Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 2.141
Filter
2.
Lancet Infect Dis ; 20(11): e276-e288, 2020 11.
Article in English | MEDLINE | ID: covidwho-2062013

ABSTRACT

As severe acute respiratory syndrome coronavirus 2 continues to spread worldwide, there have been increasing reports from Europe, North America, Asia, and Latin America describing children and adolescents with COVID-19-associated multisystem inflammatory conditions. However, the association between multisystem inflammatory syndrome in children and COVID-19 is still unknown. We review the epidemiology, causes, clinical features, and current treatment protocols for multisystem inflammatory syndrome in children and adolescents associated with COVID-19. We also discuss the possible underlying pathophysiological mechanisms for COVID-19-induced inflammatory processes, which can lead to organ damage in paediatric patients who are severely ill. These insights provide evidence for the need to develop a clear case definition and treatment protocol for this new condition and also shed light on future therapeutic interventions and the potential for vaccine development. TRANSLATIONS: For the French, Chinese, Arabic, Spanish and Russian translations of the abstract see Supplementary Materials section.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Systemic Inflammatory Response Syndrome/epidemiology , Systemic Inflammatory Response Syndrome/immunology , Adolescent , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 , Child , Child, Preschool , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Female , Humans , Immunoglobulins, Intravenous/therapeutic use , Infant , Infant, Newborn , Male , Mucocutaneous Lymph Node Syndrome/drug therapy , Mucocutaneous Lymph Node Syndrome/immunology , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Risk Factors , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/drug therapy , Systemic Inflammatory Response Syndrome/virology , Young Adult
3.
EMBO Mol Med ; 12(5): e12481, 2020 05 08.
Article in English | MEDLINE | ID: covidwho-2025763

ABSTRACT

The COVID-19 pandemic has spread to many countries around the world, but the infection and death rates vary widely. One country that appeared to have kept the infection under control despite limited societal restrictions is Japan. This commentary explores why Japan may have, up to now, been spared an escalation of the SARS-CoV-2 infections.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Angiotensin-Converting Enzyme 2 , BCG Vaccine/immunology , COVID-19 , Communicable Disease Control , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Culture , Fatty Acids, Monounsaturated , Genetic Variation , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Japan/epidemiology , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , SARS-CoV-2
6.
Nat Med ; 26(6): 842-844, 2020 06.
Article in English | MEDLINE | ID: covidwho-1900503

ABSTRACT

Respiratory immune characteristics associated with Coronavirus Disease 2019 (COVID-19) severity are currently unclear. We characterized bronchoalveolar lavage fluid immune cells from patients with varying severity of COVID-19 and from healthy people by using single-cell RNA sequencing. Proinflammatory monocyte-derived macrophages were abundant in the bronchoalveolar lavage fluid from patients with severe COVID-9. Moderate cases were characterized by the presence of highly clonally expanded CD8+ T cells. This atlas of the bronchoalveolar immune microenvironment suggests potential mechanisms underlying pathogenesis and recovery in COVID-19.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Single-Cell Analysis , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2
8.
Nat Rev Immunol ; 20(7): 442-447, 2020 07.
Article in English | MEDLINE | ID: covidwho-1830064

ABSTRACT

A male bias in mortality has emerged in the COVID-19 pandemic, which is consistent with the pathogenesis of other viral infections. Biological sex differences may manifest themselves in susceptibility to infection, early pathogenesis, innate viral control, adaptive immune responses or the balance of inflammation and tissue repair in the resolution of infection. We discuss available sex-disaggregated epidemiological data from the COVID-19 pandemic, introduce sex-differential features of immunity and highlight potential sex differences underlying COVID-19 severity. We propose that sex differences in immunopathogenesis will inform mechanisms of COVID-19, identify points for therapeutic intervention and improve vaccine design and increase vaccine efficacy.


Subject(s)
Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Adaptive Immunity , Age Factors , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Female , Humans , Interferons/immunology , Male , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Pneumonia, Viral/physiopathology , SARS-CoV-2 , Severity of Illness Index , Sex Factors , Sociological Factors
11.
Crit Rev Microbiol ; 46(6): 689-702, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1730391

ABSTRACT

Intensive worldwide efforts are underway to determine both the pathogenesis of SARS-CoV-2 infection and the immune responses in COVID-19 patients in order to develop effective therapeutics and vaccines. One type of cell that may contribute to these immune responses is the γδ T lymphocyte, which plays a key role in immunosurveillance of the mucosal and epithelial barriers by rapidly responding to pathogens. Although found in low numbers in blood, γδ T cells consist the majority of tissue-resident T cells and participate in the front line of the host immune defense. Previous studies have demonstrated the critical protective role of γδ T cells in immune responses to other respiratory viruses, including SARS-CoV-1. However, no studies have profoundly investigated these cells in COVID-19 patients to date. γδ T cells can be safely expanded in vivo using existing inexpensive FDA-approved drugs such as bisphosphonate, in order to test its protective immune response to SARS-CoV-2. To support this line of research, we review insights gained from previous coronavirus research, along with recent findings, discussing the potential role of γδ T cells in controlling SARS-CoV-2. We conclude by proposing several strategies to enhance γδ T cell's antiviral function, which may be used in developing therapies for COVID-19.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , T-Lymphocyte Subsets/immunology , Animals , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Virus Replication
12.
Viruses ; 12(5)2020 05 10.
Article in English | MEDLINE | ID: covidwho-1726011

ABSTRACT

The COVID-19 pandemic is due to infection caused by the novel SARS-CoV-2 virus that impacts the lower respiratory tract. The spectrum of symptoms ranges from asymptomatic infections to mild respiratory symptoms to the lethal form of COVID-19 which is associated with severe pneumonia, acute respiratory distress, and fatality. To address this global crisis, up-to-date information on viral genomics and transcriptomics is crucial for understanding the origins and global dispersion of the virus, providing insights into viral pathogenicity, transmission, and epidemiology, and enabling strategies for therapeutic interventions, drug discovery, and vaccine development. Therefore, this review provides a comprehensive overview of COVID-19 epidemiology, genomic etiology, findings from recent transcriptomic map analysis, viral-human protein interactions, molecular diagnostics, and the current status of vaccine and novel therapeutic intervention development. Moreover, we provide an extensive list of resources that will help the scientific community access numerous types of databases related to SARS-CoV-2 OMICs and approaches to therapeutics related to COVID-19 treatment.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/drug therapy , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Genomics , Humans , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , SARS-CoV-2 , Viral Vaccines/immunology
13.
Nutrients ; 12(6)2020 Jun 10.
Article in English | MEDLINE | ID: covidwho-1725886

ABSTRACT

Infection caused by the SARS-CoV-2 coronavirus worldwide has led the World Health Organization to declare a COVID-19 pandemic. Because there is no cure or treatment for this virus, it is emergingly urgent to find effective and validated methods to prevent and treat COVID-19 infection. In this context, alternatives related to nutritional therapy might help to control the infection. This narrative review proposes the importance and role of probiotics and diet as adjunct alternatives among the therapies available for the treatment of this new coronavirus. This review discusses the relationship between intestinal purine metabolism and the use of Lactobacillus gasseri and low-purine diets, particularly in individuals with hyperuricemia, as adjuvant nutritional therapies to improve the immune system and weaken viral replication, assisting in the treatment of COVID-19. These might be promising alternatives, in addition to many others that involve adequate intake of vitamins, minerals and bioactive compounds from food.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/therapy , Diet/methods , Immunomodulation/physiology , Pneumonia, Viral/therapy , Probiotics/therapeutic use , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/microbiology , Humans , Lactobacillus gasseri/immunology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/microbiology , Purines/immunology , Purines/metabolism , SARS-CoV-2 , Virus Replication/immunology
14.
Nutrients ; 12(6)2020 May 27.
Article in English | MEDLINE | ID: covidwho-1725878

ABSTRACT

The coronavirus-disease 2019 (COVID-19) was announced as a global pandemic by the World Health Organization. Challenges arise concerning how to optimally support the immune system in the general population, especially under self-confinement. An optimal immune response depends on an adequate diet and nutrition in order to keep infection at bay. For example, sufficient protein intake is crucial for optimal antibody production. Low micronutrient status, such as of vitamin A or zinc, has been associated with increased infection risk. Frequently, poor nutrient status is associated with inflammation and oxidative stress, which in turn can impact the immune system. Dietary constituents with especially high anti-inflammatory and antioxidant capacity include vitamin C, vitamin E, and phytochemicals such as carotenoids and polyphenols. Several of these can interact with transcription factors such as NF-kB and Nrf-2, related to anti-inflammatory and antioxidant effects, respectively. Vitamin D in particular may perturb viral cellular infection via interacting with cell entry receptors (angiotensin converting enzyme 2), ACE2. Dietary fiber, fermented by the gut microbiota into short-chain fatty acids, has also been shown to produce anti-inflammatory effects. In this review, we highlight the importance of an optimal status of relevant nutrients to effectively reduce inflammation and oxidative stress, thereby strengthening the immune system during the COVID-19 crisis.


Subject(s)
Coronavirus Infections , Diet , Immune System/immunology , Inflammation/immunology , Nutrients/immunology , Oxidative Stress/immunology , Pandemics , Pneumonia, Viral , Antioxidants , Betacoronavirus , COVID-19 , Coronavirus Infections/immunology , Humans , Inflammation/prevention & control , Nutritional Status/immunology , Pneumonia, Viral/immunology , SARS-CoV-2
15.
J Virol ; 94(13)2020 06 16.
Article in English | MEDLINE | ID: covidwho-1723544

ABSTRACT

Genetic variability across the three major histocompatibility complex (MHC) class I genes (human leukocyte antigen A [HLA-A], -B, and -C genes) may affect susceptibility to and severity of the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19). We performed a comprehensive in silico analysis of viral peptide-MHC class I binding affinity across 145 HLA-A, -B, and -C genotypes for all SARS-CoV-2 peptides. We further explored the potential for cross-protective immunity conferred by prior exposure to four common human coronaviruses. The SARS-CoV-2 proteome was successfully sampled and was represented by a diversity of HLA alleles. However, we found that HLA-B*46:01 had the fewest predicted binding peptides for SARS-CoV-2, suggesting that individuals with this allele may be particularly vulnerable to COVID-19, as they were previously shown to be for SARS (M. Lin, H.-T. Tseng, J. A. Trejaut, H.-L. Lee, et al., BMC Med Genet 4:9, 2003, https://bmcmedgenet.biomedcentral.com/articles/10.1186/1471-2350-4-9). Conversely, we found that HLA-B*15:03 showed the greatest capacity to present highly conserved SARS-CoV-2 peptides that are shared among common human coronaviruses, suggesting that it could enable cross-protective T-cell-based immunity. Finally, we reported global distributions of HLA types with potential epidemiological ramifications in the setting of the current pandemic.IMPORTANCE Individual genetic variation may help to explain different immune responses to a virus across a population. In particular, understanding how variation in HLA may affect the course of COVID-19 could help identify individuals at higher risk from the disease. HLA typing can be fast and inexpensive. Pairing HLA typing with COVID-19 testing where feasible could improve assessment of severity of viral disease in the population. Following the development of a vaccine against SARS-CoV-2, the virus that causes COVID-19, individuals with high-risk HLA types could be prioritized for vaccination.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/virology , Histocompatibility Testing/methods , Pneumonia, Viral/virology , Amino Acid Sequence , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Epitopes, T-Lymphocyte/immunology , Genetic Variation , Genotype , Haplotypes , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Immunity, Innate/immunology , Pandemics , Pneumonia, Viral/immunology , SARS-CoV-2 , T-Lymphocytes/immunology
16.
Cell Host Microbe ; 27(6): 879-882.e2, 2020 06 10.
Article in English | MEDLINE | ID: covidwho-1719463

ABSTRACT

The inflammatory response to SARS-coronavirus-2 (SARS-CoV-2) infection is thought to underpin COVID-19 pathogenesis. We conducted daily transcriptomic profiling of three COVID-19 cases and found that the early immune response in COVID-19 patients is highly dynamic. Patient throat swabs were tested daily for SARS-CoV-2, with the virus persisting for 3 to 4 weeks in all three patients. Cytokine analyses of whole blood revealed increased cytokine expression in the single most severe case. However, most inflammatory gene expression peaked after respiratory function nadir, except expression in the IL1 pathway. Parallel analyses of CD4 and CD8 expression suggested that the pro-inflammatory response may be intertwined with T cell activation that could exacerbate disease or prolong the infection. Collectively, these findings hint at the possibility that IL1 and related pro-inflammatory pathways may be prognostic and serve as therapeutic targets for COVID-19. This work may also guide future studies to illuminate COVID-19 pathogenesis and develop host-directed therapies.


Subject(s)
Coronavirus Infections/genetics , Coronavirus Infections/immunology , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Adult , Aged , Biological Variation, Individual , COVID-19 , Cluster Analysis , Coronavirus Infections/blood , Coronavirus Infections/pathology , Cytokines/blood , Gene Expression Regulation , Humans , Male , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/pathology , Transcriptome , Up-Regulation
17.
Brain Behav Immun ; 87: 53-54, 2020 07.
Article in English | MEDLINE | ID: covidwho-1719338

ABSTRACT

While all groups are affected by the COVID-19 pandemic, the elderly, underrepresented minorities, and those with underlying medical conditions are at the greatest risk. The high rate of consumption of diets high in saturated fats, sugars, and refined carbohydrates (collectively called Western diet, WD) worldwide, contribute to the prevalence of obesity and type 2 diabetes, and could place these populations at an increased risk for severe COVID-19 pathology and mortality. WD consumption activates the innate immune system and impairs adaptive immunity, leading to chronic inflammation and impaired host defense against viruses. Furthermore, peripheral inflammation caused by COVID-19 may have long-term consequences in those that recover, leading to chronic medical conditions such as dementia and neurodegenerative disease, likely through neuroinflammatory mechanisms that can be compounded by an unhealthy diet. Thus, now more than ever, wider access to healthy foods should be a top priority and individuals should be mindful of healthy eating habits to reduce susceptibility to and long-term complications from COVID-19.


Subject(s)
Coronavirus Infections/epidemiology , Diabetes Mellitus, Type 2/epidemiology , Diet, Western/statistics & numerical data , Inflammation/epidemiology , Obesity/epidemiology , Pneumonia, Viral/epidemiology , Adaptive Immunity/immunology , Betacoronavirus , COVID-19 , Coronavirus Infections/immunology , Dementia/epidemiology , Dementia/immunology , Diabetes Mellitus, Type 2/immunology , Diet , Disease Susceptibility , Humans , Immunity, Innate/immunology , Inflammation/immunology , Neurodegenerative Diseases/epidemiology , Neurodegenerative Diseases/immunology , Nutritional Status , Obesity/immunology , Pandemics , Pneumonia, Viral/immunology , SARS-CoV-2
18.
Brain Behav Immun ; 87: 34-39, 2020 07.
Article in English | MEDLINE | ID: covidwho-1719335

ABSTRACT

The coronavirus disease 19 (COVID-19) pandemic is a significant psychological stressor in addition to its tremendous impact on every facet of individuals' lives and organizations in virtually all social and economic sectors worldwide. Fear of illness and uncertainty about the future precipitate anxiety- and stress-related disorders, and several groups have rightfully called for the creation and dissemination of robust mental health screening and treatment programs for the general public and front-line healthcare workers. However, in addition to pandemic-associated psychological distress, the direct effects of the virus itself (several acute respiratory syndrome coronavirus; SARS-CoV-2), and the subsequent host immunologic response, on the human central nervous system (CNS) and related outcomes are unknown. We discuss currently available evidence of COVID-19 related neuropsychiatric sequelae while drawing parallels to past viral pandemic-related outcomes. Past pandemics have demonstrated that diverse types of neuropsychiatric symptoms, such as encephalopathy, mood changes, psychosis, neuromuscular dysfunction, or demyelinating processes, may accompany acute viral infection, or may follow infection by weeks, months, or longer in recovered patients. The potential mechanisms are also discussed, including viral and immunological underpinnings. Therefore, prospective neuropsychiatric monitoring of individuals exposed to SARS-CoV-2 at various points in the life course, as well as their neuroimmune status, are needed to fully understand the long-term impact of COVID-19, and to establish a framework for integrating psychoneuroimmunology into epidemiologic studies of pandemics.


Subject(s)
Coronavirus Infections/psychology , Cytokine Release Syndrome/psychology , Mental Disorders/psychology , Nervous System Diseases/psychology , Pneumonia, Viral/psychology , Acute Disease , Anxiety/etiology , Anxiety/immunology , Anxiety/psychology , Bacterial Translocation , Betacoronavirus , COVID-19 , Chronic Disease , Coronavirus Infections/complications , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/therapy , Demyelinating Diseases/etiology , Demyelinating Diseases/immunology , Demyelinating Diseases/physiopathology , Demyelinating Diseases/psychology , Depression/etiology , Depression/immunology , Depression/psychology , Humans , Immunologic Factors/adverse effects , Mental Disorders/etiology , Mental Disorders/immunology , Mental Health , Nervous System Diseases/etiology , Nervous System Diseases/immunology , Nervous System Diseases/physiopathology , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/immunology , Neurodegenerative Diseases/physiopathology , Neurodegenerative Diseases/psychology , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , Pneumonia, Viral/therapy , Psychoneuroimmunology , Psychotic Disorders/etiology , Psychotic Disorders/immunology , Psychotic Disorders/psychology , Public Health , SARS-CoV-2 , Stress Disorders, Post-Traumatic/etiology , Stress Disorders, Post-Traumatic/immunology , Stress Disorders, Post-Traumatic/psychology
20.
Nat Med ; 26(6): 845-848, 2020 06.
Article in English | MEDLINE | ID: covidwho-1641979

ABSTRACT

We report acute antibody responses to SARS-CoV-2 in 285 patients with COVID-19. Within 19 days after symptom onset, 100% of patients tested positive for antiviral immunoglobulin-G (IgG). Seroconversion for IgG and IgM occurred simultaneously or sequentially. Both IgG and IgM titers plateaued within 6 days after seroconversion. Serological testing may be helpful for the diagnosis of suspected patients with negative RT-PCR results and for the identification of asymptomatic infections.


Subject(s)
Antibodies, Viral/blood , Antibody Formation/drug effects , Betacoronavirus/pathogenicity , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adult , Aged , Antibody Formation/immunology , Antiviral Agents/therapeutic use , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/immunology , Coronavirus Infections/virology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Pandemics/prevention & control , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL