Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 5.280
Filter
2.
Infect Control Hosp Epidemiol ; 41(11): 1328-1330, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-2096354

ABSTRACT

Environmental surface testing was performed to search for evidence of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) environmental contamination by an asymptomatic SARS-CoV-2 carrier with persistently high viral loads under isolation. No evidence of environmental contamination was found. Further studies are needed to measure environmental contamination by SARS-CoV-2 carriers and to determine reasonable isolation periods.


Subject(s)
Asymptomatic Infections , Betacoronavirus/isolation & purification , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Fomites/virology , Pneumonia, Viral/diagnosis , Quarantine/methods , Viral Load , Adult , COVID-19 , COVID-19 Testing , Child , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Coronavirus Infections/virology , Female , Humans , Pandemics/prevention & control , Patients' Rooms , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Quarantine/standards , SARS-CoV-2
3.
Ital J Pediatr ; 47(1): 193, 2021 Sep 27.
Article in English | MEDLINE | ID: covidwho-2079517

ABSTRACT

BACKGROUND: The locations where children get exposed to SARS-CoV-2 infection and their contribution in spreading the infection are still not fully understood. Aim of the article is to verify the most frequent reasons for SARS-CoV-2 infection in children and their role in the secondary transmission of the infection. METHODS: A case-control study was performed in all SARS-CoV-2 positive children (n = 81) and an equal number of age- and sex- matched controls who were referred to the S. Camillo-Forlanini Pediatric Walk-in Center of Rome. The results of all SARS-CoV-2 nasopharyngeal swabs performed in children aged < 18 years from October 16 to December 19, 2020 were analyzed. RESULTS: School contacts were more frequent in controls than in cases (OR 0.49; 95% CI: 0.3-0.9), while household contacts were higher in cases (OR 5.09; 95% CI: 2.2-12.0). In both cases and controls, school contacts were significantly less frequent, while on the contrary household contacts seemed to be more frequent in nursery school children compared to primary school or middle/high school children. A multivariate logistic regression showed that the probability of being positive to SARS-CoV-2 was significantly lower in children who had school contacts or who had flu symptoms compared to children who had household contacts. Results showed a 30.6% secondary attack rate for household contacts. CONCLUSION: In our study population, the two most frequent reasons for SARS-CoV-2 infection were school and home contacts. The risk of being positive was 5 times lower in children who had school contacts than in children who had household contacts.


Subject(s)
COVID-19/transmission , Pneumonia, Viral/transmission , Adolescent , Age Factors , Case-Control Studies , Child , Child, Preschool , Female , Humans , Incidence , Infant , Infant, Newborn , Italy , Male , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Surveys and Questionnaires
4.
Nature ; 586(7831): 776-778, 2020 10.
Article in English | MEDLINE | ID: covidwho-2077076

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in Wuhan in December 2019 and caused coronavirus disease 2019 (COVID-19)1,2. In 2003, the closely related SARS-CoV had been detected in domestic cats and a dog3. However, little is known about the susceptibility of domestic pet mammals to SARS-CoV-2. Here, using PCR with reverse transcription, serology, sequencing the viral genome and virus isolation, we show that 2 out of 15 dogs from households with confirmed human cases of COVID-19 in Hong Kong were found to be infected with SARS-CoV-2. SARS-CoV-2 RNA was detected in five nasal swabs collected over a 13-day period from a 17-year-old neutered male Pomeranian. A 2.5-year-old male German shepherd was positive for SARS-CoV-2 RNA on two occasions and virus was isolated from nasal and oral swabs. Antibody responses were detected in both dogs using plaque-reduction-neutralization assays. Viral genetic sequences of viruses from the two dogs were identical to the virus detected in the respective human cases. The dogs remained asymptomatic during quarantine. The evidence suggests that these are instances of human-to-animal transmission of SARS-CoV-2. It is unclear whether infected dogs can transmit the virus to other animals or back to humans.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/transmission , Coronavirus Infections/veterinary , Dog Diseases/transmission , Dog Diseases/virology , Pandemics/veterinary , Pneumonia, Viral/transmission , Pneumonia, Viral/veterinary , Zoonoses/transmission , Zoonoses/virology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Dogs , Female , Hong Kong/epidemiology , Humans , Male , Middle Aged , Peptidyl-Dipeptidase A/metabolism , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Receptors, Virus/metabolism , SARS-CoV-2 , Time Factors
5.
Lancet Infect Dis ; 20(11): e276-e288, 2020 11.
Article in English | MEDLINE | ID: covidwho-2062013

ABSTRACT

As severe acute respiratory syndrome coronavirus 2 continues to spread worldwide, there have been increasing reports from Europe, North America, Asia, and Latin America describing children and adolescents with COVID-19-associated multisystem inflammatory conditions. However, the association between multisystem inflammatory syndrome in children and COVID-19 is still unknown. We review the epidemiology, causes, clinical features, and current treatment protocols for multisystem inflammatory syndrome in children and adolescents associated with COVID-19. We also discuss the possible underlying pathophysiological mechanisms for COVID-19-induced inflammatory processes, which can lead to organ damage in paediatric patients who are severely ill. These insights provide evidence for the need to develop a clear case definition and treatment protocol for this new condition and also shed light on future therapeutic interventions and the potential for vaccine development. TRANSLATIONS: For the French, Chinese, Arabic, Spanish and Russian translations of the abstract see Supplementary Materials section.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Systemic Inflammatory Response Syndrome/epidemiology , Systemic Inflammatory Response Syndrome/immunology , Adolescent , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 , Child , Child, Preschool , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Female , Humans , Immunoglobulins, Intravenous/therapeutic use , Infant , Infant, Newborn , Male , Mucocutaneous Lymph Node Syndrome/drug therapy , Mucocutaneous Lymph Node Syndrome/immunology , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Risk Factors , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/drug therapy , Systemic Inflammatory Response Syndrome/virology , Young Adult
10.
Nat Med ; 26(6): 842-844, 2020 06.
Article in English | MEDLINE | ID: covidwho-1900503

ABSTRACT

Respiratory immune characteristics associated with Coronavirus Disease 2019 (COVID-19) severity are currently unclear. We characterized bronchoalveolar lavage fluid immune cells from patients with varying severity of COVID-19 and from healthy people by using single-cell RNA sequencing. Proinflammatory monocyte-derived macrophages were abundant in the bronchoalveolar lavage fluid from patients with severe COVID-9. Moderate cases were characterized by the presence of highly clonally expanded CD8+ T cells. This atlas of the bronchoalveolar immune microenvironment suggests potential mechanisms underlying pathogenesis and recovery in COVID-19.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Single-Cell Analysis , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2
11.
Knee Surg Sports Traumatol Arthrosc ; 28(6): 1705-1711, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-1826407

ABSTRACT

PURPOSE: Due to the lack of evidence, it was the aim of the study to investigate current possible cutbacks in orthopaedic healthcare due to the coronavirus disease 2019 pandemic (COVID-19). METHODS: An online survey was performed of orthopaedic surgeons in the German-speaking Arthroscopy Society (Gesellschaft für Arthroskopie und Gelenkchirurgie, AGA). The survey consisted of 20 questions concerning four topics: four questions addressed the origin and surgical experience of the participant, 12 questions dealt with potential cutbacks in orthopaedic healthcare and 4 questions addressed the influence of the pandemic on the particular surgeon. RESULTS: Of 4234 contacted orthopaedic surgeons, 1399 responded. Regarding arthroscopic procedures between 10 and 30% of the participants stated that these were still being performed-with actual percentages depending on the specific joint and procedure. Only 6.2% of the participants stated that elective total joint arthroplasty was still being performed at their centre. In addition, physical rehabilitation and surgeons' postoperative follow-ups were severely affected. CONCLUSION: Orthopaedic healthcare services in Austria, Germany, and Switzerland are suffering a drastic cutback due to COVID-19. A drastic reduction in arthroscopic procedures like rotator cuff repair and cruciate ligament reconstruction and an almost total shutdown of elective total joint arthroplasty were reported. Long-term consequences cannot be predicted yet. The described disruption in orthopaedic healthcare services has to be viewed as historic. LEVEL OF EVIDENCE: V.


Subject(s)
Coronavirus Infections/epidemiology , Delivery of Health Care/statistics & numerical data , Elective Surgical Procedures/statistics & numerical data , Orthopedic Procedures/statistics & numerical data , Orthopedics/statistics & numerical data , Pneumonia, Viral/epidemiology , Aftercare/statistics & numerical data , Arthroplasty/statistics & numerical data , Arthroscopy/statistics & numerical data , Austria/epidemiology , Betacoronavirus , COVID-19 , Coronavirus Infections/virology , Germany/epidemiology , Health Care Surveys , Humans , Internet , Male , Pandemics/statistics & numerical data , Pneumonia, Viral/virology , Rehabilitation/statistics & numerical data , SARS-CoV-2 , Switzerland/epidemiology
12.
MCN Am J Matern Child Nurs ; 46(2): 103-109, 2021.
Article in English | MEDLINE | ID: covidwho-1816330

ABSTRACT

ABSTRACT: The COVID-19 pandemic led to several states mandating social distancing and sheltering in place along with a shift in health care delivery, unprecedented unemployment rates, financial stress, and emotional concerns. For pregnant and postpartum women, limited social support and social isolation with social distancing and fear of COVID-19 exposure or infection for themselves, their fetus, or their newborn infants, have implications for maternal mental health. An overview of the potential impact of COVID-19 on mental health risk for pregnant and postpartum women is presented with implications for nursing practice to promote maternal-infant wellbeing.


Subject(s)
COVID-19/epidemiology , Mental Health , Postpartum Period/psychology , Pregnant Women/psychology , Women's Health , Adult , Female , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/virology , SARS-CoV-2 , Social Support
15.
Crit Rev Microbiol ; 46(6): 689-702, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1730391

ABSTRACT

Intensive worldwide efforts are underway to determine both the pathogenesis of SARS-CoV-2 infection and the immune responses in COVID-19 patients in order to develop effective therapeutics and vaccines. One type of cell that may contribute to these immune responses is the γδ T lymphocyte, which plays a key role in immunosurveillance of the mucosal and epithelial barriers by rapidly responding to pathogens. Although found in low numbers in blood, γδ T cells consist the majority of tissue-resident T cells and participate in the front line of the host immune defense. Previous studies have demonstrated the critical protective role of γδ T cells in immune responses to other respiratory viruses, including SARS-CoV-1. However, no studies have profoundly investigated these cells in COVID-19 patients to date. γδ T cells can be safely expanded in vivo using existing inexpensive FDA-approved drugs such as bisphosphonate, in order to test its protective immune response to SARS-CoV-2. To support this line of research, we review insights gained from previous coronavirus research, along with recent findings, discussing the potential role of γδ T cells in controlling SARS-CoV-2. We conclude by proposing several strategies to enhance γδ T cell's antiviral function, which may be used in developing therapies for COVID-19.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , T-Lymphocyte Subsets/immunology , Animals , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Virus Replication
16.
Ann Intern Med ; 174(5): 649-654, 2021 05.
Article in English | MEDLINE | ID: covidwho-1726736

ABSTRACT

BACKGROUND: Identifying occupational risk factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among health care workers (HCWs) can improve HCW and patient safety. OBJECTIVE: To quantify demographic, occupational, and community risk factors for SARS-CoV-2 seropositivity among HCWs in a large health care system. DESIGN: A logistic regression model was fitted to data from a cross-sectional survey conducted in April to June 2020, linking risk factors for occupational and community exposure to coronavirus disease 2019 (COVID-19) with SARS-CoV-2 seropositivity. SETTING: A large academic health care system in the Atlanta, Georgia, metropolitan area. PARTICIPANTS: Employees and medical staff members elected to participate in SARS-CoV-2 serology testing offered to all HCWs as part of a quality initiative and completed a survey on exposure to COVID-19 and use of personal protective equipment. MEASUREMENTS: Demographic risk factors for COVID-19, residential ZIP code incidence of COVID-19, occupational exposure to HCWs or patients who tested positive on polymerase chain reaction test, and use of personal protective equipment as potential risk factors for infection. The outcome was SARS-CoV-2 seropositivity. RESULTS: Adjusted SARS-CoV-2 seropositivity was estimated to be 3.8% (95% CI, 3.4% to 4.3%) (positive, n = 582) among the 10 275 HCWs (35% of the Emory Healthcare workforce) who participated in the survey. Community contact with a person known or suspected to have COVID-19 (adjusted odds ratio [aOR], 1.9 [CI, 1.4 to 2.6]; 77 positive persons [10.3%]) and community COVID-19 incidence (aOR, 1.5 [CI, 1.0 to 2.2]) increased the odds of infection. Black individuals were at high risk (aOR, 2.1 [CI, 1.7 to 2.6]; 238 positive persons [8.3%]). LIMITATIONS: Participation rates were modest and key workplace exposures, including job and infection prevention practices, changed rapidly in the early phases of the pandemic. CONCLUSION: Demographic and community risk factors, including contact with a COVID-19-positive person and Black race, are more strongly associated with SARS-CoV-2 seropositivity among HCWs than is exposure in the workplace. PRIMARY FUNDING SOURCE: Emory COVID-19 Response Collaborative.


Subject(s)
COVID-19/epidemiology , Health Personnel , Infectious Disease Transmission, Patient-to-Professional , Occupational Diseases/epidemiology , Occupational Exposure/adverse effects , Pneumonia, Viral/epidemiology , Adult , COVID-19/ethnology , Cross-Sectional Studies , Female , Georgia/epidemiology , Humans , Male , Middle Aged , Occupational Diseases/ethnology , Pandemics , Personal Protective Equipment , Pneumonia, Viral/ethnology , Pneumonia, Viral/virology , Risk Factors , SARS-CoV-2 , Surveys and Questionnaires , United States/epidemiology
17.
Viruses ; 12(6)2020 06 25.
Article in English | MEDLINE | ID: covidwho-1726024

ABSTRACT

The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide has highlighted the importance of reliable and rapid diagnostic testing to prevent and control virus circulation. Dozens of monoplex in-house RT-qPCR assays are already available; however, the development of dual-target assays is suited to avoid false-negative results caused by polymorphisms or point mutations, that can compromise the accuracy of diagnostic and screening tests. In this study, two mono-target assays recommended by WHO (E-Sarbeco (enveloppe gene, Charite University, Berlin, Germany) and RdRp-IP4 (RdRp, Institut Pasteur, Paris, France)) were selected and combined in a unique robust test; the resulting duo SARS-CoV-2 RT-qPCR assay was compared to the two parental monoplex tests. The duo SARS-CoV-2 assay performed equally, or better, in terms of sensitivity, specificity, linearity and signal intensity. We demonstrated that combining two single systems into a dual-target assay (with or without an MS2-based internal control) did not impair performances, providing a potent tool adapted for routine molecular diagnosis in clinical microbiology laboratories.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , RNA-Dependent RNA Polymerase/genetics , Real-Time Polymerase Chain Reaction/methods , Viral Envelope Proteins/genetics , Viral Nonstructural Proteins/genetics , Betacoronavirus/genetics , COVID-19 , Coronavirus Envelope Proteins , Coronavirus Infections/virology , Coronavirus RNA-Dependent RNA Polymerase , Humans , Pandemics , Pneumonia, Viral/virology , RNA, Viral/analysis , SARS-CoV-2 , Sensitivity and Specificity , World Health Organization
18.
Viruses ; 12(6)2020 06 10.
Article in English | MEDLINE | ID: covidwho-1726021

ABSTRACT

The ongoing Coronavirus Disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) signals an urgent need for an expansion in treatment options. In this study, we investigated the anti-SARS-CoV-2 activities of 22 antiviral agents with known broad-spectrum antiviral activities against coronaviruses and/or other viruses. They were first evaluated in our primary screening in VeroE6 cells and then the most potent anti-SARS-CoV-2 antiviral agents were further evaluated using viral antigen expression, viral load reduction, and plaque reduction assays. In addition to remdesivir, lopinavir, and chloroquine, our primary screening additionally identified types I and II recombinant interferons, 25-hydroxycholesterol, and AM580 as the most potent anti-SARS-CoV-2 agents among the 22 antiviral agents. Betaferon (interferon-ß1b) exhibited the most potent anti-SARS-CoV-2 activity in viral antigen expression, viral load reduction, and plaque reduction assays among the recombinant interferons. The lipogenesis modulators 25-hydroxycholesterol and AM580 exhibited EC50 at low micromolar levels and selectivity indices of >10.0. Combinational use of these host-based antiviral agents with virus-based antivirals to target different processes of the SARS-CoV-2 replication cycle should be evaluated in animal models and/or clinical trials.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Animals , Antigens, Viral/immunology , Betacoronavirus/immunology , Betacoronavirus/metabolism , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/virology , Humans , Interferons/metabolism , Lipogenesis/drug effects , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Signal Transduction/drug effects , Vero Cells , Viral Load/drug effects , Viral Plaque Assay , Virus Replication/drug effects
19.
Viruses ; 12(6)2020 06 08.
Article in English | MEDLINE | ID: covidwho-1726020

ABSTRACT

Clinical samples collected in coronavirus disease 19 (COVID-19), patients are commonly manipulated in biosafety level 2 laboratories for molecular diagnostic purposes. Here, we tested French norm NF-EN-14476+A2 derived from European standard EN-14885 to assess the risk of manipulating infectious viruses prior to RNA extraction. SARS-CoV-2 cell-culture supernatant and nasopharyngeal samples (virus-spiked samples and clinical samples collected in COVID-19 patients) were used to measure the reduction of infectivity after 10 minute contact with lysis buffer containing various detergents and chaotropic agents. A total of thirteen protocols were evaluated. Two commercially available formulations showed the ability to reduce infectivity by at least 6 log 10, whereas others proved less effective.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/virology , Pneumonia, Viral/virology , Virus Inactivation/drug effects , Animals , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Betacoronavirus/physiology , COVID-19 , Cell Culture Techniques/methods , Chlorocebus aethiops , Containment of Biohazards/methods , Containment of Biohazards/standards , Humans , Nasopharynx/virology , Pandemics , RNA, Viral/isolation & purification , SARS-CoV-2 , Specimen Handling/methods , Vero Cells , Viral Load/methods
20.
Viruses ; 12(5)2020 04 26.
Article in English | MEDLINE | ID: covidwho-1726007

ABSTRACT

In January 2020, Chinese health agencies reported an outbreak of a novel coronavirus-2 (CoV-2) which can lead to severe acute respiratory syndrome (SARS). The virus, which belongs to the coronavirus family (SARS-CoV-2), was named coronavirus disease 2019 (COVID-19) and declared a pandemic by the World Health Organization (WHO). Full-length genome sequences of SARS-CoV-2 showed 79.6% sequence identity to SARS-CoV, with 96% identity to a bat coronavirus at the whole-genome level. COVID-19 has caused over 133,000 deaths and there are over 2 million total confirmed cases as of April 15th, 2020. Current treatment plans are still under investigation due to a lack of understanding of COVID-19. One potential mechanism to slow disease progression is the use of antiviral drugs to either block the entry of the virus or interfere with viral replication and maturation. Currently, antiviral drugs, including chloroquine/hydroxychloroquine, remdesivir, and lopinavir/ritonavir, have shown effective inhibition of SARS-CoV-2 in vitro. Due to the high dose needed and narrow therapeutic window, many patients are experiencing severe side effects with the above drugs. Hence, repurposing these drugs with a proper formulation is needed to improve the safety and efficacy for COVID-19 treatment. Extracellular vesicles (EVs) are a family of natural carriers in the human body. They play a critical role in cell-to-cell communications. EVs can be used as unique drug carriers to deliver protease inhibitors to treat COVID-19. EVs may provide targeted delivery of protease inhibitors, with fewer systemic side effects. More importantly, EVs are eligible for major aseptic processing and can be upscaled for mass production. Currently, the FDA is facilitating applications to treat COVID-19, which provides a very good chance to use EVs to contribute in this combat.


Subject(s)
Coronavirus Infections/drug therapy , Drug Repositioning , Extracellular Vesicles/chemistry , HIV Protease Inhibitors/administration & dosage , Pneumonia, Viral/drug therapy , Betacoronavirus/genetics , Betacoronavirus/metabolism , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Drug Approval , Drug Delivery Systems , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL