Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
Add filters

Document Type
Year range
1.
PLoS One ; 16(11): e0259910, 2021.
Article in English | MEDLINE | ID: covidwho-1581787

ABSTRACT

BACKGROUND: Clinical observations have shown that there is a relationship between coronavirus disease 2019 (COVID-19) and atypical lymphocytes in the peripheral blood; however, knowledge about the time course of the changes in atypical lymphocytes and the association with the clinical course of COVID-19 is limited. OBJECTIVE: Our purposes were to investigate the dynamics of atypical lymphocytes in COVID-19 patients and to estimate their clinical significance for diagnosis and monitoring disease course. MATERIALS AND METHODS: We retrospectively identified 98 inpatients in a general ward at Kashiwa Municipal Hospital from May 1st, 2020, to October 31st, 2020. We extracted data on patient demographics, symptoms, comorbidities, blood test results, radiographic findings, treatment after admission and clinical course. We compared clinical findings between patients with and without atypical lymphocytes, investigated the behavior of atypical lymphocytes throughout the clinical course of COVID-19, and determined the relationships among the development of pneumonia, the use of supplemental oxygen and the presence of atypical lymphocytes. RESULTS: Patients with atypical lymphocytes had a significantly higher prevalence of pneumonia (80.4% vs. 42.6%, p < 0.0001) and the use of supplemental oxygen (25.5% vs. 4.3%, p = 0.0042). The median time to the appearance of atypical lymphocytes after disease onset was eight days, and atypical lymphocytes were observed in 16/98 (16.3%) patients at the first visit. Atypical lymphocytes appeared after the confirmation of lung infiltrates in 31/41 (75.6%) patients. Of the 13 oxygen-treated patients with atypical lymphocytes, approximately two-thirds had a stable or improved clinical course after the appearance of atypical lymphocytes. CONCLUSION: Atypical lymphocytes frequently appeared in the peripheral blood of COVID-19 patients one week after disease onset. Patients with atypical lymphocytes were more likely to have pneumonia and to need supplemental oxygen; however, two-thirds of them showed clinical improvement after the appearance of atypical lymphocytes.


Subject(s)
COVID-19/diagnosis , Leukocyte Disorders/diagnosis , Pneumonia/diagnosis , Respiratory Tract Infections/diagnosis , Adult , COVID-19/complications , COVID-19/epidemiology , COVID-19/virology , Female , Hospitalization , Humans , Intensive Care Units , Leukocyte Disorders/complications , Leukocyte Disorders/epidemiology , Leukocyte Disorders/virology , Leukocytes, Mononuclear/pathology , Lymphocytes/pathology , Male , Middle Aged , Oxygen/blood , Pneumonia/blood , Pneumonia/epidemiology , Pneumonia/virology , Respiratory Tract Infections/complications , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , SARS-CoV-2/pathogenicity
2.
PLoS One ; 16(11): e0259732, 2021.
Article in English | MEDLINE | ID: covidwho-1518359

ABSTRACT

Mesenchymal stem cell derived extracellular vesicles (MSC-EVs) are bioactive particles that evoke beneficial responses in recipient cells. We identified a role for MSC-EV in immune modulation and cellular salvage in a model of SARS-CoV-2 induced acute lung injury (ALI) using pulmonary epithelial cells and exposure to cytokines or the SARS-CoV-2 receptor binding domain (RBD). Whereas RBD or cytokine exposure caused a pro-inflammatory cellular environment and injurious signaling, impairing alveolar-capillary barrier function, and inducing cell death, MSC-EVs reduced inflammation and reestablished target cell health. Importantly, MSC-EV treatment increased active ACE2 surface protein compared to RBD injury, identifying a previously unknown role for MSC-EV treatment in COVID-19 signaling and pathogenesis. The beneficial effect of MSC-EV treatment was confirmed in an LPS-induced rat model of ALI wherein MSC-EVs reduced pro-inflammatory cytokine secretion and respiratory dysfunction associated with disease. MSC-EV administration was dose-responsive, demonstrating a large effective dose range for clinical translation. These data provide direct evidence of an MSC-EV-mediated improvement in ALI and contribute new insights into the therapeutic potential of MSC-EVs in COVID-19 or similar pathologies of respiratory distress.


Subject(s)
Acute Lung Injury/complications , Acute Lung Injury/virology , COVID-19/pathology , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Pneumonia/complications , Pneumonia/virology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Disease Models, Animal , Extracellular Vesicles/ultrastructure , Humans , Immunomodulation , Male , Models, Biological , Pneumonia/pathology , Rats, Sprague-Dawley , SARS-CoV-2/physiology , Signal Transduction , THP-1 Cells
3.
Biomed Res Int ; 2021: 1896762, 2021.
Article in English | MEDLINE | ID: covidwho-1511530

ABSTRACT

The proposed method introduces algorithms for the preprocessing of normal, COVID-19, and pneumonia X-ray lung images which promote the accuracy of classification when compared with raw (unprocessed) X-ray lung images. Preprocessing of an image improves the quality of an image increasing the intersection over union scores in segmentation of lungs from the X-ray images. The authors have implemented an efficient preprocessing and classification technique for respiratory disease detection. In this proposed method, the histogram of oriented gradients (HOG) algorithm, Haar transform (Haar), and local binary pattern (LBP) algorithm were applied on lung X-ray images to extract the best features and segment the left lung and right lung. The segmentation of lungs from the X-ray can improve the accuracy of results in COVID-19 detection algorithms or any machine/deep learning techniques. The segmented lungs are validated over intersection over union scores to compare the algorithms. The preprocessed X-ray image results in better accuracy in classification for all three classes (normal/COVID-19/pneumonia) than unprocessed raw images. VGGNet, AlexNet, Resnet, and the proposed deep neural network were implemented for the classification of respiratory diseases. Among these architectures, the proposed deep neural network outperformed the other models with better classification accuracy.


Subject(s)
COVID-19/pathology , COVID-19/virology , Image Processing, Computer-Assisted/methods , Lung/pathology , Lung/virology , Algorithms , Deep Learning , Expert Systems , Humans , Machine Learning , Pneumonia/pathology , Pneumonia/virology , X-Rays
4.
Ann Clin Microbiol Antimicrob ; 20(1): 69, 2021 Sep 25.
Article in English | MEDLINE | ID: covidwho-1438275

ABSTRACT

BACKGROUND: Coronavirus SARS-CoV-2 causes COVID-19 illness which can progress to severe pneumonia. Empiric antibacterials are often employed though frequency of bacterial coinfection superinfection is debated and concerns raised about selection of bacterial antimicrobial resistance. We evaluated sputum bacterial and fungal growth from 165 intubated COVID-19 pneumonia patients. Objectives were to determine frequency of culture positivity, risk factors for and outcomes of positive cultures, and timing of antimicrobial resistance development. METHODS: Retrospective reviews were conducted of COVID-19 pneumonia patients requiring intubation admitted to a 1058-bed four community hospital system on the east coast United States, March 1 to May 1, 2020. Length of stay (LOS) was expressed as mean (standard deviation); 95% confidence interval (95% CI) was computed for overall mortality rate using the exact binomial method, and overall mortality was compared across each level of a potential risk factor using a Chi-Square Test of Independence. All tests were two-sided, and significance level was set to 0.05. RESULTS: Average patient age was 68.7 years and LOS 19.9 days. Eighty-three patients (50.3% of total) originated from home, 10 from group homes (6.1% of total), and 72 from nursing facilities (43.6% of total). Mortality was 62.4%, highest for nursing home residents (80.6%). Findings from 253 sputum cultures overall did not suggest acute bacterial or fungal infection in 73 (45%) of 165 individuals sampled within 24 h of intubation. Cultures ≥ 1 week following intubation did grow potential pathogens in 72 (64.9%) of 111 cases with 70.8% consistent with late pneumonia and 29.2% suggesting colonization. Twelve (10.8% of total) of these late post-intubation cultures revealed worsened antimicrobial resistance predominantly in Pseudomonas, Enterobacter, or Staphylococcus aureus. CONCLUSIONS: In severe COVID-19 pneumonia, a radiographic ground glass interstitial pattern and lack of purulent sputum prior to/around the time of intubation correlated with no culture growth or recovery of normal oral flora ± yeast. Discontinuation of empiric antibacterials should be considered in these patients aided by other clinical findings, history of prior antimicrobials, laboratory testing, and overall clinical course. Continuing longterm hospitalisation and antibiotics are associated with sputum cultures reflective of hospital-acquired microbes and increasing antimicrobial resistance. TRIAL REGISTRATION: Not applicable as this was a retrospective chart review study without interventional arm.


Subject(s)
Bacteria/drug effects , Bacterial Infections/complications , COVID-19/therapy , Cross Infection/complications , Fungi/drug effects , Mycoses/complications , Pneumonia/therapy , Sputum/microbiology , Adult , Aged , Aged, 80 and over , Anti-Bacterial Agents , Anti-Infective Agents/pharmacology , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , COVID-19/complications , COVID-19/mortality , COVID-19/virology , Cross Infection/drug therapy , Cross Infection/microbiology , Drug Resistance, Bacterial , Drug Resistance, Multiple, Fungal , Female , Fungi/genetics , Fungi/isolation & purification , Hospitalization , Humans , Intubation , Length of Stay , Male , Middle Aged , Mycoses/microbiology , Pneumonia/complications , Pneumonia/mortality , Pneumonia/virology , Retrospective Studies , SARS-CoV-2/physiology
5.
Respir Med ; 188: 106619, 2021 11.
Article in English | MEDLINE | ID: covidwho-1415764

ABSTRACT

BACKGROUND: Invasive fungal infections (IFI) are increasing in prevalence in recent years. In the last few months, the rise of COVID-19 patients has generated a new escalation in patients presenting opportunistic mycoses, mainly by Aspergillus. Candida infections are not being reported yet. OBJECTIVES: We aimed to determine the prevalence of systemic candidiasis in patients admitted to ICUs due to severe pneumonia secondary to SARS-CoV-2 infection and the existence of possible associated risk factors that led these patients to develop candidiasis. PATIENTS/METHODS: We designed a study including patients with a confirmed diagnosis of COVID-19. RESULTS: The prevalence of systemic candidiasis was 14.4%, and the main isolated species were C. albicans and C. parapsilosis. All patients that were tested positive for Candida spp. stayed longer in the ICU in comparison to patients who tested negative. Patients with candidiasis had higher MuLBSTA score and mortality rates and a worse radiological involvement. In our study, Candida spp. isolates were found in patients that were submitted to: tocilizumab, tocilizumab plus systemic steroids, interferon type 1ß and Lopinavir-Ritonavir. CONCLUSIONS: Results suggested a high prevalence of systemic candidiasis in severe COVID-19-associated pneumonia patients. Patients with Candidiasis had the worst clinical outcomes. Treatment with tocilizumab could potentialize the risk to develop systemic candidiasis.


Subject(s)
COVID-19/complications , Candidiasis/epidemiology , Coinfection/epidemiology , Pneumonia/epidemiology , Aged , COVID-19/diagnosis , Candida albicans , Candida parapsilosis , Candidiasis/complications , Candidiasis/diagnosis , Coinfection/diagnosis , Critical Care , Female , Humans , Male , Middle Aged , Pneumonia/microbiology , Pneumonia/virology , Prevalence , Prospective Studies , Risk Factors
6.
Microb Drug Resist ; 27(9): 1167-1175, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1406451

ABSTRACT

Background: The aim of this study was to assess the drivers of multidrug-resistant (MDR) bacterial infection development in coronavirus disease 2019 (COVID-19) and its impact on patient outcome. Methods: Retrospective analysis on data from 32 consecutive patients with COVID-19, admitted to our intensive care unit (ICU) from March to May 2020. Outcomes considered were MDR infection and ICU mortality. Results: Fifty percent of patients developed an MDR infection during ICU stay after a median time of 8 [4-11] days. Most common MDR pathogens were carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii, causing bloodstream infections and pneumonia. MDR infections were linked to a higher length of ICU stay (p = 0.002), steroid therapy (p = 0.011), and associated with a lower ICU mortality (odds ratio: 0.439, 95% confidence interval: 0.251-0.763; p < 0.001). Low-dose aspirin intake was associated with both MDR infection (p = 0.043) and survival (p = 0.015). Among MDR patients, mortality was related with piperacillin-tazobactam use (p = 0.035) and an earlier onset of MDR infection (p = 0.042). Conclusions: MDR infections were a common complication in critically ill COVID-19 patients at our center. MDR risk was higher among those dwelling longer in the ICU and receiving steroids. However, MDR infections were not associated with a worse outcome.


Subject(s)
Acinetobacter Infections/mortality , COVID-19/mortality , Drug Resistance, Multiple, Bacterial , Klebsiella Infections/mortality , Opportunistic Infections/mortality , Pneumonia/mortality , SARS-CoV-2/pathogenicity , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Acinetobacter Infections/virology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/growth & development , Acinetobacter baumannii/pathogenicity , Adult , Aged , Anti-Bacterial Agents/therapeutic use , Aspirin/therapeutic use , COVID-19/drug therapy , COVID-19/microbiology , COVID-19/virology , Carbapenems/therapeutic use , Critical Illness , Female , Hospital Mortality , Humans , Intensive Care Units , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella Infections/virology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/growth & development , Klebsiella pneumoniae/pathogenicity , Length of Stay/statistics & numerical data , Male , Middle Aged , Opportunistic Infections/drug therapy , Opportunistic Infections/microbiology , Opportunistic Infections/virology , Piperacillin, Tazobactam Drug Combination/therapeutic use , Pneumonia/drug therapy , Pneumonia/microbiology , Pneumonia/virology , Retrospective Studies , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Steroids/therapeutic use , Survival Analysis , Treatment Outcome
7.
ASAIO J ; 67(9): 982-988, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1393493

ABSTRACT

A significant proportion of patients with COVID-19 develop acute respiratory distress syndrome (ARDS) with high risk of death. The efficacy of veno-venous extracorporeal membrane oxygenation (VV-ECMO) for COVID-19 on longer-term outcomes, unlike in other viral pneumonias, is unknown. In this study, we aimed to compare the 6 month mortality of patients receiving VV-ECMO support for COVID-19 with a historical viral ARDS cohort. Fifty-three consecutive patients with COVID-19 ARDS admitted for VV-ECMO to the Royal Brompton Hospital between March 17, 2020 and May 30, 2020 were identified. Mortality, patient characteristics, complications, and ECMO parameters were then compared to a historical cohort of patients with non-COVID-19 viral pneumonia. At 6 months survival was significantly higher in the COVID-19 than in the non-COVID-19 viral pneumonia cohort (84.9% vs. 66.0%, p = 0.040). Patients with COVID-19 had an increased Murray score (3.50 vs. 3.25, p = 0.005), a decreased burden of organ dysfunction (sequential organ failure score score [8.76 vs. 10.42, p = 0.004]), an increased incidence of pulmonary embolism (69.8% vs. 24.5%, p < 0.001) and in those who survived to decannulation longer ECMO runs (19 vs. 11 days, p = 0.001). Our results suggest that survival in patients supported with EMCO for COVID-19 are at least as good as those treated for non-COVID-19 viral ARDS.


Subject(s)
COVID-19/mortality , Extracorporeal Membrane Oxygenation/adverse effects , Pneumonia/mortality , Respiratory Distress Syndrome/therapy , Adult , Aged , Female , Humans , Male , Middle Aged , Pneumonia/virology , Retrospective Studies , SARS-CoV-2 , Treatment Outcome
10.
J Med Virol ; 93(9): 5425-5431, 2021 09.
Article in English | MEDLINE | ID: covidwho-1363680

ABSTRACT

A rapid outbreak of novel coronavirus, coronavirus disease-2019 (COVID-19), has made it a global pandemic. This study focused on the possible association between lymphopenia and computed tomography (CT) scan features and COVID-19 patient mortality. The clinical data of 596 COVID-19 patients were collected from February 2020 to September 2020. The patients' serological survey and CT scan features were retrospectively explored. The median age of the patients was 56.7 ± 16.4 years old. Lung involvement was more than 50% in 214 COVID-19 patients (35.9%). The average blood lymphocyte percentage was 20.35 ± 10.16 (normal range, 20%-50%). Although the levels of C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) were high in more than 80% of COVID-19 patients; CRP, ESR, and platelet-to-lymphocyte ratio (PLR) may not indicate the in-hospital mortality of COVID-19. Patients with severe lung involvement and lymphopenia were found to be significantly associated with increased odds of death (odds ratio, 9.24; 95% confidence interval, 4.32-19.78). These results indicated that lymphopenia < 20% along with pulmonary involvement >50% impose a multiplicative effect on the risk of mortality. The in-hospital mortality rate of this group was significantly higher than other COVID-19 hospitalized cases. Furthermore, they meaningfully experienced a prolonged stay in the hospital (p = .00). Lymphocyte count less than 20% and chest CT scan findings with more than 50% involvement might be related to the patient's mortality. These could act as laboratory and clinical indicators of disease severity, mortality, and outcome.


Subject(s)
COVID-19/complications , Lung/pathology , Lymphopenia/complications , Pneumonia/complications , SARS-CoV-2/pathogenicity , Adult , Aged , Biomarkers/blood , Blood Platelets/pathology , Blood Platelets/virology , Blood Sedimentation , C-Reactive Protein , COVID-19/diagnostic imaging , COVID-19/mortality , COVID-19/virology , Female , Hospital Mortality , Humans , Iran , Lung/virology , Lymphocytes/pathology , Lymphocytes/virology , Lymphopenia/diagnostic imaging , Lymphopenia/mortality , Lymphopenia/virology , Male , Middle Aged , Pneumonia/diagnostic imaging , Pneumonia/mortality , Pneumonia/virology , Retrospective Studies , Severity of Illness Index , Survival Analysis , Tomography, X-Ray Computed
11.
Cells ; 10(8)2021 07 29.
Article in English | MEDLINE | ID: covidwho-1339532

ABSTRACT

Neutrophils act as the first line of defense during infection and inflammation. Once activated, they are able to fulfil numerous tasks to fight inflammatory insults while keeping a balanced immune response. Besides well-known functions, such as phagocytosis and degranulation, neutrophils are also able to release "neutrophil extracellular traps" (NETs). In response to most stimuli, the neutrophils release decondensed chromatin in a NADPH oxidase-dependent manner decorated with histones and granule proteins, such as neutrophil elastase, myeloperoxidase, and cathelicidins. Although primarily supposed to prevent microbial dissemination and fight infections, there is increasing evidence that an overwhelming NET response correlates with poor outcome in many diseases. Lung-related diseases especially, such as bacterial pneumonia, cystic fibrosis, chronic obstructive pulmonary disease, aspergillosis, influenza, and COVID-19, are often affected by massive NET formation. Highly vascularized areas as in the lung are susceptible to immunothrombotic events promoted by chromatin fibers. Keeping this fragile equilibrium seems to be the key for an appropriate immune response. Therapies targeting dysregulated NET formation might positively influence many disease progressions. This review highlights recent findings on the pathophysiological influence of NET formation in different bacterial, viral, and non-infectious lung diseases and summarizes medical treatment strategies.


Subject(s)
Extracellular Traps/immunology , Neutrophils/immunology , Pneumonia/immunology , COVID-19/immunology , Disease Progression , Humans , Neutrophils/microbiology , Neutrophils/virology , Pneumonia/microbiology , Pneumonia/pathology , Pneumonia/virology
12.
BMC Infect Dis ; 21(1): 458, 2021 May 20.
Article in English | MEDLINE | ID: covidwho-1322925

ABSTRACT

BACKGROUND: During the spike of COVID-19 pandemic in Kazakhstan (June-2020), multiple SARS-CoV-2 PCR-test negative pneumonia cases with higher mortality were reported by media. We aimed to study the epidemiologic characteristics of hospitalized PCR-test positive and negative patients with analysis of in-hospital and post-hospital mortality. We also compare the respiratory disease characteristics between 2019 and 2020. METHODS: The study population consist of 17,691 (March-July-2020) and 4600 (March-July-2019) hospitalized patients with respiratory diseases (including COVID-19). The incidence rate, case-fatality rate and survival analysis for overall mortality (in-hospital and post-hospital) were assessed. RESULTS: The incidence and mortality rates for respiratory diseases were 4-fold and 11-fold higher in 2020 compared to 2019 (877.5 vs 228.2 and 11.2 vs 1.2 per 100,000 respectively). The PCR-positive cases (compared to PCR-negative) had 2-fold higher risk of overall mortality. We observed 24% higher risk of death in males compared to females and in older patients compared to younger ones. Patients residing in rural areas had 66% higher risk of death compared to city residents and being treated in a provisional hospital was associated with 1.9-fold increased mortality compared to those who were treated in infectious disease hospitals. CONCLUSION: This is the first study from the Central Asia and Eurasia regions, evaluating the mortality of SARS-CoV-2 PCR-positive and PCR-negative respiratory system diseases during the peak of COVID-19 pandemic. We describe a higher mortality rate for PCR-test positive cases compared to PCR-test negative cases, for males compared to females, for elder patients compared to younger ones and for patients living in rural areas compared to city residents.


Subject(s)
COVID-19/mortality , Pneumonia/diagnosis , RNA, Viral/metabolism , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Adult , Aged , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Female , Hospital Mortality , Hospitalization , Humans , Kazakhstan/epidemiology , Male , Middle Aged , Pandemics , Pneumonia/mortality , Pneumonia/virology , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , Survival Rate , Young Adult
13.
Emerg Microbes Infect ; 10(1): 1515-1518, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1313723

ABSTRACT

We show a shift in the prevalence of respiratory viral pathogens in community-acquired pneumonia patients during the COVID-19 pandemic. Our data support the efficiency of non-pharmaceutical interventions on virus circulation except for rhinoviruses. The consequences of an altered circulation on subsequent winter seasons remain unclear and support the importance of systematic virological surveillance.


Subject(s)
COVID-19/epidemiology , Community-Acquired Infections/epidemiology , Pneumonia/epidemiology , Respiratory Tract Infections/epidemiology , Adult , Aged , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , COVID-19/virology , Community-Acquired Infections/microbiology , Community-Acquired Infections/virology , Female , Germany/epidemiology , Humans , Male , Middle Aged , Pandemics , Pneumonia/microbiology , Pneumonia/virology , Prevalence , Prospective Studies , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Viruses/classification , Viruses/genetics , Viruses/isolation & purification , Young Adult
14.
Clin Lymphoma Myeloma Leuk ; 21(10): e810-e816, 2021 10.
Article in English | MEDLINE | ID: covidwho-1313014

ABSTRACT

BACKGROUND: We previously reported elsewhere of a follicular lymphoma patient suffering from persistent COVID-19 pneumonia that was still ongoing at 2 months after onset. MATERIALS AND METHODS: We provide a follow-up report of the case along with a literature review of immunocompromised lymphoma patients experiencing prolonged COVID-19 infections. RESULTS: Although requiring a full 1 year, the presented case eventually achieved spontaneous resolution of COVID-19 pneumonia. Anti-SARS-CoV-2 antibodies could not be detected throughout the disease course, but COVID-19-directed T-cell response was found to be intact. The patient also developed secondary immune thrombocytopenia subsequent to COVID-19 pneumonia. We found 19 case reports of immunocompromised lymphoma patients with prolonged COVID-19 infections in the literature. All 5 patients who died did not receive convalescent plasma therapy, whereas resolution of COVID-19 infection was achieved in 8 out of 9 patients who received convalescent plasma therapy. CONCLUSIONS: We demonstrate through the presented case that while time-consuming, resolution of COVID-19 infections may be achieved without aid from humoral immunity if cellular immunity is intact. Immunocompromised lymphoma patients are at risk of a prolonged disease course of COVID-19, and convalescent plasma therapy may be a promising approach in such patients.


Subject(s)
COVID-19/immunology , Lymphoma, Follicular/drug therapy , Pneumonia/immunology , Rituximab/therapeutic use , SARS-CoV-2/immunology , Thrombocytopenia/immunology , Antineoplastic Agents, Immunological/therapeutic use , COVID-19/virology , Female , Follow-Up Studies , Humans , Immunocompromised Host/immunology , Lymphoma, Follicular/complications , Lymphoma, Follicular/immunology , Maintenance Chemotherapy/methods , Middle Aged , Pneumonia/complications , Pneumonia/virology , Remission, Spontaneous , SARS-CoV-2/physiology , T-Lymphocytes/immunology , T-Lymphocytes/virology , Thrombocytopenia/complications
15.
Neuropsychopharmacol Rep ; 41(3): 325-335, 2021 09.
Article in English | MEDLINE | ID: covidwho-1306671

ABSTRACT

Selective serotonin reuptake inhibitors (SSRIs) have anti-inflammatory properties that may have clinical utility in treating severe pulmonary manifestations of COVID-19. SSRIs exert anti-inflammatory effects at three mechanistic levels: (a) inhibition of proinflammatory transcription factor activity, including NF-κB and STAT3; (b) downregulation of lung tissue damage and proinflammatory cell recruitment via inhibition of cytokines, including IL-6, IL-8, TNF-α, and IL-1ß; and (c) direct suppression inflammatory cells, including T cells, macrophages, and platelets. These pathways are implicated in the pathogenesis of COVID-19. In this review, we will compare the pathogenesis of lung inflammation in pulmonary diseases including COVID-19, ARDS, and chronic obstructive pulmonary disease (COPD), describe the anti-inflammatory properties of SSRIs, and discuss the applications of SSRIS in treating COVID-19-associated inflammatory lung disease.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19/complications , Pneumonia/drug therapy , Serotonin Uptake Inhibitors/therapeutic use , Humans , Pneumonia/virology , SARS-CoV-2
16.
Nutrients ; 13(7)2021 Jun 28.
Article in English | MEDLINE | ID: covidwho-1288966

ABSTRACT

SARS-CoV-2 infects the respiratory tract and leads to the disease entity, COVID-19. Accordingly, the lungs bear the greatest pathologic burden with the major cause of death being respiratory failure. However, organs remote from the initial site of infection (e.g., kidney, heart) are not spared, particularly in severe and fatal cases. Emerging evidence indicates that an excessive inflammatory response coupled with a diminished antiviral defense is pivotal in the initiation and development of COVID-19. A common finding in autopsy specimens is the presence of thrombi in the lungs as well as remote organs, indicative of immunothrombosis. Herein, the role of SARS-CoV-2 in lung inflammation and associated sequelae are reviewed with an emphasis on immunothrombosis. In as much as vitamin D is touted as a supplement to conventional therapies of COVID-19, the impact of this vitamin at various junctures of COVID-19 pathogenesis is also addressed.


Subject(s)
COVID-19/drug therapy , COVID-19/immunology , Inflammation/virology , Pneumonia/virology , Vitamin D/therapeutic use , Animals , COVID-19/virology , Extracellular Traps , Humans , Inflammation/drug therapy , Lung/pathology , Mice , Multiple Organ Failure/virology , Pneumonia/drug therapy , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Thrombosis/immunology , Thrombosis/virology , Vitamins/therapeutic use
17.
J Med Virol ; 93(7): 4399-4404, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1263104

ABSTRACT

The role of viruses in community acquired pneumonia (CAP) has been largely underestimated in the pre-coronavirus disease 2019 age. However, during flu seasonal early identification of viral infection in CAP is crucial to guide treatment and in-hospital management. Though recommended, the routine use of nasopharyngeal swab (NPS) to detect viral infection has been poorly scaled-up, especially in the emergency department (ED). This study sought to assess the prevalence and associated clinical outcomes of viral infections in patients with CAP during peak flu season. In this retrospective, observational study adults presenting at the ED of our hospital (Rome, Italy) with CAP from January 15th to February 22th, 2019 were enrolled. Each patient was tested on admission with Influenza rapid test and real time multiplex assay. Seventy five consecutive patients were enrolled. 30.7% (n = 23) tested positive for viral infection. Of these, 52.1% (n = 12) were H1N1/FluA. 10 patients had multiple virus co-infections. CAP with viral infection did not differ for any demographic, clinic and laboratory features by the exception of CCI and CURB-65. All intra-ED deaths and mechanical ventilations were recorded among CAP with viral infection. Testing only patients with CURB-65 score ≥2, 10 out of 12 cases of H1N1/FluA would have been detected saving up to 40% tests. Viral infection occurred in one-third of CAP during flu seasonal peak 2019. Since not otherwise distinguishable, NPS is so far the only reliable mean to identify CAP with viral infection. Testing only patients with moderate/severe CAP significantly minimize the number of tests.


Subject(s)
Community-Acquired Infections/epidemiology , Pneumonia/epidemiology , Pneumonia/virology , Aged , COVID-19/epidemiology , Coinfection/virology , Emergency Service, Hospital/statistics & numerical data , Female , Humans , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/epidemiology , Italy/epidemiology , Male , Prevalence , Retrospective Studies , SARS-CoV-2/isolation & purification
18.
J Clin Lab Anal ; 35(7): e23811, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1252001

ABSTRACT

BACKGROUND: To explore the clinical manifestation, imaging examination, and serology of patients with novel coronavirus pneumonia (COVID-19) between China and overseas. METHODS: Ninety patients with COVID-19 who admitted to Fuzhou Pulmonary Hospital from January 23, 2020, to May 1, 2020, were included in this retrospective study. They were divided into domestic group and overseas group according to the origin regions. The clinical manifestations, imaging examination, serology, treatment, and prognosis between the two groups were compared and analyzed. RESULTS: The clinical manifestations of patients in the two groups mainly included fever (83.1% and 47.4%), cough (62% and 31.6%), expectoration (47.9% and 31.6%), anorexia (28.2% and 47.4%), fatigue (21.1% and 10.5%), and dyspnea (22.5% and 0%). The main laboratory characteristics in the two groups were decreased lymphocyte count, increased lactate dehydrogenase, decreased oxygenation index, decreased white blood cell count, increased erythrocyte sedimentation rate (ESR), and increased C-reactive protein. The computed tomography (CT) examinations of chest showed bilateral and peripheral involvement, with multiple patch shadows and ground glass shadows. However, pleural effusions were rare. CONCLUSION: Fever, cough, and dyspnea are more common in domestic cases than overseas cases. However, patients with COVID-19 from overseas may have the symptoms of loss of taste and smell that domestic cases do not have.


Subject(s)
COVID-19/virology , Pneumonia/virology , SARS-CoV-2/physiology , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , China/epidemiology , Female , Humans , Male , Middle Aged , Oxygen/metabolism , Pneumonia/epidemiology , Prognosis , Young Adult
19.
Viruses ; 13(6)2021 05 23.
Article in English | MEDLINE | ID: covidwho-1242675

ABSTRACT

There is an urgent need for new approaches to limit the severity of coronavirus infections. Many cells of the immune system express receptors for the neurotransmitter γ-aminobutyric acid (GABA), and GABA-receptor (GABA-R) agonists have anti-inflammatory effects. Lung epithelial cells also express GABA-Rs, and GABA-R modulators have been shown to limit acute lung injuries. There is currently, however, no information on whether GABA-R agonists might impact the course of a viral infection. Here, we assessed whether clinically applicable GABA-R agonists could be repurposed for the treatment of a lethal coronavirus (murine hepatitis virus 1, MHV-1) infection in mice. We found that oral GABA administration before, or after the appearance of symptoms, very effectively limited MHV-1-induced pneumonitis, severe illness, and death. GABA treatment also reduced viral load in the lungs, suggesting that GABA-Rs may provide a new druggable target to limit coronavirus replication. Treatment with the GABAA-R-specific agonist homotaurine, but not the GABAB-R-specific agonist baclofen, significantly reduced the severity of pneumonitis and death rates in MHV-1-infected mice, indicating that the therapeutic effects were mediated primarily through GABAA-Rs. Since GABA and homotaurine are safe for human consumption, they are promising candidates to help treat coronavirus infections.


Subject(s)
Coronavirus Infections/drug therapy , GABA-A Receptor Agonists/therapeutic use , Murine hepatitis virus/drug effects , Pneumonia/drug therapy , Animals , Coronavirus Infections/mortality , Coronavirus Infections/virology , Lung/drug effects , Lung/pathology , Lung/virology , Mice , Murine hepatitis virus/pathogenicity , Pneumonia/mortality , Pneumonia/virology , Severity of Illness Index , Treatment Outcome , Viral Load/drug effects , Weight Loss/drug effects , gamma-Aminobutyric Acid/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...