Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cell Rep ; 38(5): 110318, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1654152

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines may target epitopes that reduce durability or increase the potential for escape from vaccine-induced immunity. Using synthetic vaccinology, we have developed rationally immune-focused SARS-CoV-2 Spike-based vaccines. Glycans can be employed to alter antibody responses to infection and vaccines. Utilizing computational modeling and in vitro screening, we have incorporated glycans into the receptor-binding domain (RBD) and assessed antigenic profiles. We demonstrate that glycan-coated RBD immunogens elicit stronger neutralizing antibodies and have engineered seven multivalent configurations. Advanced DNA delivery of engineered nanoparticle vaccines rapidly elicits potent neutralizing antibodies in guinea pigs, hamsters, and multiple mouse models, including human ACE2 and human antibody repertoire transgenics. RBD nanoparticles induce high levels of cross-neutralizing antibodies against variants of concern with durable titers beyond 6 months. Single, low-dose immunization protects against a lethal SARS-CoV-2 challenge. Single-dose coronavirus vaccines via DNA-launched nanoparticles provide a platform for rapid clinical translation of potent and durable coronavirus vaccines.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Nanoparticles/administration & dosage , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Binding Sites , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/genetics , Cricetinae , Epitopes , Guinea Pigs , Immunogenicity, Vaccine , Mice , Nanoparticles/chemistry , /chemistry , /immunology , Polysaccharides/chemistry , Polysaccharides/genetics , Polysaccharides/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccine Potency
2.
J Exp Med ; 218(12)2021 12 06.
Article in English | MEDLINE | ID: covidwho-1462245

ABSTRACT

Broadly protective vaccines against SARS-related coronaviruses that may cause future outbreaks are urgently needed. The SARS-CoV-2 spike receptor-binding domain (RBD) comprises two regions, the core-RBD and the receptor-binding motif (RBM); the former is structurally conserved between SARS-CoV-2 and SARS-CoV. Here, in order to elicit humoral responses to the more conserved core-RBD, we introduced N-linked glycans onto RBM surfaces of the SARS-CoV-2 RBD and used them as immunogens in a mouse model. We found that glycan addition elicited higher proportions of the core-RBD-specific germinal center (GC) B cells and antibody responses, thereby manifesting significant neutralizing activity for SARS-CoV, SARS-CoV-2, and the bat WIV1-CoV. These results have implications for the design of SARS-like virus vaccines.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , Polysaccharides/immunology , SARS Virus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Motifs , Animals , COVID-19/genetics , COVID-19/prevention & control , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Female , Humans , Male , Mice , Mice, Inbred BALB C , Polysaccharides/genetics , Protein Domains , SARS Virus/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
4.
Glycobiology ; 30(12): 981-988, 2020 12 09.
Article in English | MEDLINE | ID: covidwho-1060393

ABSTRACT

The current emergence of the novel coronavirus pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demands the development of new therapeutic strategies to prevent rapid progress of mortalities. The coronavirus spike (S) protein, which facilitates viral attachment, entry and membrane fusion is heavily glycosylated and plays a critical role in the elicitation of the host immune response. The spike protein is comprised of two protein subunits (S1 and S2), which together possess 22 potential N-glycosylation sites. Herein, we report the glycosylation mapping on spike protein subunits S1 and S2 expressed on human cells through high-resolution mass spectrometry. We have characterized the quantitative N-glycosylation profile on spike protein and interestingly, observed unexpected O-glycosylation modifications on the receptor-binding domain of spike protein subunit S1. Even though O-glycosylation has been predicted on the spike protein of SARS-CoV-2, this is the first report of experimental data for both the site of O-glycosylation and identity of the O-glycans attached on the subunit S1. Our data on the N- and O-glycosylation are strengthened by extensive manual interpretation of each glycopeptide spectra in addition to using bioinformatics tools to confirm the complexity of glycosylation in the spike protein. The elucidation of the glycan repertoire on the spike protein provides insights into the viral binding studies and more importantly, propels research toward the development of a suitable vaccine candidate.


Subject(s)
COVID-19/genetics , Polysaccharides/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/isolation & purification , COVID-19/pathology , COVID-19/virology , Coronavirus Infections , Humans , Pandemics , Polysaccharides/metabolism , Protein Binding/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics
5.
Viruses ; 13(1)2021 Jan 08.
Article in English | MEDLINE | ID: covidwho-1016260

ABSTRACT

Glycosylation, being the most abundant post-translational modification, plays a profound role affecting expression, localization and function of proteins and macromolecules in immune response to infection. Presented are the findings of a transcriptomic analysis performed using high-throughput functional genomics data from public repository to examine the altered transcription of the human glycosylation machinery in response to SARS-CoV-2 stimulus and infection. In addition to the conventional in silico functional enrichment analysis methods we also present results from the manual analysis of biomedical literature databases to bring about the biological significance of glycans and glycan-binding proteins in modulating the host immune response during SARS-CoV-2 infection. Our analysis revealed key immunomodulatory lectins, proteoglycans and glycan epitopes implicated in exerting both negative and positive downstream inflammatory signaling pathways, in addition to its vital role as adhesion receptors for SARS-CoV-2 pathogen. A hypothetical correlation of the differentially expressed human glycogenes with the altered host inflammatory response and the cytokine storm-generated in response to SARS-CoV-2 pathogen is proposed. These markers can provide novel insights into the diverse roles and functioning of glycosylation pathways modulated by SARS-CoV-2, provide avenues of stratification, treatment, and targeted approaches for COVID-19 immunity and other viral infectious agents.


Subject(s)
COVID-19/metabolism , Polysaccharides/metabolism , SARS-CoV-2/physiology , Biomarkers/metabolism , COVID-19/genetics , COVID-19/immunology , COVID-19/pathology , Databases, Genetic , Epitopes/genetics , Epitopes/metabolism , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Glycosylation , Host-Pathogen Interactions , Humans , Inflammation , Lectins/genetics , Lectins/metabolism , Polysaccharides/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL