Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
Add filters

Document Type
Year range
1.
Crit Care ; 26(1): 12, 2022 01 04.
Article in English | MEDLINE | ID: covidwho-1608868

ABSTRACT

BACKGROUND: In the context of acute respiratory distress syndrome (ARDS), the response to lung recruitment maneuvers (LRMs) varies considerably from one patient to another and so is difficult to predict. The aim of the study was to determine whether or not the recruitment-to-inflation (R/I) ratio could differentiate between patients according to the change in lung mechanics during the LRM. METHODS: We evaluated the changes in gas exchange and respiratory mechanics induced by a stepwise LRM at a constant driving pressure of 15 cmH2O during pressure-controlled ventilation. We assessed lung recruitability by measuring the R/I ratio. Patients were dichotomized with regard to the median R/I ratio. RESULTS: We included 30 patients with moderate-to-severe ARDS and a median [interquartile range] R/I ratio of 0.62 [0.42-0.83]. After the LRM, patients with high recruitability (R/I ratio ≥ 0.62) presented an improvement in the PaO2/FiO2 ratio, due to significant increase in respiratory system compliance (33 [27-42] vs. 42 [35-60] mL/cmH2O; p < 0.001). In low recruitability patients (R/I < 0.62), the increase in PaO2/FiO2 ratio was associated with a significant decrease in pulse pressure as a surrogate of cardiac output (70 [55-85] vs. 50 [51-67] mmHg; p = 0.01) but not with a significant change in respiratory system compliance (33 [24-47] vs. 35 [25-47] mL/cmH2O; p = 0.74). CONCLUSION: After the LRM, patients with high recruitability presented a significant increase in respiratory system compliance (indicating a gain in ventilated area), while those with low recruitability presented a decrease in pulse pressure suggesting a drop in cardiac output and therefore in intrapulmonary shunt.


Subject(s)
COVID-19 , Lung , Respiratory Distress Syndrome , COVID-19/complications , Humans , Lung/physiopathology , Positive-Pressure Respiration , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology , SARS-CoV-2
2.
Crit Care ; 25(1): 431, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1582034

ABSTRACT

BACKGROUND: We hypothesized that as CARDS may present different pathophysiological features than classic ARDS, the application of high levels of end-expiratory pressure is questionable. Our first aim was to investigate the effects of 5-15 cmH2O of PEEP on partitioned respiratory mechanics, gas exchange and dead space; secondly, we investigated whether respiratory system compliance and severity of hypoxemia could affect the response to PEEP on partitioned respiratory mechanics, gas exchange and dead space, dividing the population according to the median value of respiratory system compliance and oxygenation. Thirdly, we explored the effects of an additional PEEP selected according to the Empirical PEEP-FiO2 table of the EPVent-2 study on partitioned respiratory mechanics and gas exchange in a subgroup of patients. METHODS: Sixty-one paralyzed mechanically ventilated patients with a confirmed diagnosis of SARS-CoV-2 were enrolled (age 60 [54-67] years, PaO2/FiO2 113 [79-158] mmHg and PEEP 10 [10-10] cmH2O). Keeping constant tidal volume, respiratory rate and oxygen fraction, two PEEP levels (5 and 15 cmH2O) were selected. In a subgroup of patients an additional PEEP level was applied according to an Empirical PEEP-FiO2 table (empirical PEEP). At each PEEP level gas exchange, partitioned lung mechanics and hemodynamic were collected. RESULTS: At 15 cmH2O of PEEP the lung elastance, lung stress and mechanical power were higher compared to 5 cmH2O. The PaO2/FiO2, arterial carbon dioxide and ventilatory ratio increased at 15 cmH2O of PEEP. The arterial-venous oxygen difference and central venous saturation were higher at 15 cmH2O of PEEP. Both the mechanics and gas exchange variables significantly increased although with high heterogeneity. By increasing the PEEP from 5 to 15 cmH2O, the changes in partitioned respiratory mechanics and mechanical power were not related to hypoxemia or respiratory compliance. The empirical PEEP was 18 ± 1 cmH2O. The empirical PEEP significantly increased the PaO2/FiO2 but also driving pressure, lung elastance, lung stress and mechanical power compared to 15 cmH2O of PEEP. CONCLUSIONS: In COVID-19 ARDS during the early phase the effects of raising PEEP are highly variable and cannot easily be predicted by respiratory system characteristics, because of the heterogeneity of the disease.


Subject(s)
COVID-19/therapy , Positive-Pressure Respiration , Respiratory Distress Syndrome/therapy , Ventilator-Induced Lung Injury , COVID-19/diagnosis , Critical Care , Humans , Hypoxia , Middle Aged , Oxygen/therapeutic use , SARS-CoV-2 , Ventilator-Induced Lung Injury/diagnostic imaging
6.
Eur Respir Rev ; 30(162)2021 Dec 31.
Article in English | MEDLINE | ID: covidwho-1477254

ABSTRACT

Coronavirus disease 2019 (COVID-19) pneumonia is an evolving disease. We will focus on the development of its pathophysiologic characteristics over time, and how these time-related changes determine modifications in treatment. In the emergency department: the peculiar characteristic is the coexistence, in a significant fraction of patients, of severe hypoxaemia, near-normal lung computed tomography imaging, lung gas volume and respiratory mechanics. Despite high respiratory drive, dyspnoea and respiratory rate are often normal. The underlying mechanism is primarily altered lung perfusion. The anatomical prerequisites for PEEP (positive end-expiratory pressure) to work (lung oedema, atelectasis, and therefore recruitability) are lacking. In the high-dependency unit: the disease starts to worsen either because of its natural evolution or additional patient self-inflicted lung injury (P-SILI). Oedema and atelectasis may develop, increasing recruitability. Noninvasive supports are indicated if they result in a reversal of hypoxaemia and a decreased inspiratory effort. Otherwise, mechanical ventilation should be considered to avert P-SILI. In the intensive care unit: the primary characteristic of the advance of unresolved COVID-19 disease is a progressive shift from oedema or atelectasis to less reversible structural lung alterations to lung fibrosis. These later characteristics are associated with notable impairment of respiratory mechanics, increased arterial carbon dioxide tension (P aCO2 ), decreased recruitability and lack of response to PEEP and prone positioning.


Subject(s)
COVID-19/physiopathology , COVID-19/therapy , Lung/physiopathology , Positive-Pressure Respiration/methods , Respiration, Artificial/methods , Humans , Pulmonary Atelectasis/prevention & control , Respiratory Mechanics , SARS-CoV-2
7.
J Crit Care ; 66: 78-85, 2021 12.
Article in English | MEDLINE | ID: covidwho-1469324

ABSTRACT

PURPOSE: To investigate the possible association between ventilatory settings on the first day of invasive mechanical ventilation (IMV) and mortality in patients admitted to the intensive care unit (ICU) with severe acute respiratory infection (SARI). MATERIALS AND METHODS: In this pre-planned sub-study of a prospective, multicentre observational study, 441 patients with SARI who received controlled IMV during the ICU stay were included in the analysis. RESULTS: ICU and hospital mortality rates were 23.1 and 28.1%, respectively. In multivariable analysis, tidal volume and respiratory rate on the first day of IMV were not associated with an increased risk of death; however, higher driving pressure (DP: odds ratio (OR) 1.05; 95% confidence interval (CI): 1.01-1.1, p = 0.011), plateau pressure (Pplat) (OR 1.08; 95% CI: 1.04-1.13, p < 0.001) and positive end-expiratory pressure (PEEP) (OR 1.13; 95% CI: 1.03-1.24, p = 0.006) were independently associated with in-hospital mortality. In subgroup analysis, in hypoxemic patients and in patients with acute respiratory distress syndrome (ARDS), higher DP, Pplat, and PEEP were associated with increased risk of in-hospital death. CONCLUSIONS: In patients with SARI receiving IMV, higher DP, Pplat and PEEP, and not tidal volume, were associated with a higher risk of in-hospital death, especially in those with hypoxemia or ARDS.


Subject(s)
Positive-Pressure Respiration , Respiration, Artificial , Cohort Studies , Hospital Mortality , Humans , Intensive Care Units , Prospective Studies , Tidal Volume
8.
Arch Dis Child Fetal Neonatal Ed ; 106(5): 561-567, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1455687

ABSTRACT

IMPORTANCE: The current neonatal resuscitation guidelines recommend positive pressure ventilation via face mask or nasal prongs at birth. Using a nasal interface may have the potential to improve outcomes for newborn infants. OBJECTIVE: To determine whether nasal prong/nasopharyngeal tube versus face mask during positive pressure ventilation of infants born <37 weeks' gestation in the delivery room reduces in-hospital mortality and morbidity. DATA SOURCES: MEDLINE (through PubMed), Google Scholar and EMBASE, Clinical Trials.gov and the Cochrane Central Register of Controlled Trials through August 2019. STUDY SELECTION: Randomised controlled trials comparing nasal prong/nasopharyngeal tube versus face mask during positive pressure ventilation of infants born <37 weeks' gestation in the delivery room. DATA ANALYSIS: Risk of bias was assessed using the Covidence Collaboration Tool, results were pooled into a meta-analysis using a random effects model. MAIN OUTCOME: In-hospital mortality. RESULTS: Five RCTs enrolling 873 infants were combined into a meta-analysis. There was no statistical difference in in-hospital mortality (risk ratio (RR 0.98, 95% CI 0.63 to 1.52, p=0.92, I2=11%), rate of chest compressions in the delivery room (RR 0.37, 95% CI 0.10 to 1.33, p=0.13, I2=28%), rate of intraventricular haemorrhage (RR 1.54, 95% CI 0.88 to 2.70, p=0.13, I2=0%) or delivery room intubations in infants ventilated with a nasal prong/tube (RR 0.63, 95% CI 0.39,1.02, p=0.06, I2=52%). CONCLUSION: In infants born <37 weeks' gestation, in-hospital mortality and morbidity were similar following positive pressure ventilation during initial stabilisation with a nasal prong/tube or a face mask.


Subject(s)
Intubation/methods , Masks , Nasopharynx , Positive-Pressure Respiration/methods , Respiratory Distress Syndrome, Newborn/therapy , Bronchopulmonary Dysplasia/complications , Cerebral Intraventricular Hemorrhage/complications , Delivery Rooms , Enterocolitis, Necrotizing/complications , Equipment Failure , Hospital Mortality , Humans , Intensive Care, Neonatal , Intubation/instrumentation , Positive-Pressure Respiration/instrumentation , Respiratory Distress Syndrome, Newborn/complications , Respiratory Distress Syndrome, Newborn/mortality , Treatment Outcome
9.
Perfusion ; 36(4): 374-381, 2021 May.
Article in English | MEDLINE | ID: covidwho-1453006

ABSTRACT

BACKGROUND: Patients with acute respiratory distress syndrome supported with veno-venous extracorporeal membrane oxygenation benefit from higher positive end-expiratory pressure combined with conventional ventilation during the early extracorporeal membrane oxygenation period. The role of incremental positive end-expiratory pressure titration in patients with severe acute respiratory distress syndrome supported with veno-venous extracorporeal membrane oxygenation remains unclear. This study aimed to determine the preferred method for setting positive end-expiratory pressure in patients with severe acute respiratory distress syndrome on veno-venous extracorporeal membrane oxygenation support. METHODS: We retrospectively reviewed all subjects supported with veno-venous extracorporeal membrane oxygenation for severe acute respiratory distress syndrome from 2009 to 2019 in the intensive care units in Tianjin Third Central Hospital. Subjects were divided into two groups according to the positive end-expiratory pressure titration method used: P-V curve (quasi-static pressure-volume curve-guided positive end-expiratory pressure setting) group or Crs (respiratory system compliance-guided positive end-expiratory pressure setting) group. RESULTS: Forty-three subjects were included in the clinical outcome analysis: 20 in the P-V curve group and 23 in the Crs group. Initial positive end-expiratory pressure levels during veno-venous extracorporeal membrane oxygenation were similar in both groups. Incidence rates of barotrauma and hemodynamic events were significantly lower in the Crs group (all p < 0.05). Mechanical ventilation duration, intensive care unit length of stay, and hospital length of stay were significantly shorter in the Crs group than the P-V curve group (all p < 0.05). Subjects in the Crs group showed non-significant improvements in the duration of extracorporeal membrane oxygenation support and 28-day mortality (p > 0.05). CONCLUSION: Respiratory system compliance-guided positive end-expiratory pressure setting may lead to more optimal clinical outcomes for patients with severe acute respiratory distress syndrome supported by veno-venous extracorporeal membrane oxygenation. Moreover, the operation is simple, safe, and convenient in clinical practice.


Subject(s)
Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Humans , Positive-Pressure Respiration , Respiration, Artificial , Respiratory Distress Syndrome/therapy , Retrospective Studies
10.
JAMA ; 323(16): 1574-1581, 2020 04 28.
Article in English | MEDLINE | ID: covidwho-1453471

ABSTRACT

Importance: In December 2019, a novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) emerged in China and has spread globally, creating a pandemic. Information about the clinical characteristics of infected patients who require intensive care is limited. Objective: To characterize patients with coronavirus disease 2019 (COVID-19) requiring treatment in an intensive care unit (ICU) in the Lombardy region of Italy. Design, Setting, and Participants: Retrospective case series of 1591 consecutive patients with laboratory-confirmed COVID-19 referred for ICU admission to the coordinator center (Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy) of the COVID-19 Lombardy ICU Network and treated at one of the ICUs of the 72 hospitals in this network between February 20 and March 18, 2020. Date of final follow-up was March 25, 2020. Exposures: SARS-CoV-2 infection confirmed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay of nasal and pharyngeal swabs. Main Outcomes and Measures: Demographic and clinical data were collected, including data on clinical management, respiratory failure, and patient mortality. Data were recorded by the coordinator center on an electronic worksheet during telephone calls by the staff of the COVID-19 Lombardy ICU Network. Results: Of the 1591 patients included in the study, the median (IQR) age was 63 (56-70) years and 1304 (82%) were male. Of the 1043 patients with available data, 709 (68%) had at least 1 comorbidity and 509 (49%) had hypertension. Among 1300 patients with available respiratory support data, 1287 (99% [95% CI, 98%-99%]) needed respiratory support, including 1150 (88% [95% CI, 87%-90%]) who received mechanical ventilation and 137 (11% [95% CI, 9%-12%]) who received noninvasive ventilation. The median positive end-expiratory pressure (PEEP) was 14 (IQR, 12-16) cm H2O, and Fio2 was greater than 50% in 89% of patients. The median Pao2/Fio2 was 160 (IQR, 114-220). The median PEEP level was not different between younger patients (n = 503 aged ≤63 years) and older patients (n = 514 aged ≥64 years) (14 [IQR, 12-15] vs 14 [IQR, 12-16] cm H2O, respectively; median difference, 0 [95% CI, 0-0]; P = .94). Median Fio2 was lower in younger patients: 60% (IQR, 50%-80%) vs 70% (IQR, 50%-80%) (median difference, -10% [95% CI, -14% to 6%]; P = .006), and median Pao2/Fio2 was higher in younger patients: 163.5 (IQR, 120-230) vs 156 (IQR, 110-205) (median difference, 7 [95% CI, -8 to 22]; P = .02). Patients with hypertension (n = 509) were older than those without hypertension (n = 526) (median [IQR] age, 66 years [60-72] vs 62 years [54-68]; P < .001) and had lower Pao2/Fio2 (median [IQR], 146 [105-214] vs 173 [120-222]; median difference, -27 [95% CI, -42 to -12]; P = .005). Among the 1581 patients with ICU disposition data available as of March 25, 2020, 920 patients (58% [95% CI, 56%-61%]) were still in the ICU, 256 (16% [95% CI, 14%-18%]) were discharged from the ICU, and 405 (26% [95% CI, 23%-28%]) had died in the ICU. Older patients (n = 786; age ≥64 years) had higher mortality than younger patients (n = 795; age ≤63 years) (36% vs 15%; difference, 21% [95% CI, 17%-26%]; P < .001). Conclusions and Relevance: In this case series of critically ill patients with laboratory-confirmed COVID-19 admitted to ICUs in Lombardy, Italy, the majority were older men, a large proportion required mechanical ventilation and high levels of PEEP, and ICU mortality was 26%.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Critical Care/statistics & numerical data , Hospital Mortality , Intensive Care Units/statistics & numerical data , Pneumonia, Viral/epidemiology , Positive-Pressure Respiration/statistics & numerical data , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , COVID-19 , Comorbidity , Coronavirus Infections/mortality , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Critical Illness/therapy , Female , Hospitalization , Humans , Italy/epidemiology , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Respiration, Artificial , Retrospective Studies , SARS-CoV-2 , Sex Distribution , Young Adult
11.
Eur Rev Med Pharmacol Sci ; 25(18): 5853-5856, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1451043

ABSTRACT

Coronavirus disease 2019-induced acute respiratory distress syndrome (ARDS) is more severe in morbidly obese patients. Mechanical ventilation differs between obese and non-obese patients. We examined these differences in an obese (body mass index = 47 kg/m2) 32-year-old patient followed up in our clinic. The patient was admitted to the intensive care unit due to respiratory failure. Recruitment maneuvers were performed in pressure-controlled ventilation mode. The optimal positive end-expiratory pressure was 25 cm H2O. The inspiratory pressure was adjusted to 45 cm H2O to provide a tidal volume of 6 ml/kg and driving pressure ≤ 15. The patient was discharged with full recovery.


Subject(s)
COVID-19/therapy , Obesity, Morbid , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy , Adult , COVID-19/blood , COVID-19/complications , COVID-19/diagnostic imaging , Humans , Intensive Care Units , Male , Obesity, Morbid/complications , Positive-Pressure Respiration/methods , Respiratory Distress Syndrome/complications , Tidal Volume
12.
J Thorac Imaging ; 36(5): 286-293, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1440700

ABSTRACT

PURPOSE: Patients with novel coronavirus disease (COVID-19) frequently develop acute respiratory distress syndrome (ARDS) and need invasive ventilation. The potential to reaerate consolidated lung tissue in COVID-19-related ARDS is heavily debated. This study assessed the potential to reaerate lung consolidations in patients with COVID-19-related ARDS under invasive ventilation. MATERIALS AND METHODS: This was a retrospective analysis of patients with COVID-19-related ARDS who underwent chest computed tomography (CT) at low positive end-expiratory pressure (PEEP) and after a recruitment maneuver at high PEEP of 20 cm H2O. Lung reaeration, volume, and weight were calculated using both CT scans. CT scans were performed after intubation and start of ventilation (early CT), or after several days of intensive care unit admission (late CT). RESULTS: Twenty-eight patients were analyzed. The median percentages of reaerated and nonaerated lung tissue were 19% [interquartile range, IQR: 10 to 33] and 11% [IQR: 4 to 15] for patients with early and late CT scans, respectively (P=0.049). End-expiratory lung volume showed a median increase of 663 mL [IQR: 483 to 865] and 574 mL [IQR: 292 to 670] after recruitment for patients with early and late CT scans, respectively (P=0.43). The median decrease in lung weight attributed to nonaerated lung tissue was 229 g [IQR: 165 to 376] and 171 g [IQR: 81 to 229] after recruitment for patients with early and late CT scans, respectively (P=0.16). CONCLUSIONS: The majority of patients with COVID-19-related ARDS undergoing invasive ventilation had substantial reaeration of lung consolidations after recruitment and ventilation at high PEEP. Higher PEEP can be considered in patients with reaerated lung consolidations when accompanied by improvement in compliance and gas exchange.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , COVID-19/diagnostic imaging , COVID-19/therapy , Female , Humans , Lung/diagnostic imaging , Male , Middle Aged , Positive-Pressure Respiration , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/therapy , Retrospective Studies , Tomography, X-Ray Computed
13.
Int J Obstet Anesth ; 48: 103212, 2021 11.
Article in English | MEDLINE | ID: covidwho-1401518

ABSTRACT

COVID-19 in pregnancy increases the risk of caesarean section. We present two cases of late gestation pregnant women with severe COVID-19. Both were successfully treated with mechanical ventilation without termination of pregnancy and, following recovery from COVID-19, had vaginal deliveries at term. These two cases demonstrate the possibility of treating pregnant women with severe COVID-19 with mechanical ventilation in the late second and early third trimesters without them having a pre-term delivery. With a multidisciplinary approach, such management could avoid the maternal risks of surgery during a severe infection and, at the same time, enable term birth with a lower risk of neonatal complications.


Subject(s)
COVID-19/therapy , Live Birth , Positive-Pressure Respiration/methods , Pregnancy Complications, Infectious/therapy , Adult , Analgesics/therapeutic use , Anti-Bacterial Agents/therapeutic use , Anticoagulants/therapeutic use , COVID-19/physiopathology , Female , Humans , Hypnotics and Sedatives/therapeutic use , Neuromuscular Nondepolarizing Agents/therapeutic use , Pregnancy , Pregnancy Complications, Infectious/physiopathology , Pregnancy Outcome , SARS-CoV-2 , Treatment Outcome , Young Adult
14.
Best Pract Res Clin Anaesthesiol ; 35(3): 269-292, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1401261

ABSTRACT

Coronaviruses belong to the family Coronaviridae order Nidovirales and are known causes of respiratory and intestinal disease in various mammalian and avian species. Species of coronaviruses known to infect humans are referred to as human coronaviruses (HCoVs). While traditionally, HCoVs have been a significant cause of the common cold, more recently, emergent viruses, including severe acute respiratory syndrome coronavirus (SARS-CoV-2) has caused a global pandemic. Here, we discuss coronavirus disease (COVID-19) biology, pathology, epidemiology, signs and symptoms, diagnosis, treatment, and recent clinical trials involving promising treatments.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19/epidemiology , COVID-19/therapy , SARS-CoV-2 , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/analogs & derivatives , Adrenal Cortex Hormones/administration & dosage , Alanine/administration & dosage , Alanine/analogs & derivatives , Animals , COVID-19/diagnosis , COVID-19/immunology , Coronavirus/drug effects , Coronavirus/immunology , Cough/epidemiology , Cough/therapy , Diabetes Mellitus/epidemiology , Diabetes Mellitus/therapy , Fatigue/epidemiology , Fatigue/therapy , Fever , Heart Diseases/epidemiology , Heart Diseases/therapy , Humans , Positive-Pressure Respiration/methods , Prognosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/therapy , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...