Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Microbiol Immunol ; 67(7): 334-344, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20240418

ABSTRACT

We first investigated the interactions between several algae-derived lectins and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We created lectin columns using high-mannose (HM)-type glycan-specific lectins OAA and KAA-1 or core fucose-specific lectin hypninA-2 and conducted binding experiments with SARS-CoV-2. The results showed that these lectins were capable of binding to the virus. Furthermore, when examining the neutralization ability of nine different lectins, it was found that KAA-1, ESA-2, and hypninA-2 were effective in neutralizing SARS-CoV-2. In competitive inhibition experiments with glycoproteins, neutralization was confirmed to occur through HM-type or core fucose-type glycans. However, neutralization was not observed with other lectins, such as OAA. This trend of KAA-1 and ESA-2 having the neutralizing ability and OAA not having it was also similar to influenza viruses. Electron microscopy observations revealed that KAA-1 and hypninA-2 strongly aggregated SARS-CoV-2 particles, while OAA showed a low degree of aggregation. It is believed that the neutralization of SARS-CoV-2 involves multiple factors, such as glycan attachment sites on the S protein, the size of lectins, and their propensity to aggregate, which cause inhibition of receptor binding or aggregation of virus particles. This study demonstrated that several algae-derived lectins could neutralize SARS-CoV-2 and that lectin columns can effectively recover and concentrate the virus.


Subject(s)
COVID-19 , Orthomyxoviridae , Humans , SARS-CoV-2/metabolism , Mannose/metabolism , Fucose , Lectins/pharmacology , Mannose-Binding Lectins/metabolism , Mannose-Binding Lectins/pharmacology , Polysaccharides/metabolism
2.
J Am Soc Mass Spectrom ; 34(6): 1086-1095, 2023 Jun 07.
Article in English | MEDLINE | ID: covidwho-2313383

ABSTRACT

Glycosylation is an important protein post-translational modification that plays a pivotal role in the bioactivity of therapeutic proteins and in the infectivity of viral proteins. Liquid chromatography with tandem mass spectrometry readily identifies protein glycans with site specificity. However, the overnight incubation used in conventional in-solution proteolysis leads to high turnaround times for glycosylation analysis, particularly when sequential in-solution digestions are needed for site-specific glycan identification. Using bovine fetuin as a model glycoprotein, this work first shows that in-membrane digestion in ∼3 min yields similar glycan identification and quantitation when compared to overnight in-solution digestion. Protease-containing membranes in a spin column enable digestion of therapeutic proteins (trastuzumab and erythropoietin) and a viral protein (SARS-CoV-2 receptor binding domain) in ∼30 s. Glycan identification is similar after in-solution and in-membrane digestion, and limited in-membrane digestion enhances the identification of high-mannose glycans in trastuzumab. Finally, stacked membranes containing trypsin and chymotrypsin allow fast sequential proteolytic digestion to site-specifically identify the glycans of SARS-CoV-2 receptor binding domain. One can easily assemble the protease-containing membranes in commercial spin columns, and spinning multiple columns simultaneously will facilitate parallel analyses.


Subject(s)
COVID-19 , Peptide Hydrolases , Animals , Cattle , Glycosylation , Peptide Hydrolases/metabolism , SARS-CoV-2/metabolism , Polysaccharides/metabolism , Trastuzumab/metabolism , Digestion
3.
Proc Natl Acad Sci U S A ; 119(48): e2212658119, 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2265470

ABSTRACT

Protein glycosylation is a crucial mediator of biological functions and is tightly regulated in health and disease. However, interrogating complex protein glycoforms is challenging, as current lectin tools are limited by cross-reactivity while mass spectrometry typically requires biochemical purification and isolation of the target protein. Here, we describe a method to identify and characterize a class of nanobodies that can distinguish glycoforms without reactivity to off-target glycoproteins or glycans. We apply this technology to immunoglobulin G (IgG) Fc glycoforms and define nanobodies that specifically recognize either IgG lacking its core-fucose or IgG bearing terminal sialic acid residues. By adapting these tools to standard biochemical methods, we can clinically stratify dengue virus and SARS-CoV-2 infected individuals based on their IgG glycan profile, selectively disrupt IgG-Fcγ receptor binding both in vitro and in vivo, and interrogate the B cell receptor (BCR) glycan structure on living cells. Ultimately, we provide a strategy for the development of reagents to identify and manipulate IgG Fc glycoforms.


Subject(s)
COVID-19 , Single-Domain Antibodies , Humans , Immunoglobulin G/metabolism , SARS-CoV-2 , Immunoglobulin Fc Fragments/metabolism , Polysaccharides/metabolism
4.
Nat Commun ; 14(1): 948, 2023 02 20.
Article in English | MEDLINE | ID: covidwho-2282182

ABSTRACT

Small molecule inhibitors of glycosylation enzymes are valuable tools for dissecting glycan functions and potential drug candidates. Screening for inhibitors of glycosyltransferases are mainly performed by in vitro enzyme assays with difficulties moving candidates to cells and animals. Here, we circumvent this by employing a cell-based screening assay using glycoengineered cells expressing tailored reporter glycoproteins. We focused on GalNAc-type O-glycosylation and selected the GalNAc-T11 isoenzyme that selectively glycosylates endocytic low-density lipoprotein receptor (LDLR)-related proteins as targets. Our screen of a limited small molecule compound library did not identify selective inhibitors of GalNAc-T11, however, we identify two compounds that broadly inhibited Golgi-localized glycosylation processes. These compounds mediate the reversible fragmentation of the Golgi system without affecting secretion. We demonstrate how these inhibitors can be used to manipulate glycosylation in cells to induce expression of truncated O-glycans and augment binding of cancer-specific Tn-glycoprotein antibodies and to inhibit expression of heparan sulfate and binding and infection of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Glycosylation , SARS-CoV-2/metabolism , Glycoproteins/metabolism , Polysaccharides/metabolism
5.
Methods Enzymol ; 682: 137-185, 2023.
Article in English | MEDLINE | ID: covidwho-2250770

ABSTRACT

Traditional mass spectrometry-based glycoproteomic approaches have been widely used for site-specific N-glycoform analysis, but a large amount of starting material is needed to obtain sampling that is representative of the vast diversity of N-glycans on glycoproteins. These methods also often include a complicated workflow and very challenging data analysis. These limitations have prevented glycoproteomics from being adapted to high-throughput platforms, and the sensitivity of the analysis is currently inadequate for elucidating N-glycan heterogeneity in clinical samples. Heavily glycosylated spike proteins of enveloped viruses, recombinantly expressed as potential vaccines, are prime targets for glycoproteomic analysis. Since the immunogenicity of spike proteins may be impacted by their glycosylation patterns, site-specific analysis of N-glycoforms provides critical information for vaccine design. Using recombinantly expressed soluble HIV Env trimer, we describe DeGlyPHER, a modification of our previously reported sequential deglycosylation strategy to yield a "single-pot" process. DeGlyPHER is an ultrasensitive, simple, rapid, robust, and efficient approach for site-specific analysis of protein N-glycoforms, that we developed for analysis of limited quantities of glycoproteins.


Subject(s)
Glycoproteins , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/metabolism , Glycoproteins/metabolism , Glycosylation , Polysaccharides/metabolism , Mass Spectrometry
6.
Biochem Pharmacol ; 206: 115335, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2249225

ABSTRACT

Glycan is an essential molecule that controls and drives life in a precise direction. The paucity of research in glycobiology may impede the significance of its role in the pandemic guidelines. The SARS-CoV-2 spike protein is heavily glycosylated, with 22 putative N-glycosylation sites and 17 potential O-glycosylation sites discovered thus far. It is the anchor point to the host cell ACE2 receptor, TMPRSS2, and many other host proteins that can be recognized by their immune system; hence, glycosylation is considered the primary target of vaccine development. Therefore, it is essential to know how this surface glycan plays a role in viral entry, infection, transmission, antigen, antibody responses, and disease progression. Although the vaccines are developed and applied against COVID-19, the proficiency of the immunizations is not accomplished with the current mutant variations. The role of glycosylation in SARS-CoV-2 and its receptor ACE2 with respect to other putative cell glycan receptors and the significance of glycan in host cell immunity in COVID-19 are discussed in this paper. Hence, the molecular signature of the glycan in the coronavirus infection can be incorporated into the mainstream therapeutic process.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/genetics , Glycosylation , Polysaccharides/metabolism
7.
Immunol Rev ; 309(1): 64-74, 2022 08.
Article in English | MEDLINE | ID: covidwho-2223359

ABSTRACT

In this review, we discuss how IgG antibodies can modulate inflammatory signaling during viral infections with a focus on CD16a-mediated functions. We describe the structural heterogeneity of IgG antibody ligands, including subclass and glycosylation that impact binding by and downstream activity of CD16a, as well as the heterogeneity of CD16a itself, including allele and expression density. While inflammation is a mechanism required for immune homeostasis and resolution of acute infections, we focus here on two infectious diseases that are driven by pathogenic inflammatory responses during infection. Specifically, we review and discuss the evolving body of literature showing that afucosylated IgG immune complex signaling through CD16a contributes to the overwhelming inflammatory response that is central to the pathogenesis of severe forms of dengue disease and coronavirus disease 2019 (COVID-19).


Subject(s)
COVID-19 , Communicable Diseases , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Receptors, IgG
8.
Sci Adv ; 8(38): eabq8678, 2022 09 23.
Article in English | MEDLINE | ID: covidwho-2053091

ABSTRACT

Functional and epidemiological data suggest that N-linked glycans on the SARS-CoV-2 Spike protein may contribute to viral infectivity. To investigate this, we created a panel of N-to-Q mutations at N-glycosylation sites proximal to the Spike S1-S2 (N61, N603, N657, and N616) and S2' (N603 and N801) proteolysis sites. Some of these mutations, particularly N61Q and N801Q, reduced Spike incorporation into Spike-pseudotyped lentivirus and authentic SARS-CoV-2 virus-like particles (VLPs). These mutations also reduced pseudovirus and VLP entry into ACE2-expressing cells by 80 to 90%. In contrast, glycan mutations had a relatively minor effect on cell surface expression of Spike, ACE2 binding, and syncytia formation. A similar dichotomy in function was observed when virus was produced in host cells lacking ER chaperones, calnexin and calreticulin. Here, while both chaperones regulated pseudovirus function, only VLPs produced in calnexin KOs were less infectious. Overall, Spike N-glycans are likely critical for SARS-CoV-2 function and could serve as drug targets for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Calnexin/genetics , Calnexin/metabolism , Calreticulin , Humans , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Polysaccharides/metabolism , Spike Glycoprotein, Coronavirus
9.
J Virol ; 96(15): e0095822, 2022 08 10.
Article in English | MEDLINE | ID: covidwho-1949998

ABSTRACT

The spike protein on sarbecovirus virions contains two external, protruding domains: an N-terminal domain (NTD) with unclear function and a C-terminal domain (CTD) that binds the host receptor, allowing for viral entry and infection. While the CTD is well studied for therapeutic interventions, the role of the NTD is far less well understood for many coronaviruses. Here, we demonstrate that the spike NTD from SARS-CoV-2 and other sarbecoviruses binds to unidentified glycans in vitro similarly to other members of the Coronaviridae family. We also show that these spike NTD (S-NTD) proteins adhere to Calu3 cells, a human lung cell line, although the biological relevance of this is unclear. In contrast to what has been shown for Middle East respiratory syndrome coronavirus (MERS-CoV), which attaches sialic acids during cell entry, sialic acids present on Calu3 cells inhibited sarbecovirus infection. Therefore, while sarbecoviruses can interact with cell surface glycans similarly to other coronaviruses, their reliance on glycans for entry is different from that of other respiratory coronaviruses, suggesting sarbecoviruses and MERS-CoV have adapted to different cell types, tissues, or hosts during their divergent evolution. Our findings provide important clues for further exploring the biological functions of sarbecovirus glycan binding and adds to our growing understanding of the complex forces that shape coronavirus spike evolution. IMPORTANCE Spike N-terminal domains (S-NTD) of sarbecoviruses are highly diverse; however, their function remains largely understudied compared with the receptor-binding domains (RBD). Here, we show that sarbecovirus S-NTD can be phylogenetically clustered into five clades and exhibit various levels of glycan binding in vitro. We also show that, unlike some coronaviruses, including MERS-CoV, sialic acids present on the surface of Calu3, a human lung cell culture, inhibit SARS-CoV-2 and other sarbecoviruses. These results suggest that while glycan binding might be an ancestral trait conserved across different coronavirus families, the functional outcome during infection can vary, reflecting divergent viral evolution. Our results expand our knowledge on the biological functions of the S-NTD across diverse sarbecoviruses and provide insight on the evolutionary history of coronavirus spike.


Subject(s)
Evolution, Molecular , Middle East Respiratory Syndrome Coronavirus , Polysaccharides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19/virology , Cell Line , Humans , Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/metabolism , Polysaccharides/metabolism , Protein Domains , Receptors, Virus/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/metabolism , Sialic Acids/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
10.
EBioMedicine ; 81: 104101, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1906945

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes a respiratory illness named coronavirus disease 2019 (COVID-19), which is one of the main global health problems since 2019. Glycans attached to the Fc portion of immunoglobulin G (IgG) are important modulators of IgG effector functions. Fc region binds to different receptors on the surface of various immune cells, dictating the type of immune response. Here, we performed a large longitudinal study to determine whether the severity and duration of COVID-19 are associated with altered IgG glycosylation. METHODS: Using ultra-high-performance liquid chromatography analysis of released glycans, we analysed the composition of the total IgG N-glycome longitudinally during COVID-19 from four independent cohorts. We analysed 77 severe COVID-19 cases from the HR1 cohort (74% males, median age 72, age IQR 25-80); 31 severe cases in the HR2 cohort (77% males, median age 64, age IQR 41-86), 18 mild COVID-19 cases from the UK cohort (17% males, median age 50, age IQR 26-71) and 28 mild cases from the BiH cohort (71% males, median age 60, age IQR 12-78). FINDINGS: Multiple statistically significant changes in IgG glycome composition were observed during severe COVID-19. The most statistically significant changes included increased agalactosylation of IgG (meta-analysis 95% CI [0.03, 0.07], adjusted meta-analysis P= <0.0001), which regulates proinflammatory actions of IgG via complement system activation and indirectly as a lack of sialylation and decreased presence of bisecting N-acetylglucosamine on IgG (meta-analysis 95% CI [-0.11, -0.08], adjusted meta-analysis P= <0.0001), which indirectly affects antibody-dependent cell-mediated cytotoxicity. On the contrary, no statistically significant changes in IgG glycome composition were observed in patients with mild COVID-19. INTERPRETATION: The IgG glycome in severe COVID-19 patients is statistically significantly altered in a way that it indicates decreased immunosuppressive action of circulating immunoglobulins. The magnitude of observed changes is associated with the severity of the disease, indicating that aberrant IgG glycome composition or changes in IgG glycosylation may be an important molecular mechanism in COVID-19. FUNDING: This work has been supported in part by Croatian Science Foundation under the project IP-CORONA-2020-04-2052 and Croatian National Centre of Competence in Molecular Diagnostics (The European Structural and Investment Funds grant #KK.01.2.2.03.0006), by the UKRI/MRC (Cov-0331 - MR/V027883/1) and by the National Institutes for Health Research Nottingham Biomedical Research Centre and by Ministry Of Science, Higher Education and Youth Of Canton Sarajevo, grant number 27-02-11-4375-10/21.


Subject(s)
COVID-19 , Immunoglobulin G , Adolescent , Aged , Female , Humans , Longitudinal Studies , Male , Middle Aged , Observational Studies as Topic , Polysaccharides/metabolism , SARS-CoV-2
11.
PLoS Pathog ; 18(6): e1010590, 2022 06.
Article in English | MEDLINE | ID: covidwho-1892333

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been transmitted across all over the world, in contrast to the limited epidemic of genetically- and virologically-related SARS-CoV. However, the molecular basis explaining the difference in the virological characteristics among SARS-CoV-2 and SARS-CoV has been poorly defined. Here we identified that host sialoglycans play a significant role in the efficient spread of SARS-CoV-2 infection, while this was not the case with SARS-CoV. SARS-CoV-2 infection was significantly inhibited by α2-6-linked sialic acid-containing compounds, but not by α2-3 analog, in VeroE6/TMPRSS2 cells. The α2-6-linked compound bound to SARS-CoV-2 spike S1 subunit to competitively inhibit SARS-CoV-2 attachment to cells. Enzymatic removal of cell surface sialic acids impaired the interaction between SARS-CoV-2 spike and angiotensin-converting enzyme 2 (ACE2), and suppressed the efficient spread of SARS-CoV-2 infection over time, in contrast to its least effect on SARS-CoV spread. Our study provides a novel molecular basis of SARS-CoV-2 infection which illustrates the distinctive characteristics from SARS-CoV.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Peptidyl-Dipeptidase A/metabolism , Polysaccharides/metabolism , Protein Binding , Spike Glycoprotein, Coronavirus/metabolism
12.
Biomaterials ; 286: 121585, 2022 07.
Article in English | MEDLINE | ID: covidwho-1881707

ABSTRACT

Among all the biological entities involved in the immune response, galectins, a family of glycan-binding proteins, have been described as key in immune cell homeostasis and modulation. More importantly, only some galectin family members are crucial in the resolution of inflammation, while others perpetuate the immune response in a pathological context. As they are expressed in most major diseases, their potential as targets for new therapies seems promising. Most of the galectin family members' ubiquitous expression points to the need for targeted treatments to ensure effectiveness. Engineered biomaterials are emerging as a promising method to improve galectin-targeted strategies' therapeutic performance. In this review, we provide an overview of the role of galectins in health and disease and their potential as therapeutic targets, as well as the state-of-the-art and future directions of galectin-targeted biomaterials.


Subject(s)
Biocompatible Materials , Galectins , Galectins/metabolism , Galectins/therapeutic use , Humans , Inflammation , Polysaccharides/metabolism
13.
Nutrients ; 14(11)2022 May 27.
Article in English | MEDLINE | ID: covidwho-1869720

ABSTRACT

Fucoidan, a sulfated polysaccharide extracted from brown seaweed, has been proposed to effectively treat and prevent various viral infections. However, the mechanisms behind its antiviral activity are not completely understood. We investigate here the global transcriptional changes in bone marrow-derived dendritic cells (BMDCs) using RNA-Seq technology. Through both analysis of differentially expressed genes (DEG) and gene set enrichment analysis (GSEA), we found that fucoidan-treated BMDCs were enriched in virus-specific response pathways, including that of SARS-CoV-2, as well as pathways associated with nucleic acid-sensing receptors (RLR, TLR, NLR, STING), and type I interferon (IFN) production. We show that these transcriptome changes are driven by well-known regulators of the inflammatory response against viruses, including IRF, NF-κB, and STAT family transcription factors. Furthermore, 435 of the 950 upregulated DEGs are classified as type I IFN-stimulated genes (ISGs). Flow cytometric analysis additionally showed that fucoidan increased MHCII, CD80, and CD40 surface markers in BMDCs, indicative of greater antigen presentation and co-stimulation functionality. Our current study suggests that fucoidan transcriptionally activates PRR signaling, type I IFN production and signaling, ISGs production, and DC maturation, highlighting a potential mechanism of fucoidan-induced antiviral activity.


Subject(s)
COVID-19 , Dendritic Cells , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Humans , Polysaccharides/metabolism , Polysaccharides/pharmacology , SARS-CoV-2
14.
Curr Opin Struct Biol ; 75: 102402, 2022 08.
Article in English | MEDLINE | ID: covidwho-1852027

ABSTRACT

The structure and post-translational processing of the SARS-CoV-2 spike glycoprotein (S) is intimately associated with the function of the virus and of sterilising vaccines. The surface of the S protein is extensively modified by glycans, and their biosynthesis is driven by both the wider cellular context, and importantly, the underlining protein structure and local glycan density. Comparison of virally derived S protein with both recombinantly derived and adenovirally induced proteins, reveal hotspots of protein-directed glycosylation that drive conserved glycosylation motifs. Molecular dynamics simulations revealed that, while the S surface is extensively shielded by N-glycans, it presents regions vulnerable to neutralising antibodies. Furthermore, glycans have been shown to influence the accessibility of the receptor binding domain and the binding to the cellular receptor. The emerging picture is one of unifying, principles of S protein glycosylation and an intimate role of glycosylation in immunogen structure and efficacy.


Subject(s)
COVID-19 , SARS-CoV-2 , Glycosylation , Humans , Polysaccharides/metabolism , Protein Binding
15.
Molecules ; 27(9)2022 Apr 26.
Article in English | MEDLINE | ID: covidwho-1810050

ABSTRACT

Plant polysaccharides can increase the number and variety of beneficial bacteria in the gut and produce a variety of active substances, including short-chain fatty acids (SCFAs). Gut microbes and their specific metabolites have the effects of promoting anti-inflammatory activity, enhancing the intestinal barrier, and activating and regulating immune cells, which are beneficial for improving immunity. A strong immune system reduces inflammation caused by external viruses and other pathogens. Coronavirus disease 2019 (COVID-19) is still spreading globally, and patients with COVID-19 often have intestinal disease and weakened immune systems. This article mainly evaluates how polysaccharides in plants can improve the immune system barrier by improving the intestinal microecological balance, which may have potential in the prevention and treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Gastrointestinal Microbiome , Fatty Acids, Volatile/metabolism , Humans , Immunity , Polysaccharides/metabolism , Polysaccharides/pharmacology , Polysaccharides/therapeutic use
16.
Int J Mol Sci ; 23(5)2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1736943

ABSTRACT

Rouleaux (stacked clumps) of red blood cells (RBCs) observed in the blood of COVID-19 patients in three studies call attention to the properties of several enveloped virus strains dating back to seminal findings of the 1940s. For COVID-19, key such properties are: (1) SARS-CoV-2 binds to RBCs in vitro and also in the blood of COVID-19 patients; (2) although ACE2 is its target for viral fusion and replication, SARS-CoV-2 initially attaches to sialic acid (SA) terminal moieties on host cell membranes via glycans on its spike protein; (3) certain enveloped viruses express hemagglutinin esterase (HE), an enzyme that releases these glycan-mediated bindings to host cells, which is expressed among betacoronaviruses in the common cold strains but not the virulent strains, SARS-CoV, SARS-CoV-2 and MERS. The arrangement and chemical composition of the glycans at the 22 N-glycosylation sites of SARS-CoV-2 spike protein and those at the sialoglycoprotein coating of RBCs allow exploration of specifics as to how virally induced RBC clumping may form. The in vitro and clinical testing of these possibilities can be sharpened by the incorporation of an existing anti-COVID-19 therapeutic that has been found in silico to competitively bind to multiple glycans on SARS-CoV-2 spike protein.


Subject(s)
COVID-19/metabolism , Erythrocytes/metabolism , SARS-CoV-2/metabolism , Sialoglycoproteins/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Basigin/metabolism , Binding Sites , COVID-19/virology , Glycosylation , Hemagglutination , Hemagglutinins, Viral/metabolism , Humans , N-Acetylneuraminic Acid/metabolism , Polysaccharides/metabolism , Protein Binding , SARS-CoV-2/physiology , Viral Fusion Proteins/metabolism , Virus Internalization
18.
Sci Rep ; 12(1): 2594, 2022 02 16.
Article in English | MEDLINE | ID: covidwho-1692553

ABSTRACT

Complex glycans decorate viral surface proteins and play a critical role in virus-host interactions. Viral surface glycans shield vulnerable protein epitopes from host immunity yet can also present distinct "glycoepitopes" that can be targeted by host antibodies such as the potent anti-HIV antibody 2G12 that binds high-mannose glycans on gp120. Two recent publications demonstrate 2G12 binding to high mannose glycans on SARS-CoV-2 and select Influenza A (Flu) H3N2 viruses. Previously, our lab observed 2G12 binding and functional inhibition of a range of Flu viruses that include H3N2 and H1N1 lineages. In this manuscript, we present these data alongside structural analyses to offer an expanded picture of 2G12-Flu interactions. Further, based on the remarkable breadth of 2G12 N-glycan recognition and the structural factors promoting glycoprotein oligomannosylation, we hypothesize that 2G12 glycoepitopes can be defined from protein structure alone according to N-glycan site topology. We develop a model describing 2G12 glycoepitopes based on N-glycan site topology, and apply the model to identify viruses within the Protein Data Bank presenting putative 2G12 glycoepitopes for 2G12 repurposing toward analytical, diagnostic, and therapeutic applications.


Subject(s)
Antibodies, Monoclonal/metabolism , Broadly Neutralizing Antibodies/metabolism , HIV Antibodies/metabolism , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Models, Immunological , SARS-CoV-2/immunology , Animals , Dogs , Drug Repositioning , Epitopes , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H3N2 Subtype/metabolism , Madin Darby Canine Kidney Cells , Molecular Targeted Therapy , Neutralization Tests , Polysaccharides/metabolism
19.
Viruses ; 14(2)2022 02 08.
Article in English | MEDLINE | ID: covidwho-1674831

ABSTRACT

This article aims to review all currently known interactions between animal and human coronaviruses and their cellular receptors. Over the past 20 years, three novel coronaviruses have emerged that have caused severe disease in humans, including SARS-CoV-2 (severe acute respiratory syndrome virus 2); therefore, a deeper understanding of coronavirus host-cell interactions is essential. Receptor-binding is the first stage in coronavirus entry prior to replication and can be altered by minor changes within the spike protein-the coronavirus surface glycoprotein responsible for the recognition of cell-surface receptors. The recognition of receptors by coronaviruses is also a major determinant in infection, tropism, and pathogenesis and acts as a key target for host-immune surveillance and other potential intervention strategies. We aim to highlight the need for a continued in-depth understanding of this subject area following on from the SARS-CoV-2 pandemic, with the possibility for more zoonotic transmission events. We also acknowledge the need for more targeted research towards glycan-coronavirus interactions as zoonotic spillover events from animals to humans, following an alteration in glycan-binding capability, have been well-documented for other viruses such as Influenza A.


Subject(s)
Host Microbial Interactions , Polysaccharides/metabolism , Receptors, Virus/metabolism , SARS-CoV-2/metabolism , Viral Tropism , Animals , COVID-19/transmission , COVID-19/virology , Humans , Protein Binding , SARS-CoV-2/immunology , Virus Internalization
20.
Int J Mol Sci ; 22(16)2021 Aug 05.
Article in English | MEDLINE | ID: covidwho-1662663

ABSTRACT

Coxsackievirus A24 variant (CVA24v) is the primary causative agent of the highly contagious eye infection designated acute hemorrhagic conjunctivitis (AHC). It is solely responsible for two pandemics and several recurring outbreaks of the disease over the last decades, thus affecting millions of individuals throughout the world. To date, no antiviral agents or vaccines are available for combating this disease, and treatment is mainly supportive. CVA24v utilizes Neu5Ac-containing glycans as attachment receptors facilitating entry into host cells. We have previously reported that pentavalent Neu5Ac conjugates based on a glucose-scaffold inhibit CVA24v infection of human corneal epithelial cells. In this study, we report on the design and synthesis of scaffold-replaced pentavalent Neu5Ac conjugates and their effect on CVA24v cell transduction and the use of cryogenic electron microscopy (cryo-EM) to study the binding of these multivalent conjugates to CVA24v. The results presented here provide insights into the development of Neu5Ac-based inhibitors of CVA24v and, most significantly, the first application of cryo-EM to study the binding of a multivalent ligand to a lectin.


Subject(s)
Antiviral Agents/pharmacology , Coxsackievirus Infections/diet therapy , Enterovirus C, Human/drug effects , N-Acetylneuraminic Acid/pharmacology , Conjunctivitis, Acute Hemorrhagic/drug therapy , Conjunctivitis, Acute Hemorrhagic/metabolism , Conjunctivitis, Acute Hemorrhagic/virology , Coxsackievirus Infections/metabolism , Coxsackievirus Infections/virology , Glucose/metabolism , Humans , Lectins/metabolism , Ligands , Polysaccharides/metabolism , Receptors, Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL