Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
1.
Microbiol Spectr ; 11(1): e0387222, 2023 Feb 14.
Article in English | MEDLINE | ID: covidwho-2239688

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), a continuously evolving pathogen, causes severe diarrhea in piglets, with high mortality rates. To prevent or mitigate the disease, it is common practice to develop live or inactivated PEDV vaccines based on cell-adapted viral variants. Propagating wild-type PEDV in cultured cells is, however, often challenging due to the lack of knowledge about the requirements for the cell adaptation of PEDV. In the present study, by using the RNA-targeted reverse genetic system for PEDV to apply S protein swapping followed by the rescue of the recombinant viruses, three key amino acid mutations in the S protein, A605E, E633Q, and R891G, were identified, which enable attenuated PEDV strain DR13 (DR13att) to efficiently and productively infect Vero cells, in contrast to the parental DR13 strain (DR13par). The former two key mutations reside inside and in the vicinity of the receptor binding domain (RBD), respectively, while the latter occurs at the N-terminal end of the fusion peptide (FP). Besides the three key mutations, other mutations in the S protein further enhanced the infection efficiency of the recombinant viruses. We hypothesize that the three mutations changed PEDV tropism by altering the S2' cleavage site and the RBD structure. This study provides basic molecular insight into cell adaptation by PEDV, which is also relevant for vaccine design. IMPORTANCE Porcine epidemic diarrhea virus (PEDV) is a lethal pathogen for newborn piglets, and an efficient vaccine is needed urgently. However, propagating wild-type PEDV in cultured cells for vaccine development is still challenging due to the lack of knowledge about the mechanism of the cell adaptation of PEDV. In this study, we found that three amino acid mutations, A605E, E633Q, and R891G, in the spike protein of the Vero cell-adapted PEDV strain DR13att were critical for its cell adaptation. After analyzing the mutation sites in the spike protein, we hypothesize that the cell adaptation of DR13att was achieved by altering the S2' cleavage site and the RBD structure. This study provides new molecular insight into the mechanism of PEDV culture adaptation and new strategies for PEDV vaccine design.


Subject(s)
Coronavirus Infections , Coronavirus , Porcine epidemic diarrhea virus , Swine Diseases , Chlorocebus aethiops , Animals , Swine , Vero Cells , Porcine epidemic diarrhea virus/genetics , Coronavirus/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution , Coronavirus Infections/veterinary , Coronavirus Infections/genetics , Swine Diseases/prevention & control
2.
Int J Biol Macromol ; 231: 123282, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2237653

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), an enteropathogenic coronavirus, has catastrophic impacts on the global pig industry. However, there are still no anti-PEDV drugs with accurate targets. G-quadruplexes (G4s) are non-canonical secondary structures formed within guanine-rich regions of DNA or RNA, and have attracted great attention as potential targets for antiviral strategy. In this study, we reported two putative G4-forming sequences (PQS) in S and Nsp5 genes of PEDV genome based on bioinformatic analysis, and identified that S-PQS and Nsp5-PQS were enabled to fold into G4 structure by using circular dichroism spectroscopy and fluorescence turn-on assay. Furthermore, we verified that both S-PQS and Nsp5-PQS PQS could form G4 structure in live cells by immunofluorescence microscopy. In addition, G4-specific compounds, such as TMPyP4 and PDS, could significantly inhibit transcription, translation and proliferation of PEDV in vitro. Importantly, these compounds exert antiviral activity at the post-entry step of PEDV infection cycle, by inhibiting viral genome replication and protein expression. Lastly, we demonstrated that TMPyP4 can inhibit reporter gene expression by targeting G4 structure in Nsp5. Taken together, these findings not only reinforce the presence of viral G-quadruplex sequences in PEDV genome but also provide new insights into developing novel antiviral drugs targeting PEDV RNA G-quadruplexes.


Subject(s)
Coronavirus , G-Quadruplexes , Porcine epidemic diarrhea virus , Animals , Swine , Antiviral Agents , Porcine epidemic diarrhea virus/genetics , Coronavirus/genetics , Virus Replication
3.
J Virol ; 97(2): e0175122, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2237611

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) belongs to the genus Alphacoronavirus of the Coronaviridae family and can cause fatal watery diarrhea in piglets, causing significant economic losses. Heterogeneous nuclear protein U (HNRNPU) is a novel RNA sensor involved in sensing viral RNA in the nucleus and mediating antiviral immunity. However, it remains elusive whether and how cytoplasmic PEDV can be sensed by the RNA sensor HNRNPU. In this study we determined that HNRNPU was the binding partner of Nsp13 by immunoprecipitation-liquid chromatography-tandem mass spectrometry (IP/LC-MS/MS) analysis. The interaction between Nsp13 and HNRNPU was demonstrated by using coimmunoprecipitation and confocal immunofluorescence. Next, we identified that HNRNPU expression is significantly increased during PEDV infection, whereas the transcription factor hepatocyte nuclear factor 1α (HNF1A) could negatively regulate HNRNPU expression. HNRNPU was retained in the cytoplasm by interaction with PEDV Nsp13. We found that HNRNPU overexpression effectively facilitated PEDV replication, while knockdown of HNRNPU impaired viral replication, suggesting a promoting function of HNRNPU to PEDV infection. Additionally, HNRNPU was found to promote PEDV replication by affecting TRAF3 degradation at the transcriptional level to inhibit PEDV-induced beta interferon (IFN-ß) production. Mechanistically, HNRNPU downregulates TRAF3 mRNA levels via the METTL3-METTL14/YTHDF2 axis and regulates immune responses through YTHDF2-dependent mRNA decay. Together, our findings reveal that HNRNPU serves as a negative regulator of innate immunity by degrading TRAF3 mRNA in a YTHDF2-dependent manner and consequently facilitating PEDV propagation. Our findings provide new insights into the immune escape of PEDV. IMPORTANCE PEDV, a highly infectious enteric coronavirus, has spread rapidly worldwide and caused severe economic losses. During virus infection, the host regulates innate immunity to inhibit virus infection. However, PEDV has evolved a variety of different strategies to suppress host IFN-mediated antiviral responses. Here, we identified that HNRNPU interacted with viral protein Nsp13. HNRNPU protein expression was upregulated, and the transcription factor HNF1A could negatively regulate HNRNPU expression during PEDV infection. HNRNPU also downregulated TRAF3 mRNA through the METTL3-METTL14/YTHDF2 axis to inhibit the production of IFN-ß and downstream antiviral genes in PEDV-infected cells, thereby promoting viral replication. Our findings reveal a new mechanism with which PEDV suppresses the host antiviral response.


Subject(s)
Coronavirus Infections , Nuclear Proteins , Porcine epidemic diarrhea virus , Swine Diseases , Virus Replication , Animals , Cell Line , Coronavirus Infections/immunology , Coronavirus Infections/virology , Nuclear Proteins/metabolism , Porcine epidemic diarrhea virus/physiology , RNA, Messenger/metabolism , Swine , Swine Diseases/immunology , Swine Diseases/virology , TNF Receptor-Associated Factor 3/metabolism , Transcription Factors/metabolism , Virus Replication/physiology
4.
Virology ; 579: 1-8, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2237231

ABSTRACT

Since the emergence of the highly pathogenic porcine epidemic diarrhea virus (PEDV) strain in 2010, the prevention of porcine epidemic diarrhea (PED) in pig farms remains problematic. To find the reasons behind the high mortality in young piglets, the relative mRNA expression of inflammation-related factors in infected pigs of different ages as well as uninfected pigs were detected by RT-qPCR. The results showed that the mRNA expression of these factors including IL-6 and TNF-α was more increased in infected younger piglets than infected older pigs. To clarify the relationship between these inflammation related factors, the pairwise linear correlation between the relative expression of these factors were analyzed and showed as network mapping with different correlation coefficients. A strong positive correlation was observed between the expression of various factors in 1-week-old piglets. Combined with the difference in mortality of PEDV infection in pigs of different ages, we hypothesized that lactic acid bacteria (LAB) could inhibit PEDV infection in newborn piglets, and an in vivo experiment was carried out. The results of survival rate and wet/dry ratio showed that LAB alleviated PEDV indued mortality and diarrhea. The detection of viral copies and tissue section staining showed less observed viruses in LAB treated pig. RT-qPCR results of gene expression in intestines showed that LAB modulated the gene expression of various host barrier genes, indicating that LAB is potential to inhibit PEDV infection by regulating the host intestinal barrier. However, to use LAB as therapy, how to improve the efficiency on inhibiting PEDV infection needs further studies.


Subject(s)
Coronavirus Infections , Lactobacillales , Porcine epidemic diarrhea virus , Swine Diseases , Swine , Animals , Porcine epidemic diarrhea virus/genetics , Lactobacillales/genetics , Diarrhea/prevention & control , Diarrhea/veterinary , Diarrhea/pathology , RNA, Messenger , Inflammation , Administration, Oral , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/pathology
5.
J Virol ; 96(5): e0088921, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-2223570

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) causes a porcine disease associated with swine epidemic diarrhea. Different antagonistic strategies have been identified, and the mechanism by which PEDV infection impairs the production of interferon (IFN) and delays the activation of the IFN response to escape host innate immunity has been determined, but the pathogenic mechanisms of PEDV infection remain enigmatic. Our preliminary results revealed that endogenous F-box and WD repeat domain-containing 7 (FBXW7) protein, the substrate recognition component of the SCF-type E3 ubiquitin ligase, is downregulated in PEDV-infected Vero E6 cells, according to the results from an isobaric tags for relative and absolute quantification (iTRAQ) analysis. Overexpression of FBXW7 in target cells makes them more resistant to PEDV infection, whereas ablation of FBXW7 expression by small interfering RNA (siRNA) significantly promotes PEDV infection. In addition, FBXW7 was verified as an innate antiviral factor capable of enhancing the expression of RIG-I and TBK1, and it was found to induce interferon-stimulated genes (ISGs), which led to an elevated antiviral state of the host cells. Moreover, we revealed that PEDV nonstructural protein 2 (nsp2) interacts with FBXW7 and targets FBXW7 for degradation through the K48-linked ubiquitin-proteasome pathway. Consistent with the results proven in vitro, FBXW7 reduction was also confirmed in different intestinal tissues from PEDV-infected specific-pathogen-free (SPF) pigs. Taken together, the data indicated that PEDV has evolved with a distinct antagonistic strategy to circumvent the host antiviral response by targeting the ubiquitin-proteasome-mediated degradation of FBXW7. Our findings provide novel insights into PEDV infection and pathogenesis. IMPORTANCE To counteract the host antiviral defenses, most viruses, including coronaviruses, have evolved with diverse strategies to dampen host IFN-mediated antiviral response, by interfering with or evading specific host regulators at multiple steps of this response. In this study, a novel antagonistic strategy was revealed showing that PEDV infection could circumvent the host innate response by targeted degradation of endogenous FBXW7 in target cells, a process that was verified to be a positive modulator for the host innate immune system. Degradation of FBXW7 hampers host innate antiviral activation and facilitates PEDV replication. Our findings reveal a new mechanism exploited by PEDV to suppress the host antiviral response.


Subject(s)
Coronavirus Infections/veterinary , F-Box-WD Repeat-Containing Protein 7/metabolism , Immune Evasion , Immunity, Innate , Porcine epidemic diarrhea virus/immunology , Swine Diseases/immunology , Animals , Antiviral Agents/immunology , Chlorocebus aethiops , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Interferon Type I/metabolism , Proteasome Endopeptidase Complex/metabolism , Signal Transduction/immunology , Swine , Swine Diseases/prevention & control , Swine Diseases/virology , Ubiquitins/metabolism , Vero Cells
6.
J Virol ; 97(1): e0161422, 2023 01 31.
Article in English | MEDLINE | ID: covidwho-2223572

ABSTRACT

Porcine epidemic diarrhea (PED) indicates the disease of the acute and highly contagious intestinal infection due to porcine epidemic diarrhea virus (PEDV), with the characteristics of watery diarrhea, vomiting, and dehydration. One of the reasons for diarrhea and death of piglets is PEDV, which leads to 100% mortality in neonatal piglets. Therefore, it is necessary to explore the interaction between virus and host to prevent and control PEDV. This study indicated that the host protein, pre-mRNA processing factor 19 (PRPF19), could be controlled by the signal transducer as well as activator of transcription 1 (STAT1). Thus, PEDV replication could be hindered through selective autophagy. Moreover, PRPF19 was found to recruit the E3 ubiquitin ligase MARCH8 to the N protein for ubiquitination. For the purpose of degradation, the ubiquitin N protein is acknowledged by the cargo receptor NDP52 and transported to autolysosomes, thus inhibiting virus proliferation. To conclude, a unique antiviral mechanism of PRPF19-mediated virus restriction was shown. Moreover, a view of the innate immune response and protein degradation against PEDV replication was provided in this study. IMPORTANCE The highly virulent porcine epidemic diarrhea virus (PEDV) emerged in 2010, and causes high mortality rates in newborn pigs. There are no effective and safe vaccines against the highly virulent PEDV. This virus has caused devastating economic losses in the pork industry worldwide. Studying the relationship between virus and host antiviral factors is important to develop the new antiviral strategies. This study identified the pre-mRNA processing factor 19 (PRPF19) as a novel antiviral protein in PEDV replication and revealed its viral restriction mechanisms for the first time. PRPF19 recruited the E3 ubiquitin ligase MARCH8 to the PEDV N protein for ubiquitination, and the ubiquitin N protein was acknowledged by the cargo receptor NDP52 and transported to autolysosomes for degradation. Our findings provide new insights in host antiviral factors PRPF19 that regulate the selective autophagy protein degradation pathway to inhibit PEDV replication.


Subject(s)
Capsid Proteins , Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Capsid Proteins/metabolism , Coronavirus Infections/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Porcine epidemic diarrhea virus/physiology , Swine , Swine Diseases/immunology , Swine Diseases/virology , Ubiquitin-Protein Ligases/metabolism , Ubiquitins , Virus Replication/genetics , Nuclear Proteins/metabolism , Autophagy
7.
Virol J ; 20(1): 13, 2023 01 20.
Article in English | MEDLINE | ID: covidwho-2214603

ABSTRACT

BACKGROUND: Porcine epidemic diarrhea virus (PEDV) variant strains cause great economic losses to the global swine industry. However, vaccines do not provide sufficient protection against currently circulating strains due to viral mutations. This study traced the molecular characteristics of the most recent isolates in China and aimed to provide a basis for the prevention and treatment of PEDV. METHODS: We obtained samples from a Chinese diarrheal swine farm in 2022. Reverse transcription polymerase chain reaction and immunofluorescence were used to determine the etiology, and the full-length PEDV genome was sequenced. Nucleotide similarity was calculated using MEGA to construct a phylogenetic tree and DNASTAR. Mutant amino acids were aligned using DNAMAN and modeled by SWISS-MODEL, Phyre2 and FirstGlance in JMOL for protein tertiary structure simulation. Additionally, TMHMM was used for protein function prediction. RESULTS: A PEDV virulent strain CH/HLJJS/2022 was successfully isolated in China. A genome-wide based phylogenetic analysis suggests that it belongs to the GII subtype, and 96.1-98.9% homology existed in the whole genomes of other strains. For the first time, simultaneous mutations of four amino acids were found in the highly conserved membrane (M) and nucleocapsid (N) proteins, as well as eight amino acid mutations that differed from the vast majority of strains in the spike (S) protein. Three of the mutations alter the S-protein spatial structure. In addition, typing markers exist during strain evolution, but isolates are using the fusion of specific amino acids from multiple variant strains to add additional features, as also demonstrated by protein alignments and 3D models of numerous subtype strains. CONCLUSION: The newly isolated prevalent strain CH/HLJJS/2022 belonged to the GII subtype, and thirteen mutations different from other strains were found, including mutations in the highly conserved m and N proteins, and in the S1° and COE neutralizing epitopes of the S protein. PEDV is breaking through original cognitions and moving on a more complex path. Surveillance for PEDV now and in the future and improvements derived from mutant strain vaccines are highly warranted.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Viral Vaccines , Swine , Animals , Phylogeny , Mutation , Viral Vaccines/genetics , Amino Acids/genetics , China/epidemiology , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Swine Diseases/epidemiology
8.
J Immunol ; 210(4): 475-485, 2023 02 15.
Article in English | MEDLINE | ID: covidwho-2201459

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a highly pathogenic porcine enteric coronavirus that causes severe watery diarrhea and even death in piglets. The neonatal Fc receptor (FcRn) is the only transport receptor for IgG. FcRn expressed by intestinal epithelial cells can transport IgG from breast milk to piglets to provide immune protection. Previous studies have shown that viral infection affects FcRn expression. In this study, we showed for the first time, to our knowledge, that FcRn expression can be influenced by methyltransferases. In addition, we found that PEDV inhibited FcRn protein synthesis in porcine small intestinal epithelial cells postinfection. Then, we found that PEDV interfered with the transcription of genes through aberrant methylation modification of the FcRn promoter. DNA methyltransferase 3b (DNMT3b) has been implicated in this process. Using a series of PEDV structural and nonstructural protein (nsp) expression plasmids, we showed that nsp13 plays an important role in this aberrant methylation modification. PEDV nsp13 can affect the NF-κB canonical pathway and promote DNMT3b protein expression by facilitating p65 protein binding to chromatin. PEDV caused aberrant methylation of the FcRn promoter via DNMT3b. The same phenomenon was found in animal experiments with large white piglets. IgG transcytosis demonstrated that PEDV nsp13 can inhibit bidirectional IgG transport by FcRn. In addition, the core region of nsp13 (230-597 aa) is critical for FcRn inhibition. Taken together, to our knowledge, our findings revealed a novel immune escape mechanism of PEDV and shed new light on the design and development of vaccines and drugs.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Animals , Swine , NF-kappa B/metabolism , Porcine epidemic diarrhea virus/genetics , Signal Transduction , Immunoglobulin G
9.
J Immunol ; 210(3): 271-282, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2201457

ABSTRACT

Swine coronavirus-porcine epidemic diarrhea virus (PEDV) with specific susceptibility to pigs has existed for decades, and recurrent epidemics caused by mutant strains have swept the world again since 2010. In this study, single-cell RNA sequencing was used to perform for the first time, to our knowledge, a systematic analysis of pig jejunum infected with PEDV. Pig intestinal cell types were identified by representative markers and identified a new tuft cell marker, DNAH11. Excepting enterocyte cells, the goblet and tuft cells confirmed susceptibility to PEDV. Enrichment analyses showed that PEDV infection resulted in upregulation of cell apoptosis, junctions, and the MAPK signaling pathway and downregulation of oxidative phosphorylation in intestinal epithelial cell types. The T cell differentiation and IgA production were decreased in T and B cells, respectively. Cytokine gene analyses revealed that PEDV infection downregulated CXCL8, CXCL16, and IL34 in tuft cells and upregulated IL22 in Th17 cells. Further studies found that infection of goblet cells with PEDV decreased the expression of MUC2, as well as other mucin components. Moreover, the antimicrobial peptide REG3G was obviously upregulated through the IL33-STAT3 signaling pathway in enterocyte cells in the PEDV-infected group, and REG3G inhibited the PEDV replication. Finally, enterocyte cells expressed almost all coronavirus entry factors, and PEDV infection caused significant upregulation of the coronavirus receptor ACE2 in enterocyte cells. In summary, this study systematically investigated the responses of different cell types in the jejunum of piglets after PEDV infection, which deepened the understanding of viral pathogenesis.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine , Animals , Porcine epidemic diarrhea virus/genetics , Transcriptome , Intestine, Small/pathology , Intestines/pathology , Sequence Analysis, RNA
10.
Viruses ; 15(2)2023 Jan 20.
Article in English | MEDLINE | ID: covidwho-2200904

ABSTRACT

Porcine coronaviruses and reproductive and respiratory syndrome (PRRS) are responsible for severe outbreaks that cause huge economic losses worldwide. In Italy, three coronaviruses have been reported historically: porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV). Although repeated outbreaks have been described, especially in northern Italy, where intensive pig farming is common, there is a worrying lack of information on the spread of these pathogens in Europe. In this work, we determined the seroprevalence of three porcine coronaviruses and PRRSV in the Campania region, southern Italy. A total of 443 samples were tested for the presence of antibodies against porcine coronaviruses and PRRSV using four different commercial ELISAs. Our results indicated that PEDV is the most prevalent among porcine coronaviruses, followed by TGEV, and finally PRCV. PRRSV appeared to be the most prevalent virus (16.7%). For coronaviruses, seroprevalence was higher in pigs raised in intensive farming systems. In terms of distribution, TGEV is more widespread in the province of Avellino, while PEDV and PRRSV are more prevalent in the province of Naples, emphasizing the epidemic nature of both infections. Interestingly, TGEV-positive animals are more common among growers, while seropositivity for PEDV and PRRSV was higher in adults. Our research provides new insights into the spread of swine coronaviruses and PRRSV in southern Italy, as well as a warning about the need for viral surveillance.


Subject(s)
Coronavirus Infections , Coronavirus , Porcine Reproductive and Respiratory Syndrome , Porcine Respiratory Coronavirus , Porcine epidemic diarrhea virus , Porcine respiratory and reproductive syndrome virus , Transmissible gastroenteritis virus , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/epidemiology , Seroepidemiologic Studies , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Italy/epidemiology
11.
Viruses ; 14(12)2022 12 06.
Article in English | MEDLINE | ID: covidwho-2200867

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), a member of Coronaviridae, causes high mortality in newborn piglets, and has caused significant economic losses in the pig industry. PEDV infection can induce apoptosis, both caspase-dependent and caspase-independent, but the details of apoptosis remain clarified. This study investigated the effect of death receptor DR5 on PEDV infection and its relationship with PEDV-induced apoptosis. We found that DR5 knockdown reduced viral mRNA and protein levels of PEDV, and the viral titer decreased from 104.5 TCID50 to 103.4 TCID50 at 12 hpi. Overexpression of DR5 significantly increased the viral titer. Further studies showed that DR5 facilitates viral replication by regulating caspase-8-dependent apoptosis, and the knockdown of DR5 significantly reduced PEDV-induced apoptosis. Interestingly, we detected a biphasic upregulation expression of DR5 in both Vero cells and piglets in response to PEDV infection. We found that DR5 also facilitates viral entry of PEDV, especially, incubation with DR5 antibody can reduce the PEDV binding to Vero cells. Our study improves the understanding of the mechanism by which PEDV induces apoptosis and provides new insights into the biological function of DR5 in PEDV infection.


Subject(s)
Coronavirus Infections , Coronavirus , Porcine epidemic diarrhea virus , Swine Diseases , Chlorocebus aethiops , Animals , Swine , Vero Cells , Porcine epidemic diarrhea virus/genetics , Proviruses , Virus Internalization , Caspases , Receptors, Death Domain
12.
Virology ; 579: 29-37, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2165943

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration and high mortality in neonatal piglets. The nucleocapsid (N) protein of PEDV is a highly conserved protein with strong immunogenicity and palys an important role in PEDV diagnosis. However, epitopes on the PEDV N protein have not yet been well characterized. Here, 32 monoclonal antibodies (mAbs) against the PEDV N protein were produced and identified. Six new epitopes were first identified by using a high-throughput epitope mapping method named AbMap. Sequence analysis revealed that among the six epitopes five epitopes were highly conserved among different PEDV strains. We also confirmed that the mAbs derived from the six epitopes of PEDV N protein, have no cross-reactivity with transmissible gastro enteritis virus or porcine delta coronavirus. These mAbs and their defined epitopes will help to understand the N protein structure and immunological characteristics, and to develop a rapid, accurate PEDV diagnosis method.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Epitope Mapping , Antibodies, Monoclonal , Antibodies, Viral , Epitopes
13.
Viruses ; 14(12)2022 12 10.
Article in English | MEDLINE | ID: covidwho-2155317

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), a member of the genera alphacoronavirus, causes acute watery diarrhea and dehydration in suckling piglets and results in enormous economic losses in the swine industry worldwide. Identification and characterization of different cell lines are not only invaluable for PEDV entry and replication studies but also important for the development of various types of biological pharmaceuticals against PEDV. In this study, we present an approach to identify suitable permissive cell lines for PEDV research. Human cell lines were screened for a high correlation coefficient with the established PEDV infection model Huh7 based on RNA-seq data from the Cancer Cell Line Encyclopedia (CCLE). Experimentally testing permissiveness towards PEDV infection, three highly permissive human cell lines, HepG2, Hep3B217, and SNU387 were identified. The replication kinetics of PEDV in HepG2, Hep3B217, and SNU387 cells were similar to that in Vero and Huh7 cells. Additionally, the transcriptomes analysis showed robust induction of transcripts associated with the innate immune in response to PEDV infection in all three cell lines, including hundreds of inflammatory cytokine and interferon genes. Moreover, the expression of inflammatory cytokines and interferons were confirmed by qPCR assay. Our findings indicate that HepG2, Hep3B217, and SNU387 are suitable cell lines for PEDV replication and innate immune response studies.


Subject(s)
Coronavirus Infections , Dysentery , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Humans , Cell Line , Cytokines/metabolism , Diarrhea , Immunity, Innate , Interferons , Porcine epidemic diarrhea virus/genetics , Swine , Hep G2 Cells
14.
Viruses ; 14(12)2022 12 09.
Article in English | MEDLINE | ID: covidwho-2155315

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), belonging to the genus Alphacoronavirus, can cause serious disease in pigs of all ages, especially in suckling pigs. Differences in virulence have been observed between various strains of this virus. In this study, four pigs were inoculated with PEDV from Germany (intestine/intestinal content collected from pigs in 2016) and four pigs with PEDV from Italy (intestine/intestinal material collected from pigs in 2016). The pigs were re-inoculated with the same virus on multiple occasions to create a more robust infection and enhance the antibody responses. The clinical signs and pathological changes observed were generally mild. Two distinct peaks of virus excretion were seen in the group of pigs inoculated with the PEDV from Germany, while only one strong peak was seen for the group of pigs that received the virus from Italy. Seroconversion was seen by days 18 and 10 post-inoculation with PEDV in all surviving pigs from the groups that received the inoculums from Germany and Italy, respectively. Attempts to infect pigs with a swine enteric coronavirus (SeCoV) from Slovakia were unsuccessful, and no signs of infection were observed in the inoculated animals.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Diarrhea/pathology , Feces , Swine
15.
Biosensors (Basel) ; 12(12)2022 Dec 08.
Article in English | MEDLINE | ID: covidwho-2154896

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), a coronavirus that causes highly infectious intestinal diarrhea in piglets, has led to severe economic losses worldwide. Rapid diagnosis and timely supervision are significant in the prophylaxis of PEDV. Herein, we proposed a gold-nanorod (GNR) probe-assisted counting method using dark field microscopy (DFM). The antibody-functionalized silicon chips were prepared to capture PEDV to form sandwich structures with GNR probes for imaging under DFM. Results show that our DFM-based assay for PEDV has a sensitivity of 23.80 copies/µL for simulated real samples, which is very close to that of qPCR in this study. This method of GNR probes combined with DFM for quantitative detection of PEDV not only has strong specificity, good repeatability, and a low detection limit, but it also can be implemented for rapid on-site detection of the pathogens.


Subject(s)
Coronavirus Infections , Coronavirus , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Gold , Swine Diseases/diagnosis , Coronavirus Infections/diagnosis
16.
Vet Microbiol ; 275: 109599, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2132637

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a re-emerging pathogen that causes severe economic loss in the pig industry. The host's innate immune system is the first line of defense on virus invasion of the small intestinal epithelial cells. Chemokines, as a part of the innate immune system, play an important role in host immunity against infection, however, and their expression and chemotactic effect on key immune cells in PEDV infection remains unclear. In this study, cDNA microarray was firstly performed to analyzed ileum tissue of piglets on the third day after PEDV infection. The differentially expressed genes mainly involved in multiple biological processes, chemokine signaling pathway and cytokine receptor interaction signaling pathway had the highest enrichment according to GO and KEGG enrichment analysis. The expression levels of chemokines MCP-1, MIP-1ß, IL-8, CXCL9, CXCL10 and CXCL13 in ileum of PEDV- infected piglets were significantly higher than those in the control group. The expression of chemokines in vivo experiment was further verified by RT-qPCR and ELISA using PEDV-infected IPEC-J2 cells. The results showed that the PEDV-infected IPEC-J2 cells had significantly induced protein expression of MCP-1, MIP-1ß, IL-8, CXCL9, CXCL-10 and CXCL13. These results indicated that the changes of chemokines expressed in the ileum of piglets (in vivo) were consistent with those in IPEC-J2 cells (in vitro) after PEDV infection. Finally, the role of chemokines in immune cell migration during PEDV infection was illustrated by siRNA-mediated knock down method and the co-culture model of IPEC-J2 cells with peripheral blood leukocyte cells (PBLCs). The FACS analysis showed that MCP-1 induced by PEDV infection played a chemotactic effect on CD14+ cells, CXCL9 on CD3+CD4-CD8-γδ T, CD3+CD4-CD8+ Tc, CD3+CD4+CD8- Th and CD3+CD4+CD8+ Tm subsets, and CXCL13 on CD19+ B cells. Collectively, our findings first indicate that PEDV-induced chemokines MCP-1, CXCL-9 and CXCL-13 attracted CD14+ cells, T cells and B cells, respectively. These results provide a theoretical basis for studying the mechanism of anti-PEDV infection in piglets.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Monocytes , Chemokine CCL4/pharmacology , Interleukin-8/genetics , Coronavirus Infections/veterinary , Cell Line
17.
Vet Microbiol ; 275: 109596, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2132636

ABSTRACT

Porcine epidemic diarrhea (PED) is a highly contagious and virulent intestinal infectious disease characterized by diarrhea, vomiting and dehydration. Although PEDV-induced apoptosis has been characterized in vitro and vivo, the functional proteins related to this event and the mechanism still need further research. Here, we firstly demonstrated that PEDV epidemic strain JS2013 could trigger apoptosis in a dose- and time-dependent manner. Then, PEDV 3CLpro was further identified as a crucial inducer of PEDV-triggered apoptosis. In addition, using site-directed mutagenesis to disrupt the protease activity of 3CLpro by His41 and Cys144 mutations, we found that 3CLpro-induced apoptosis and mitochondrial damage significantly reduced, suggesting that the protease activity of 3CLpro was essential for apoptosis and mitochondrial damage. Furthermore, PEDV 3CLpro could synergistically promote MAVS-mediated apoptosis and MAVS was involved in the signaling pathway of 3CLpro-induced apoptosis, but no direct interaction between PEDV 3CLpro and MAVS was detected by immunoprecipitation assays. Our findings provide important insights into the role of 3CLpro in the pathogenicity of PEDV.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Swine , Animals , Membrane Potential, Mitochondrial , Apoptosis , Signal Transduction , Peptide Hydrolases/metabolism , Diarrhea/veterinary , Coronavirus Infections/veterinary
18.
Viruses ; 14(11)2022 Nov 02.
Article in English | MEDLINE | ID: covidwho-2123861

ABSTRACT

The porcine epidemic diarrhea virus (PEDV) is a member of the coronavirus family, causing deadly watery diarrhea in newborn piglets. The global pandemic of PEDV, with significant morbidity and mortality, poses a huge threat to the swine industry. The currently developed vaccines and drugs are only effective against the classic GI strains that were prevalent before 2010, while there is no effective control against the GII variant strains that are currently a global pandemic. In this review, we summarize the latest progress in the biology of PEDV, including its transmission and origin, structure and function, evolution, and virus-host interaction, in an attempt to find the potential virulence factors influencing PEDV pathogenesis. We conclude with the mechanism by which PEDV components antagonize the immune responses of the virus, and the role of host factors in virus infection. Essentially, this review serves as a valuable reference for the development of attenuated virus vaccines and the potential of host factors as antiviral targets for the prevention and control of PEDV infection.


Subject(s)
Coronavirus Infections , Coronavirus , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Virulence , Host Microbial Interactions , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Vaccines, Attenuated
19.
Int J Mol Sci ; 23(23)2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2123694

ABSTRACT

PEDV represents an ancient Coronavirus still causing huge economic losses to the porcine breeding industry. Resveratrol has excellent antiviral effects. Triacetyl resveratrol (TCRV), a novel natural derivative of resveratrol, has been recently discovered, and its pharmacological effects need to be explored further. This paper aims to explore the relationship between PEDV and TCRV, which offers a novel strategy in the research of antivirals. In our study, Vero cells and IPEC-J2 cells were used as an in vitro model. First, we proved that TCRV had an obvious anti-PEDV effect and a strong inhibitory effect at different time points. Then, we explored the mechanism of inhibition of PEDV infection by TCRV. Our results showed that TCRV could induce the early apoptosis of PEDV-infected cells, in contrast to PEDV-induced apoptosis. Moreover, we observed that TCRV could promote the expression and activation of apoptosis-related proteins and release mitochondrial cytochrome C into cytoplasm. Based on these results, we hypothesized that TCRV induced the early apoptosis of PEDV-infected cells and inhibited PEDV infection by activating the mitochondria-related caspase pathway. Furthermore, we used the inhibitors Z-DEVD-FMK and Pifithrin-α (PFT-α) to support our hypothesis. In conclusion, the TCRV-activated caspase pathway triggered early apoptosis of PEDV-infected cells, thereby inhibiting PEDV infections.


Subject(s)
Porcine epidemic diarrhea virus , Swine Diseases , Chlorocebus aethiops , Swine , Animals , Porcine epidemic diarrhea virus/physiology , Vero Cells , Resveratrol/pharmacology , Apoptosis , Caspases/metabolism , Antiviral Agents/pharmacology
20.
Sci Rep ; 12(1): 19443, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2119409

ABSTRACT

Porcine deltacoronavirus (PDCoV) and porcine epidemic diarrhea virus (PEDV) infect the small intestine and cause swine enteric coronavirus disease. The mucosal innate immune system is the first line of defense against viral infection. The modulatory effect of PDCoV and PEDV coinfection on antiviral signaling cascades of the intestinal mucosa has not been reported. Here, we investigate the gene expression levels of pattern recognition receptors, downstream inflammatory signaling pathway molecules, and associated cytokines on the intestinal mucosa of neonatal piglets either infected with a single- or co-infected with PDCoV and PEDV using real-time PCR. The results demonstrate that single-PEDV regulates the noncanonical NF-κB signaling pathway through RIG-I regulation. In contrast, single-PDCoV and PDCoV/PEDV coinfection regulate proinflammatory and regulatory cytokines through TRAF6-mediated canonical NF-κB and IRF7 signaling pathways through TLRs. Although PDCoV/PEDV coinfection demonstrated an earlier modulatory effect in these signaling pathways, the regulation of proinflammatory and regulatory cytokines was observed simultaneously during single viral infection. These results suggested that PDCoV/PEDV coinfection may have synergistic effects that lead to enhanced viral evasion of the mucosal innate immune response.


Subject(s)
Coinfection , Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Porcine epidemic diarrhea virus/genetics , NF-kappa B , TNF Receptor-Associated Factor 6/genetics , Signal Transduction , Cytokines , Diarrhea
SELECTION OF CITATIONS
SEARCH DETAIL