Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Immunol ; 13: 807454, 2022.
Article in English | MEDLINE | ID: covidwho-1686483

ABSTRACT

Background: Innate immunity, armed with pattern recognition receptors including Toll-like receptors (TLR), is critical for immune cell activation and the connection to anti-microbial adaptive immunity. However, information regarding the impact of age on the innate immunity in response to SARS-CoV2 adenovirus vector vaccines and its association with specific immune responses remains scarce. Methods: Fifteen subjects between 25-35 years (the young group) and five subjects between 60-70 years (the older adult group) were enrolled before ChAdOx1 nCoV-19 (AZD1222) vaccination. We determined activation markers and cytokine production of monocyte, natural killer (NK) cells and B cells ex vivo stimulated with TLR agonist (poly (I:C) for TLR3; LPS for TLR4; imiquimod for TLR7; CpG for TLR9) before vaccination and 3-5 days after each jab with flow cytometry. Anti-SARS-CoV2 neutralization antibody titers (surrogate virus neutralization tests, sVNTs) were measured using serum collected 2 months after the first jab and one month after full vaccination. Results: The older adult vaccinees had weaker vaccine-induced sVNTs than young vaccinees after 1st jab (47.2±19.3% vs. 21.2±22.2%, p value<0.05), but this difference became insignificant after the 2nd jab. Imiquimod, LPS and CpG strongly induced CD86 expression in IgD+CD27- naïve and IgD-CD27+ memory B cells in the young group. In contrast, only the IgD+ CD27- naïve B cells responded to these TLR agonists in the older adult group. Imiquimode strongly induced the CD86 expression in CD14+ monocytes in the young group but not in the older adult group. After vaccination, the young group had significantly higher IFN-γ expression in CD3- CD56dim NK cells after the 1st jab, whilst the older adult group had significantly higher IFN-γ and granzyme B expression in CD56bright NK cells after the 2nd jab (all p value <0.05). The IFN-γ expression in CD56dim and CD56bright NK cells after the first vaccination and CD86 expression in CD14+ monocyte and IgD-CD27-double-negative B cells after LPS and imiquimod stimulation correlated with vaccine-induced antibody responses. Conclusions: The innate immune responses after the first vaccination correlated with the neutralizing antibody production. Older people may have defective innate immune responses by TLR stimulation and weak or delayed innate immune activation profile after vaccination compared with young people.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , B-Lymphocytes/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , Adult , Aged , COVID-19/prevention & control , Female , Humans , Imiquimod/pharmacology , Immunity, Innate/immunology , Immunosenescence/immunology , Interferon-gamma/blood , Male , Middle Aged , Poly I-C/administration & dosage , Poly I-C/immunology , Toll-Like Receptors/immunology , Vaccination
2.
Viruses ; 14(2)2022 01 19.
Article in English | MEDLINE | ID: covidwho-1625815

ABSTRACT

SARS-CoV-2, a member of the coronavirus family, is the causative agent of the COVID-19 pandemic. Currently, there is still an urgent need in developing an efficient therapeutic intervention. In this study, we aimed at evaluating the therapeutic effect of a single intranasal treatment of the TLR3/MDA5 synthetic agonist Poly(I:C) against a lethal dose of SARS-CoV-2 in K18-hACE2 transgenic mice. We demonstrate here that early Poly(I:C) treatment acts synergistically with SARS-CoV-2 to induce an intense, immediate and transient upregulation of innate immunity-related genes in lungs. This effect is accompanied by viral load reduction, lung and brain cytokine storms prevention and increased levels of macrophages and NK cells, resulting in 83% mice survival, concomitantly with long-term immunization. Thus, priming the lung innate immunity by Poly(I:C) or alike may provide an immediate, efficient and safe protective measure against SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , COVID-19/prevention & control , Immunity, Innate , Poly I-C/immunology , Poly I-C/therapeutic use , SARS-CoV-2/drug effects , Toll-Like Receptor 3/agonists , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/drug therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/prevention & control , Disease Models, Animal , Female , Humans , Lung/immunology , Lung/virology , Mice , Mice, Transgenic , SARS-CoV-2/immunology , Toll-Like Receptor 3/immunology , Viral Load/drug effects
3.
PLoS Pathog ; 17(10): e1009928, 2021 10.
Article in English | MEDLINE | ID: covidwho-1484868

ABSTRACT

Non-specific protective effects of certain vaccines have been reported, and long-term boosting of innate immunity, termed trained immunity, has been proposed as one of the mechanisms mediating these effects. Several epidemiological studies suggested cross-protection between influenza vaccination and COVID-19. In a large academic Dutch hospital, we found that SARS-CoV-2 infection was less common among employees who had received a previous influenza vaccination: relative risk reductions of 37% and 49% were observed following influenza vaccination during the first and second COVID-19 waves, respectively. The quadrivalent inactivated influenza vaccine induced a trained immunity program that boosted innate immune responses against various viral stimuli and fine-tuned the anti-SARS-CoV-2 response, which may result in better protection against COVID-19. Influenza vaccination led to transcriptional reprogramming of monocytes and reduced systemic inflammation. These epidemiological and immunological data argue for potential benefits of influenza vaccination against COVID-19, and future randomized trials are warranted to test this possibility.


Subject(s)
COVID-19/immunology , Cross Protection/physiology , Immunity, Innate/physiology , Influenza Vaccines/administration & dosage , COVID-19/epidemiology , COVID-19/prevention & control , Cytokines/immunology , Cytokines/metabolism , Down-Regulation , Imidazoles/immunology , Incidence , Influenza Vaccines/immunology , Netherlands/epidemiology , Personnel, Hospital , Poly I-C/immunology , Proteomics , Risk Factors , Sequence Analysis, RNA
4.
Front Immunol ; 11: 621441, 2020.
Article in English | MEDLINE | ID: covidwho-1081856

ABSTRACT

Although COVID-19 has become a major challenge to global health, there are currently no efficacious agents for effective treatment. Cytokine storm syndrome (CSS) can lead to acute respiratory distress syndrome (ARDS), which contributes to most COVID-19 mortalities. Research points to interleukin 6 (IL-6) as a crucial signature of the cytokine storm, and the clinical use of the IL-6 inhibitor tocilizumab shows potential for treatment of COVID-19 patient. In this study, we challenged wild-type and adenovirus-5/human angiotensin-converting enzyme 2-expressing BALB/c mice with a combination of polyinosinic-polycytidylic acid and recombinant SARS-CoV-2 spike-extracellular domain protein. High levels of TNF-α and nearly 100 times increased IL-6 were detected at 6 h, but disappeared by 24 h in bronchoalveolar lavage fluid (BALF) following immunostimulant challenge. Lung injury observed by histopathologic changes and magnetic resonance imaging at 24 h indicated that increased TNF-α and IL-6 may initiate CSS in the lung, resulting in the continual production of inflammatory cytokines. We hypothesize that TNF-α and IL-6 may contribute to the occurrence of CSS in COVID-19. We also investigated multiple monoclonal antibodies (mAbs) and inhibitors for neutralizing the pro-inflammatory phenotype of COVID-19: mAbs against IL-1α, IL-6, TNF-α, and granulocyte-macrophage colony-stimulating factor (GM-CSF), and inhibitors of p38 and JAK partially relieved CSS; mAbs against IL-6, TNF-α, and GM-CSF, and inhibitors of p38, extracellular signal-regulated kinase, and myeloperoxidase somewhat reduced neutrophilic alveolitis in the lung. This novel murine model opens a biologically safe, time-saving avenue for clarifying the mechanism of CSS/ARDS in COVID-19 and developing new therapeutic drugs.


Subject(s)
Anti-Inflammatory Agents/pharmacology , COVID-19/immunology , Cytokine Release Syndrome/immunology , Disease Models, Animal , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , Cytokine Release Syndrome/virology , Cytokines/immunology , Male , Mice , Mice, Inbred BALB C , Poly I-C/immunology , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL