Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
World J Microbiol Biotechnol ; 38(12): 230, 2022 Oct 03.
Article in English | MEDLINE | ID: covidwho-2048467

ABSTRACT

Amikacin is an aminoglycoside antibiotic used in drug-resistant bacterial infections. The spread of bacterial infections has become a severe concern for the treatment system because of the simultaneous drug resistance bacteria and SARS-CoV-2 hospitalized patients. One of the most common bacteria in the development of drug resistance is Klebsiella strains, which is a severe threat due to the possibility of biofilm production. In this regard, recent nanotechnology studies have proposed using nanocarriers as a practical proposal to improve the performance of antibiotics and combat drug resistance. Among drug nanocarriers, niosomes are considered for their absorption mechanism, drug coverage, and biocompatibility. In this study, niosomal formulations were synthesized by the thin-layer method. After optimizing the synthesized niosomes, their properties were evaluated in terms of stability and drug release rate. The toxicity of the optimal formulation was then analyzed. The effect of free amikacin and amikacin encapsulated in niosome on biofilm inhibition were compared in multi-drug resistant isolated Klebsiella strains, and the mrkD gene expression was calculated. The MIC and MBC were measured for the free drug and amikacin loaded in the noisome. The particle size of synthesized amikacin-loaded niosomes ranged from 175.2 to 248.3 nm. The results showed that the amount of lipid and the molar ratio of tween 60 to span 60 has a positive effect on particle size, while the molar ratio of surfactant to cholesterol has a negative effect. The highest release rate in amikacin-loaded niosomes is visible in the first 8 h, and then a slower release occurs up to 72 h. The cytotoxicity induced by amikacin-loaded niosome is significantly less than the cytotoxicity of free amikacin in HFF cells (***p < 0.001, **p < 0.01). The mrkD mRNA expression level in the studied strains was significantly reduced after treatment with niosome-containing amikacin compared to free amikacin (***p < 0.001). It was confirmed that in the presence of the niosome, the amikacin antibacterial activity increased while the concentration of the drug used decreased, the formation of biofilm inhibited, and reduced antibiotics resistance in MDR Klebsiella strains.


Subject(s)
Bacterial Infections , COVID-19 , Nanoparticles , Amikacin/pharmacology , Anti-Bacterial Agents/pharmacology , Cholesterol , Humans , Klebsiella pneumoniae , Lipids , Liposomes/pharmacology , Microbial Sensitivity Tests , Polysorbates/pharmacology , RNA, Messenger , SARS-CoV-2 , Surface-Active Agents/pharmacology
2.
Sci Rep ; 12(1): 11546, 2022 07 07.
Article in English | MEDLINE | ID: covidwho-1921709

ABSTRACT

The COVID-19 pandemic motivated research on antiviral filtration used in personal protective equipment and HVAC systems. In this research, three coating compositions of NaCl, Tween 20 surfactant, and NaCl-Tween 20 were examined on polypropylene spun-bond filters. The pressure drop, coverage, and crystal size of the coating methods and compositions were measured. Also, in vitro plaque assays of the Phi6 Bacteriophage on Pseudomonas syringae as a simulation of an enveloped respiratory virus was performed to investigate the antiviral properties of the coating. NaCl and NaCl-Tween 20 increased the pressure drop in the range of 40-50 Pa for a loading of 5 mg/cm2. Tween 20 has shown an impact on the pressure drop as low as 10 Pa and made the filter surface more hydrophilic which kept the virus droplets on the surface. The NaCl-Tween 20 coated samples could inactivate 108 plaque forming units (PFU) of virus in two hours of incubation. Tween 20 coated filters with loading as low as 0.2 mg/cm2 reduced the activity of 108 PFU of virus from 109 to 102 PFU/mL after 2 h of incubation. NaCl-coated samples with a salt loading of 15 mg/cm2 could not have antiviral properties higher than reducing the viral activity from 109 to 105 PFU/mL in 4 h of incubation.


Subject(s)
Antiviral Agents , Polysorbates , SARS-CoV-2 , Sodium Chloride , Surface-Active Agents , Antiviral Agents/pharmacology , Lipoproteins , Polysorbates/chemistry , Polysorbates/pharmacology , Prospective Studies , RNA, Viral , SARS-CoV-2/drug effects , Sodium Chloride/pharmacology , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology
3.
Cell ; 184(15): 3915-3935.e21, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1283262

ABSTRACT

Emerging evidence indicates a fundamental role for the epigenome in immunity. Here, we mapped the epigenomic and transcriptional landscape of immunity to influenza vaccination in humans at the single-cell level. Vaccination against seasonal influenza induced persistently diminished H3K27ac in monocytes and myeloid dendritic cells (mDCs), which was associated with impaired cytokine responses to Toll-like receptor stimulation. Single-cell ATAC-seq analysis revealed an epigenomically distinct subcluster of monocytes with reduced chromatin accessibility at AP-1-targeted loci after vaccination. Similar effects were observed in response to vaccination with the AS03-adjuvanted H5N1 pandemic influenza vaccine. However, this vaccine also stimulated persistently increased chromatin accessibility at interferon response factor (IRF) loci in monocytes and mDCs. This was associated with elevated expression of antiviral genes and heightened resistance to the unrelated Zika and Dengue viruses. These results demonstrate that vaccination stimulates persistent epigenomic remodeling of the innate immune system and reveal AS03's potential as an epigenetic adjuvant.


Subject(s)
Epigenomics , Immunity/genetics , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Single-Cell Analysis , Transcription, Genetic , Vaccination , Adolescent , Adult , Anti-Bacterial Agents/pharmacology , Antigens, CD34/metabolism , Antiviral Agents/pharmacology , Cellular Reprogramming , Chromatin/metabolism , Cytokines/biosynthesis , Drug Combinations , Female , Gene Expression Regulation , Histones/metabolism , Humans , Immunity, Innate/genetics , Influenza A Virus, H5N1 Subtype/drug effects , Influenza A Virus, H5N1 Subtype/immunology , Interferon Type I/metabolism , Male , Myeloid Cells/metabolism , Polysorbates/pharmacology , Squalene/pharmacology , Toll-Like Receptors/metabolism , Transcription Factor AP-1/metabolism , Transcriptome/genetics , Young Adult , alpha-Tocopherol/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL