ABSTRACT
In French Polynesia, the first case of SARS-CoV-2 infection was detected on March 10th, 2020, in a resident returning from France. Between March 28th and July 14th, international air traffic was interrupted and local transmission of SARS-CoV-2 was brought under control, with only 62 cases recorded. The main challenge for reopening the air border without requiring travelers to quarantine on arrival was to limit the risk of re-introducing SARS-CoV-2. Specific measures were implemented, including the obligation for all travelers to have a negative RT-PCR test for SARS-CoV-2 carried out within 3 days before departure, and to perform another RT-PCR testing 4 days after arrival. Because of limitation in available medical staff, travelers were provided a kit allowing self-collection of oral and nasal swabs. In addition to increase our testing capacity, self-collected samples from up to 10 travelers were pooled before RNA extraction and RT-PCR testing. When a pool tested positive, RNA extraction and RT-PCR were performed on each individual sample. We report here the results of COVID-19 surveillance (COV-CHECK PORINETIA) conducted between July 15th, 2020, and February 15th, 2021, in travelers using self-collection and pooling approaches. We tested 5,982 pools comprising 59,490 individual samples, and detected 273 (0.46%) travelers positive for SARS-CoV-2. A mean difference of 1.17 Ct (CI 95% 0.93-1.41) was found between positive individual samples and pools (N = 50), probably related to the volume of samples used for RNA extraction (200 µL versus 50 µL, respectively). Retrospective testing of positive samples self-collected from October 20th, 2020, using variants-specific amplification kit and spike gene sequencing, found at least 6 residents infected by the Alpha variant. Self-collection and pooling approaches allowed large-scale screening for SARS-CoV-2 using less human, material and financial resources. Moreover, this strategy allowed detecting the introduction of SARS-CoV-2 variants of concern in French Polynesia.
Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Mass Screening/methods , Population Surveillance/methods , Specimen Handling/methods , Travel , COVID-19/epidemiology , COVID-19/virology , COVID-19 Testing/instrumentation , Epidemics/prevention & control , France/epidemiology , Humans , Polynesia/epidemiology , Prospective Studies , RNA, Viral/genetics , RNA, Viral/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Specimen Handling/instrumentationABSTRACT
The Cook Island government has made several efforts to ensure zero confirmed cases and transmission of COVID-19, especially among visiting travelers. However, the Cook Island ministry of health has to deal with the new strain of dengue fever outbreak, known as dengue fever type 2 (DEN-2), by adopting several measures to control its spread, especially in the affected parts of the subtropical country. This paper aims to describe the dengue fever response taken in Cook Island and suggest recommendations to control the risk of transmission in endemic parts of the world.
Subject(s)
Dengue/epidemiology , Disease Outbreaks , COVID-19/diagnosis , COVID-19/epidemiology , Dengue/diagnosis , Dengue/prevention & control , Dengue/virology , Dengue Virus/classification , Endemic Diseases , Humans , Mosquito Control , Polynesia/epidemiology , SerogroupABSTRACT
BACKGROUND: The COVID-19 pandemic has had a profound global impact on governments, health care systems, economies, and populations around the world. Within the East Asia and Pacific region, some countries have mitigated the spread of the novel coronavirus effectively and largely avoided severe negative consequences, while others still struggle with containment. As the second wave reaches East Asia and the Pacific, it becomes more evident that additional SARS-CoV-2 surveillance is needed to track recent shifts, rates of increase, and persistence associated with the pandemic. OBJECTIVE: The goal of this study is to provide advanced surveillance metrics for COVID-19 transmission that account for speed, acceleration, jerk, persistence, and weekly shifts, to better understand country risk for explosive growth and those countries who are managing the pandemic successfully. Existing surveillance coupled with our dynamic metrics of transmission will inform health policy to control the COVID-19 pandemic until an effective vaccine is developed. We provide novel indicators to measure disease transmission. METHODS: Using a longitudinal trend analysis study design, we extracted 330 days of COVID-19 data from public health registries. We used an empirical difference equation to measure the daily number of cases in East Asia and the Pacific as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS: The standard surveillance metrics for Indonesia, the Philippines, and Myanmar were concerning as they had the largest new caseloads at 4301, 2588, and 1387, respectively. When looking at the acceleration of new COVID-19 infections, we found that French Polynesia, Malaysia, and the Philippines had rates at 3.17, 0.22, and 0.06 per 100,000. These three countries also ranked highest in terms of jerk at 15.45, 0.10, and 0.04, respectively. CONCLUSIONS: Two of the most populous countries in East Asia and the Pacific, Indonesia and the Philippines, have alarming surveillance metrics. These two countries rank highest in new infections in the region. The highest rates of speed, acceleration, and positive upwards jerk belong to French Polynesia, Malaysia, and the Philippines, and may result in explosive growth. While all countries in East Asia and the Pacific need to be cautious about reopening their countries since outbreaks are likely to occur in the second wave of COVID-19, the country of greatest concern is the Philippines. Based on standard and enhanced surveillance, the Philippines has not gained control of the COVID-19 epidemic, which is particularly troubling because the country ranks 4th in population in the region. Without extreme and rigid social distancing, quarantines, hygiene, and masking to reverse trends, the Philippines will remain on the global top 5 list of worst COVID-19 outbreaks resulting in high morbidity and mortality. The second wave will only exacerbate existing conditions and increase COVID-19 transmissions.
Subject(s)
COVID-19/epidemiology , Asia, Southeastern/epidemiology , Australasia/epidemiology , COVID-19/transmission , Asia, Eastern/epidemiology , Health Policy , Humans , Indonesia/epidemiology , Longitudinal Studies , Malaysia/epidemiology , Pandemics , Philippines/epidemiology , Polynesia/epidemiology , Public Health , Public Health Surveillance , Registries , SARS-CoV-2ABSTRACT
On 30 January 2020, WHO declared coronavirus (COVID-19) a global public health emergency. As of 12 March 2020, 125 048 confirmed COVID-19 cases in 118 countries had been reported. On 12 March 2020, the first case in the Pacific islands was reported in French Polynesia; no other Pacific island country or territory has reported cases. The purpose of our analysis is to show how travellers may introduce COVID-19 into the Pacific islands and discuss the role robust health systems play in protecting health and reducing transmission risk. We analyse travel and Global Health Security Index data using a scoring tool to produce quantitative estimates of COVID-19 importation risk, by departing and arriving country. Our analysis indicates that, as of 12 March 2020, the highest risk air routes by which COVID-19 may be imported into the Pacific islands are from east Asian countries (specifically, China, Korea and Japan) to north Pacific airports (likely Guam, Commonwealth of the Northern Mariana Islands or, to a less extent, Palau); or from China, Japan, Singapore, the United States of America or France to south Pacific ports (likely, Fiji, Papua New Guinea, French Polynesia or New Caledonia). Other importation routes include from other east Asian countries to Guam, and from Australia, New Zealand and other European countries to the south Pacific. The tool provides a useful method for assessing COVID-19 importation risk and may be useful in other settings.