrane Attack Complex/metabolism , Eosinophils/virology , Female , Humans , Inflammation/metabolism , Inflammation/virology , Lung Injury/immunology , Lung Injury/pathology , Lung Injury/virology , Male , Middle Aged , Pneumonia, Viral/metabolism , Receptors, IgG/immunology , Receptors, IgG/metabolism , Severity of Illness Index , Signal Transduction , Th2 Cells/immunology , Viral Load , Young Adult
10.
Virol Sin ; 35(3): 280-289, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-1384632

ABSTRACT

Cancer cell lines have been used widely in cancer biology, and as biological or functional cell systems in many biomedical research fields. These cells are usually defective for many normal activities or functions due to significant genetic and epigenetic changes. Normal primary cell yields and viability from any original tissue specimens are usually relatively low or highly variable. These normal cells cease after a few passages or population doublings due to very limited proliferative capacity. Animal models (ferret, mouse, etc.) are often used to study virus-host interaction. However, viruses usually need to be adapted to the animals by several passages due to tropism restrictions including viral receptors and intracellular restrictions. Here we summarize applications of conditionally reprogrammed cells (CRCs), long-term cultures of normal airway epithelial cells from human nose to lung generated by conditional cell reprogramming (CR) technology, as an ex vivo model in studies of emerging viruses. CR allows to robustly propagate cells from non-invasive or minimally invasive specimens, for example, nasal or endobronchial brushing. This process is rapid (2 days) and conditional. The CRCs maintain their differentiation potential and lineage functions, and have been used for studies of adenovirus, rhinovirus, respiratory syncytial virus, influenza viruses, parvovirus, and SARS-CoV. The CRCs can be easily used for air-liquid interface (ALI) polarized 3D cultures, and these coupled CRC/ALI cultures mimic physiological conditions and are suitable for studies of viral entry including receptor binding and internalization, innate immune responses, viral replications, and drug discovery as an ex vivo model for emerging viruses.


Subject(s)
Cellular Reprogramming Techniques , Models, Biological , Respiratory Mucosa/cytology , Respiratory Mucosa/virology , Betacoronavirus/physiology , COVID-19 , Cell Differentiation , Cell Lineage , Cells, Cultured , Coronavirus Infections/immunology , Coronavirus Infections/virology , Epithelial Cells/cytology , Epithelial Cells/virology , Humans , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2
12.
Cytometry A ; 97(9): 887-890, 2020 09.
Article in English | MEDLINE | ID: covidwho-1384155

ABSTRACT

In patients with severe SARS-CoV-2 infection, the development of cytokine storm induces extensive lung damage, and monocytes play a role in this pathological process. Non-classical (NC) and intermediate (INT) monocytes are known to be involved during viral and bacterial infections. In this study, 30 patients with different manifestations of acute SARS-CoV-2 infection were investigated with a flow cytometric study of NC, INT, and classical (CL) monocytes. Significantly reduced NC and INT monocytes and a downregulated HLA-DR were found in acute patients with severe SARS-CoV-2 symptoms. Conversely in patients with moderate symptoms NC and INT monocytes and CD11b expression were increased. © 2020 International Society for Advancement of Cytometry.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Monocytes/immunology , Pneumonia, Viral/immunology , Aged , Betacoronavirus/pathogenicity , Biomarkers/analysis , CD11b Antigen/analysis , COVID-19 , Cell Separation , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Female , Flow Cytometry , Host Microbial Interactions , Humans , Leukocytes , Male , Middle Aged , Monocytes/virology , Pandemics , Phenotype , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2 , Severity of Illness Index
17.
PLoS One ; 15(10): e0239678, 2020.
Article in English | MEDLINE | ID: covidwho-1388887

ABSTRACT

We generalize the Susceptible-Infected-Removed (SIR) model for epidemics to take into account generic effects of heterogeneity in the degree of susceptibility to infection in the population. We introduce a single new parameter corresponding to a power-law exponent of the susceptibility distribution at small susceptibilities. We find that for this class of distributions the gamma distribution is the attractor of the dynamics. This allows us to identify generic effects of population heterogeneity in a model as simple as the original SIR model which is contained as a limiting case. Because of this simplicity, numerical solutions can be generated easily and key properties of the epidemic wave can still be obtained exactly. In particular, we present exact expressions for the herd immunity level, the final size of the epidemic, as well as for the shape of the wave and for observables that can be quantified during an epidemic. In strongly heterogeneous populations, the herd immunity level can be much lower than in models with homogeneous populations as commonly used for example to discuss effects of mitigation. Using our model to analyze data for the SARS-CoV-2 epidemic in Germany shows that the reported time course is consistent with several scenarios characterized by different levels of immunity. These scenarios differ in population heterogeneity and in the time course of the infection rate, for example due to mitigation efforts or seasonality. Our analysis reveals that quantifying the effects of mitigation requires knowledge on the degree of heterogeneity in the population. Our work shows that key effects of population heterogeneity can be captured without increasing the complexity of the model. We show that information about population heterogeneity will be key to understand how far an epidemic has progressed and what can be expected for its future course.


Subject(s)
Coronavirus Infections/epidemiology , Demography/statistics & numerical data , Models, Theoretical , Pneumonia, Viral/epidemiology , COVID-19 , Coronavirus Infections/immunology , Germany , Humans , Immunity, Herd , Pandemics , Pneumonia, Viral/immunology
18.
Trials ; 21(1): 828, 2020 Oct 06.
Article in English | MEDLINE | ID: covidwho-1388814

ABSTRACT

OBJECTIVES: Primary objectives • To assess the time from randomisation until an improvement within 84 days defined as two points on a seven point ordinal scale or live discharge from the hospital in high-risk patients (group 1 to group 4) with SARS-CoV-2 infection requiring hospital admission by infusion of plasma from subjects after convalescence of SARS-CoV-2 infection or standard of care. Secondary objectives • To assess overall survival, and the overall survival rate at 28 56 and 84 days. • To assess SARS-CoV-2 viral clearance and load as well as antibody titres. • To assess the percentage of patients that required mechanical ventilation. • To assess time from randomisation until discharge. TRIAL DESIGN: Randomised, open-label, multicenter phase II trial, designed to assess the clinical outcome of SARS-CoV-2 disease in high-risk patients (group 1 to group 4) following treatment with anti-SARS-CoV-2 convalescent plasma or standard of care. PARTICIPANTS: High-risk patients >18 years of age hospitalized with SARS-CoV-2 infection in 10-15 university medical centres will be included. High-risk is defined as SARS-CoV-2 positive infection with Oxygen saturation at ≤ 94% at ambient air with additional risk features as categorised in 4 groups: • Group 1, pre-existing or concurrent hematological malignancy and/or active cancer therapy (incl. chemotherapy, radiotherapy, surgery) within the last 24 months or less. • Group 2, chronic immunosuppression not meeting the criteria of group 1. • Group 3, age ≥ 50 - 75 years meeting neither the criteria of group 1 nor group 2 and at least one of these criteria: Lymphopenia < 0.8 x G/l and/or D-dimer > 1µg/mL. • Group 4, age ≥ 75 years meeting neither the criteria of group 1 nor group 2. Observation time for all patients is expected to be at least 3 months after entry into the study. Patients receive convalescent plasma for two days (day 1 and day 2) or standard of care. For patients in the standard arm, cross over is allowed from day 10 in case of not improving or worsening clinical condition. Nose/throat swabs for determination of viral load are collected at day 0 and day 1 (before first CP administration) and subsequently at day 2, 3, 5, 7, 10, 14, 28 or until discharge. Serum for SARS-Cov-2 diagnostic is collected at baseline and subsequently at day 3, 7, 14 and once during the follow-up period (between day 35 and day 84). There is a regular follow-up of 3 months. All discharged patients are followed by regular phone calls. All visits, time points and study assessments are summarized in the Trial Schedule (see full protocol Table 1). All participating trial sites will be supplied with study specific visit worksheets that list all assessments and procedures to be completed at each visit. All findings including clinical and laboratory data are documented by the investigator or an authorized member of the study team in the patient's medical record and in the electronic case report forms (eCRFs). INTERVENTION AND COMPARATOR: This trial will analyze the effects of convalescent plasma from recovered subjects with SARS-CoV-2 antibodies in high-risk patients with SARS-CoV-2 infection. Patients at high risk for a poor outcome due to underlying disease, age or condition as listed above are eligible for enrollment. In addition, eligible patients have a confirmed SARS-CoV-2 infection and O2 saturation ≤ 94% while breathing ambient air. Patients are randomised to receive (experimental arm) or not receive (standard arm) convalescent plasma in two bags (238 - 337 ml plasma each) from different donors (day 1, day 2). A cross over from the standard arm into the experimental arm is possible after day 10 in case of not improving or worsening clinical condition. MAIN OUTCOMES: Primary endpoints: The main purpose of the study is to assess the time from randomisation until an improvement within 84 days defined as two points on a seven-point ordinal scale or live discharge from the hospital in high-risk patients (group 1 to group 4) with SARS-CoV-2 infection requiring hospital admission by infusion of plasma from subjects after convalescence of a SARS-CoV-2 infection or standard of care. Secondary endpoints: • Overall survival, defined as the time from randomisation until death from any cause 28-day, 56-day and 84-day overall survival rates. • SARS-CoV-2 viral clearance and load as well as antibody titres. • Requirement mechanical ventilation at any time during hospital stay (yes/no). • Time until discharge from randomisation. • Viral load, changes in antibody titers and cytokine profiles are analysed in an exploratory manner using paired non-parametric tests (before - after treatment). RANDOMISATION: Upon confirmation of eligibility (patients must meet all inclusion criteria and must not meet exclusion criteria described in section 5.3 and 5.4 of the full protocol), the clinical site must contact a centralized internet randomization system ( https://randomizer.at/ ). Patients are randomized using block randomisation to one of the two arms, experimental arm or standard arm, in a 1:1 ratio considering a stratification according to the 4 risk groups (see Participants). BLINDING (MASKING): The study is open-label, no blinding will be performed. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): A total number of 174 patients is required for the entire trial, n=87 per group. TRIAL STATUS: Protocol version 1.2 dated 09/07/2020. A recruitment period of approximately 9 months and an overall study duration of approximately 12 months is anticipated. Recruitment of patients starts in the third quarter of 2020. The study duration of an individual patient is planned to be 3 months. After finishing all study-relevant procedures, therapy, and follow-up period, the patient is followed in terms of routine care and treated if necessary. Total trial duration: 18 months Duration of the clinical phase: 12 months First patient first visit (FPFV): 3rd Quarter 2020 Last patient first visit (LPFV): 2nd Quarter 2021 Last patient last visit (LPLV): 3rd Quarter 2021 Trial Report completed: 4th Quarter 2021 TRIAL REGISTRATION: EudraCT Number: 2020-001632-10, https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001632-10/DE , registered on 04/04/2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2). The eCRF is attached (Additional file 3).


Subject(s)
Antibodies, Viral/blood , Betacoronavirus , Coronavirus Infections , Pandemics , Plasma/immunology , Pneumonia, Viral , Aged , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , COVID-19 , Clinical Trials, Phase II as Topic , Convalescence , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Female , Humans , Immunization, Passive/methods , Male , Middle Aged , Monitoring, Physiologic/methods , Multicenter Studies as Topic , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Pneumonia, Viral/therapy , Randomized Controlled Trials as Topic , Risk Adjustment , SARS-CoV-2 , Severity of Illness Index
19.
Mol Med ; 26(1): 103, 2020 11 09.
Article in English | MEDLINE | ID: covidwho-1388721

ABSTRACT

The response to viral infection generally includes an activation of the adaptive immune response to produce cytotoxic T cells and neutralizing antibodies. We propose that SARS-CoV-2 activates the innate immune system through the renin-angiotensin and kallikrein-bradykinin pathways, blocks interferon production and reduces an effective adaptive immune response. This model has therapeutic implications.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Immunity, Innate , Pneumonia, Viral/immunology , Animals , Bradykinin/metabolism , COVID-19 , Humans , Kallikreins/metabolism , Models, Immunological , Pandemics , Renin-Angiotensin System , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...