Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Sci Rep ; 12(1): 11546, 2022 Jul 07.
Article in English | MEDLINE | ID: covidwho-1921709


The COVID-19 pandemic motivated research on antiviral filtration used in personal protective equipment and HVAC systems. In this research, three coating compositions of NaCl, Tween 20 surfactant, and NaCl-Tween 20 were examined on polypropylene spun-bond filters. The pressure drop, coverage, and crystal size of the coating methods and compositions were measured. Also, in vitro plaque assays of the Phi6 Bacteriophage on Pseudomonas syringae as a simulation of an enveloped respiratory virus was performed to investigate the antiviral properties of the coating. NaCl and NaCl-Tween 20 increased the pressure drop in the range of 40-50 Pa for a loading of 5 mg/cm2. Tween 20 has shown an impact on the pressure drop as low as 10 Pa and made the filter surface more hydrophilic which kept the virus droplets on the surface. The NaCl-Tween 20 coated samples could inactivate 108 plaque forming units (PFU) of virus in two hours of incubation. Tween 20 coated filters with loading as low as 0.2 mg/cm2 reduced the activity of 108 PFU of virus from 109 to 102 PFU/mL after 2 h of incubation. NaCl-coated samples with a salt loading of 15 mg/cm2 could not have antiviral properties higher than reducing the viral activity from 109 to 105 PFU/mL in 4 h of incubation.

Antiviral Agents , Polysorbates , SARS-CoV-2 , Sodium Chloride , Surface-Active Agents , Antiviral Agents/pharmacology , Lipoproteins , Polysorbates/chemistry , Polysorbates/pharmacology , Prospective Studies , RNA, Viral , SARS-CoV-2/drug effects , Sodium Chloride/pharmacology , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology
Cell ; 184(15): 3915-3935.e21, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1283262


Emerging evidence indicates a fundamental role for the epigenome in immunity. Here, we mapped the epigenomic and transcriptional landscape of immunity to influenza vaccination in humans at the single-cell level. Vaccination against seasonal influenza induced persistently diminished H3K27ac in monocytes and myeloid dendritic cells (mDCs), which was associated with impaired cytokine responses to Toll-like receptor stimulation. Single-cell ATAC-seq analysis revealed an epigenomically distinct subcluster of monocytes with reduced chromatin accessibility at AP-1-targeted loci after vaccination. Similar effects were observed in response to vaccination with the AS03-adjuvanted H5N1 pandemic influenza vaccine. However, this vaccine also stimulated persistently increased chromatin accessibility at interferon response factor (IRF) loci in monocytes and mDCs. This was associated with elevated expression of antiviral genes and heightened resistance to the unrelated Zika and Dengue viruses. These results demonstrate that vaccination stimulates persistent epigenomic remodeling of the innate immune system and reveal AS03's potential as an epigenetic adjuvant.

Epigenomics , Immunity/genetics , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Single-Cell Analysis , Transcription, Genetic , Vaccination , Adolescent , Adult , Anti-Bacterial Agents/pharmacology , Antigens, CD34/metabolism , Antiviral Agents/pharmacology , Cellular Reprogramming , Chromatin/metabolism , Cytokines/biosynthesis , Drug Combinations , Female , Gene Expression Regulation , Histones/metabolism , Humans , Immunity, Innate/genetics , Influenza A Virus, H5N1 Subtype/drug effects , Influenza A Virus, H5N1 Subtype/immunology , Interferon Type I/metabolism , Male , Myeloid Cells/metabolism , Polysorbates/pharmacology , Squalene/pharmacology , Toll-Like Receptors/metabolism , Transcription Factor AP-1/metabolism , Transcriptome/genetics , Young Adult , alpha-Tocopherol/pharmacology