Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add filters

Document Type
Year range
2.
Eur Respir Rev ; 30(162)2021 Dec 31.
Article in English | MEDLINE | ID: covidwho-1477254

ABSTRACT

Coronavirus disease 2019 (COVID-19) pneumonia is an evolving disease. We will focus on the development of its pathophysiologic characteristics over time, and how these time-related changes determine modifications in treatment. In the emergency department: the peculiar characteristic is the coexistence, in a significant fraction of patients, of severe hypoxaemia, near-normal lung computed tomography imaging, lung gas volume and respiratory mechanics. Despite high respiratory drive, dyspnoea and respiratory rate are often normal. The underlying mechanism is primarily altered lung perfusion. The anatomical prerequisites for PEEP (positive end-expiratory pressure) to work (lung oedema, atelectasis, and therefore recruitability) are lacking. In the high-dependency unit: the disease starts to worsen either because of its natural evolution or additional patient self-inflicted lung injury (P-SILI). Oedema and atelectasis may develop, increasing recruitability. Noninvasive supports are indicated if they result in a reversal of hypoxaemia and a decreased inspiratory effort. Otherwise, mechanical ventilation should be considered to avert P-SILI. In the intensive care unit: the primary characteristic of the advance of unresolved COVID-19 disease is a progressive shift from oedema or atelectasis to less reversible structural lung alterations to lung fibrosis. These later characteristics are associated with notable impairment of respiratory mechanics, increased arterial carbon dioxide tension (P aCO2 ), decreased recruitability and lack of response to PEEP and prone positioning.


Subject(s)
COVID-19/physiopathology , COVID-19/therapy , Lung/physiopathology , Positive-Pressure Respiration/methods , Respiration, Artificial/methods , Humans , Pulmonary Atelectasis/prevention & control , Respiratory Mechanics , SARS-CoV-2
3.
Arch Dis Child Fetal Neonatal Ed ; 106(5): 561-567, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1455687

ABSTRACT

IMPORTANCE: The current neonatal resuscitation guidelines recommend positive pressure ventilation via face mask or nasal prongs at birth. Using a nasal interface may have the potential to improve outcomes for newborn infants. OBJECTIVE: To determine whether nasal prong/nasopharyngeal tube versus face mask during positive pressure ventilation of infants born <37 weeks' gestation in the delivery room reduces in-hospital mortality and morbidity. DATA SOURCES: MEDLINE (through PubMed), Google Scholar and EMBASE, Clinical Trials.gov and the Cochrane Central Register of Controlled Trials through August 2019. STUDY SELECTION: Randomised controlled trials comparing nasal prong/nasopharyngeal tube versus face mask during positive pressure ventilation of infants born <37 weeks' gestation in the delivery room. DATA ANALYSIS: Risk of bias was assessed using the Covidence Collaboration Tool, results were pooled into a meta-analysis using a random effects model. MAIN OUTCOME: In-hospital mortality. RESULTS: Five RCTs enrolling 873 infants were combined into a meta-analysis. There was no statistical difference in in-hospital mortality (risk ratio (RR 0.98, 95% CI 0.63 to 1.52, p=0.92, I2=11%), rate of chest compressions in the delivery room (RR 0.37, 95% CI 0.10 to 1.33, p=0.13, I2=28%), rate of intraventricular haemorrhage (RR 1.54, 95% CI 0.88 to 2.70, p=0.13, I2=0%) or delivery room intubations in infants ventilated with a nasal prong/tube (RR 0.63, 95% CI 0.39,1.02, p=0.06, I2=52%). CONCLUSION: In infants born <37 weeks' gestation, in-hospital mortality and morbidity were similar following positive pressure ventilation during initial stabilisation with a nasal prong/tube or a face mask.


Subject(s)
Intubation/methods , Masks , Nasopharynx , Positive-Pressure Respiration/methods , Respiratory Distress Syndrome, Newborn/therapy , Bronchopulmonary Dysplasia/complications , Cerebral Intraventricular Hemorrhage/complications , Delivery Rooms , Enterocolitis, Necrotizing/complications , Equipment Failure , Hospital Mortality , Humans , Intensive Care, Neonatal , Intubation/instrumentation , Positive-Pressure Respiration/instrumentation , Respiratory Distress Syndrome, Newborn/complications , Respiratory Distress Syndrome, Newborn/mortality , Treatment Outcome
4.
Eur Rev Med Pharmacol Sci ; 25(18): 5853-5856, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1451043

ABSTRACT

Coronavirus disease 2019-induced acute respiratory distress syndrome (ARDS) is more severe in morbidly obese patients. Mechanical ventilation differs between obese and non-obese patients. We examined these differences in an obese (body mass index = 47 kg/m2) 32-year-old patient followed up in our clinic. The patient was admitted to the intensive care unit due to respiratory failure. Recruitment maneuvers were performed in pressure-controlled ventilation mode. The optimal positive end-expiratory pressure was 25 cm H2O. The inspiratory pressure was adjusted to 45 cm H2O to provide a tidal volume of 6 ml/kg and driving pressure ≤ 15. The patient was discharged with full recovery.


Subject(s)
COVID-19/therapy , Obesity, Morbid , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy , Adult , COVID-19/blood , COVID-19/complications , COVID-19/diagnostic imaging , Humans , Intensive Care Units , Male , Obesity, Morbid/complications , Positive-Pressure Respiration/methods , Respiratory Distress Syndrome/complications , Tidal Volume
5.
Int J Obstet Anesth ; 48: 103212, 2021 11.
Article in English | MEDLINE | ID: covidwho-1401518

ABSTRACT

COVID-19 in pregnancy increases the risk of caesarean section. We present two cases of late gestation pregnant women with severe COVID-19. Both were successfully treated with mechanical ventilation without termination of pregnancy and, following recovery from COVID-19, had vaginal deliveries at term. These two cases demonstrate the possibility of treating pregnant women with severe COVID-19 with mechanical ventilation in the late second and early third trimesters without them having a pre-term delivery. With a multidisciplinary approach, such management could avoid the maternal risks of surgery during a severe infection and, at the same time, enable term birth with a lower risk of neonatal complications.


Subject(s)
COVID-19/therapy , Live Birth , Positive-Pressure Respiration/methods , Pregnancy Complications, Infectious/therapy , Adult , Analgesics/therapeutic use , Anti-Bacterial Agents/therapeutic use , Anticoagulants/therapeutic use , COVID-19/physiopathology , Female , Humans , Hypnotics and Sedatives/therapeutic use , Neuromuscular Nondepolarizing Agents/therapeutic use , Pregnancy , Pregnancy Complications, Infectious/physiopathology , Pregnancy Outcome , SARS-CoV-2 , Treatment Outcome , Young Adult
6.
Best Pract Res Clin Anaesthesiol ; 35(3): 269-292, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1401261

ABSTRACT

Coronaviruses belong to the family Coronaviridae order Nidovirales and are known causes of respiratory and intestinal disease in various mammalian and avian species. Species of coronaviruses known to infect humans are referred to as human coronaviruses (HCoVs). While traditionally, HCoVs have been a significant cause of the common cold, more recently, emergent viruses, including severe acute respiratory syndrome coronavirus (SARS-CoV-2) has caused a global pandemic. Here, we discuss coronavirus disease (COVID-19) biology, pathology, epidemiology, signs and symptoms, diagnosis, treatment, and recent clinical trials involving promising treatments.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19/epidemiology , COVID-19/therapy , SARS-CoV-2 , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/analogs & derivatives , Adrenal Cortex Hormones/administration & dosage , Alanine/administration & dosage , Alanine/analogs & derivatives , Animals , COVID-19/diagnosis , COVID-19/immunology , Coronavirus/drug effects , Coronavirus/immunology , Cough/epidemiology , Cough/therapy , Diabetes Mellitus/epidemiology , Diabetes Mellitus/therapy , Fatigue/epidemiology , Fatigue/therapy , Fever , Heart Diseases/epidemiology , Heart Diseases/therapy , Humans , Positive-Pressure Respiration/methods , Prognosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/therapy , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Treatment Outcome
9.
Crit Care ; 25(1): 211, 2021 06 14.
Article in English | MEDLINE | ID: covidwho-1352668

ABSTRACT

BACKGROUND: There are several reports of extracorporeal membrane oxygenation (ECMO) use in patients with coronavirus disease 2019 (COVID-19) who develop severe acute respiratory distress syndrome (ARDS). We conducted a systematic review and meta-analysis to guide clinical decision-making and future research. METHODS: We searched MEDLINE, Embase, Cochrane and Scopus databases from 1 December 2019 to 10 January 2021 for observational studies or randomised clinical trials examining ECMO in adults with COVID-19 ARDS. We performed random-effects meta-analyses and meta-regression, assessed risk of bias using the Joanna Briggs Institute checklist and rated the certainty of evidence using the GRADE approach. Survival outcomes were presented as pooled proportions while continuous outcomes were presented as pooled means, both with corresponding 95% confidence intervals [CIs]. The primary outcome was in-hospital mortality. Secondary outcomes were duration of ECMO therapy and mechanical ventilation, weaning rate from ECMO and complications during ECMO. RESULTS: We included twenty-two observational studies with 1896 patients in the meta-analysis. Venovenous ECMO was the predominant mode used (98.6%). The pooled in-hospital mortality in COVID-19 patients (22 studies, 1896 patients) supported with ECMO was 37.1% (95% CI 32.3-42.0%, high certainty). Pooled mortality in the venovenous ECMO group was 35.7% (95% CI 30.7-40.7%, high certainty). Meta-regression found that age and ECMO duration were associated with increased mortality. Duration of ECMO support (18 studies, 1844 patients) was 15.1 days (95% CI 13.4-18.7). Weaning from ECMO (17 studies, 1412 patients) was accomplished in 67.6% (95% CI 50.5-82.7%) of patients. There were a total of 1583 ECMO complications reported (18 studies, 1721 patients) and renal complications were the most common. CONCLUSION: The majority of patients received venovenous ECMO support for COVID-19-related ARDS. In-hospital mortality in patients receiving ECMO support for COVID-19 was 37.1% during the first year of the pandemic, similar to those with non-COVID-19-related ARDS. Increasing age was a risk factor for death. Venovenous ECMO appears to be an effective intervention in selected patients with COVID-19-related ARDS. PROSPERO CRD42020192627.


Subject(s)
COVID-19/therapy , Critical Illness/therapy , Extracorporeal Membrane Oxygenation/methods , Respiratory Distress Syndrome/therapy , Adult , Age Factors , Aged , COVID-19/complications , COVID-19/epidemiology , Female , Humans , Male , Middle Aged , Positive-Pressure Respiration/methods , Respiratory Distress Syndrome/etiology , Risk Assessment
10.
Br J Anaesth ; 127(4): 648-659, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1329691

ABSTRACT

Mechanical ventilation induces a number of systemic responses for which the brain plays an essential role. During the last decade, substantial evidence has emerged showing that the brain modifies pulmonary responses to physical and biological stimuli by various mechanisms, including the modulation of neuroinflammatory reflexes and the onset of abnormal breathing patterns. Afferent signals and circulating factors from injured peripheral tissues, including the lung, can induce neuronal reprogramming, potentially contributing to neurocognitive dysfunction and psychological alterations seen in critically ill patients. These impairments are ubiquitous in the presence of positive pressure ventilation. This narrative review summarises current evidence of lung-brain crosstalk in patients receiving mechanical ventilation and describes the clinical implications of this crosstalk. Further, it proposes directions for future research ranging from identifying mechanisms of multiorgan failure to mitigating long-term sequelae after critical illness.


Subject(s)
Brain/metabolism , Lung Injury/physiopathology , Respiration, Artificial/methods , Animals , Central Nervous System/metabolism , Critical Illness , Humans , Multiple Organ Failure/physiopathology , Positive-Pressure Respiration/methods
11.
Crit Care ; 25(1): 248, 2021 07 15.
Article in English | MEDLINE | ID: covidwho-1317127

ABSTRACT

BACKGROUND: Differences in physiology of ARDS have been described between COVID-19 and non-COVID-19 patients. This study aimed to compare initial values and longitudinal changes in respiratory system compliance (CRS), oxygenation parameters and ventilatory ratio (VR) in patients with COVID-19 and non-COVID-19 pulmonary ARDS matched on oxygenation. METHODS: 135 patients with COVID-19 ARDS from two centers were included in a physiological study; 767 non-COVID-19 ARDS from a clinical trial were used for the purpose of at least 1:2 matching. A propensity-matching was based on age, severity score, oxygenation, positive end-expiratory pressure (PEEP) and pulmonary cause of ARDS and allowed to include 112 COVID-19 and 198 non-COVID pulmonary ARDS. RESULTS: The two groups were similar on initial oxygenation. COVID-19 patients had a higher body mass index, higher CRS at day 1 (median [IQR], 35 [28-44] vs 32 [26-38] ml cmH2O-1, p = 0.037). At day 1, CRS was correlated with oxygenation only in non-COVID-19 patients; 61.6% and 68.2% of COVID-19 and non-COVID-19 pulmonary ARDS were still ventilated at day 7 (p = 0.241). Oxygenation became lower in COVID-19 than in non-COVID-19 patients at days 3 and 7, while CRS became similar. VR was lower at day 1 in COVID-19 than in non-COVID-19 patients but increased from day 1 to 7 only in COVID-19 patients. VR was higher at days 1, 3 and 7 in the COVID-19 patients ventilated using heat and moisture exchangers compared to heated humidifiers. After adjustment on PaO2/FiO2, PEEP and humidification device, CRS and VR were found not different between COVID-19 and non-COVID-19 patients at day 7. Day-28 mortality did not differ between COVID-19 and non-COVID-19 patients (25.9% and 23.7%, respectively, p = 0.666). CONCLUSIONS: For a similar initial oxygenation, COVID-19 ARDS initially differs from classical ARDS by a higher CRS, dissociated from oxygenation. CRS become similar for patients remaining on mechanical ventilation during the first week of evolution, but oxygenation becomes lower in COVID-19 patients. TRIAL REGISTRATION: clinicaltrials.gov NCT04385004.


Subject(s)
COVID-19/therapy , Positive-Pressure Respiration/methods , Respiratory Distress Syndrome/therapy , Aged , Blood Gas Analysis , Body Mass Index , COVID-19/physiopathology , Female , Humans , Intensive Care Units , Male , Middle Aged , Propensity Score , Pulmonary Gas Exchange/physiology , Respiration, Artificial/methods , Respiratory Distress Syndrome/physiopathology , Respiratory Function Tests , Respiratory Mechanics/physiology , SARS-CoV-2
12.
J Med Internet Res ; 23(4): e23446, 2021 04 28.
Article in English | MEDLINE | ID: covidwho-1256230

ABSTRACT

BACKGROUND: With the growing stress on hospitals caused by the COVID-19 pandemic, the need for home-based solutions has become a necessity to support these overwhelmed hospitals. OBJECTIVE: The goal of this study was to compare two nonpharmacological respiratory treatment methods for home-isolated COVID-19 patients using a newly developed telemanagement health care system. METHODS: In this single-blinded randomized clinical trial, 60 patients with stage 1 pneumonia caused by SARS-CoV-2 infection were treated. Group A (n=30) received oxygen therapy with bilevel positive airway pressure (BiPAP) ventilation, and Group B (n=30) received osteopathic manipulative respiratory and physical therapy techniques. Arterial blood gases of PaO2 and PaCO2, pH, vital signs (ie, temperature, respiratory rate, oxygen saturation, heart rate, and blood pressure), and chest computed tomography scans were used for follow-up and for assessment of the course and duration of recovery. RESULTS: Analysis of the results showed a significant difference between the two groups (P<.05), with Group A showing shorter recovery periods than Group B (mean 14.9, SD 1.7 days, and mean 23.9, SD 2.3 days, respectively). Significant differences were also observed between baseline and final readings in all of the outcome measures in both groups (P<.05). Regarding posttreatment satisfaction with our proposed telemanagement health care system, positive responses were given by most of the patients in both groups. CONCLUSIONS: It was found that home-based oxygen therapy with BiPAP can be a more effective prophylactic treatment approach than osteopathic manipulative respiratory and physical therapy techniques, as it can impede exacerbation of early-stage COVID-19 pneumonia. Telemanagement health care systems are promising methods to help in the pandemic-related shortage of hospital beds, as they showed reasonable effectiveness and reliability in the monitoring and management of patients with early-stage COVID-19 pneumonia. TRIAL REGISTRATION: ClinicalTrials.gov NCT04368923; https://clinicaltrials.gov/ct2/show/NCT04368923.


Subject(s)
COVID-19/therapy , Oxygen Inhalation Therapy/methods , Physical Therapy Modalities , Positive-Pressure Respiration/methods , Telemedicine/methods , Adult , COVID-19/epidemiology , Female , Humans , Male , Pandemics , SARS-CoV-2/isolation & purification , Treatment Outcome , Young Adult
13.
BMC Pulm Med ; 21(1): 133, 2021 Apr 24.
Article in English | MEDLINE | ID: covidwho-1199907

ABSTRACT

BACKGROUND: Among the challenges for personalizing the management of mechanically ventilated patients with coronavirus disease (COVID-19)-associated acute respiratory distress syndrome (ARDS) are the effects of different positive end-expiratory pressure (PEEP) levels and body positions in regional lung mechanics. Right-left lung aeration asymmetry and poorly recruitable lungs with increased recruitability with alternating body position between supine and prone have been reported. However, real-time effects of changing body position and PEEP on regional overdistension and collapse, in individual patients, remain largely unknown and not timely monitored. The aim of this study was to individualize PEEP and body positioning in order to reduce the mechanisms of ventilator-induced lung injury: collapse and overdistension. METHODS: We here report a series of five consecutive mechanically ventilated patients with COVID-19-associated ARDS in which sixteen decremental PEEP titrations were performed in the first days of mechanical ventilation (8 titration pairs: supine position immediately followed by 30° targeted lateral position). The choice of lateral tilt was based on X-Ray. This targeted lateral position strategy was defined by selecting the less aerated lung to be positioned up and the more aerated lung to be positioned down. For each PEEP level, global and regional collapse and overdistension maps and percentages were measured by electrical impedance tomography. Additionally, we present the incidence of lateral asymmetry in a cohort of forty-four patients. RESULTS: The targeted lateral position strategy resulted in significantly smaller amounts of overdistension and collapse when compared with the supine one: less collapse along the PEEP titration was found within the left lung in targeted lateral (P = 0.014); and less overdistension along the PEEP titration was found within the right lung in targeted lateral (P = 0.005). Regarding collapse within the right lung and overdistension within the left lung: no differences were found for position. In the cohort of forty-four patients, ventilation inequality of > 65/35% was observed in 15% of cases. CONCLUSIONS: Targeted lateral positioning with bedside personalized PEEP provided a selective attenuation of overdistension and collapse in mechanically ventilated patients with COVID-19-associated ARDS and right-left lung aeration/ventilation asymmetry. TRIAL REGISTRATION: Trial registration number: NCT04460859.


Subject(s)
COVID-19/therapy , Patient Positioning/methods , Pulmonary Atelectasis/prevention & control , Respiratory Distress Syndrome/therapy , Ventilator-Induced Lung Injury/prevention & control , Adult , Aged , Aged, 80 and over , Electric Impedance , Female , Humans , Male , Middle Aged , Positive-Pressure Respiration/methods , Prospective Studies , Pulmonary Atelectasis/therapy , Respiration, Artificial/methods , SARS-CoV-2
14.
J Crit Care ; 64: 141-143, 2021 08.
Article in English | MEDLINE | ID: covidwho-1193376

ABSTRACT

Airway closure is a physiological phenomenon in which the distal airways are obstructed when the airway pressure drops below the airway opening pressure. We assessed this phenomenon in 27 patients with coronavirus disease 2019-related acute respiratory distress syndrome. Twelve (44%) patients had an airway opening pressure above 5 cmH2O. The median airway opening pressure was 8 cmH2O (interquartile range, 7-10), with a maximum value of 17 cmH2O. Three patients had a baseline positive end-expiratory pressure lower than the airway opening pressure.


Subject(s)
COVID-19/physiopathology , COVID-19/therapy , Positive-Pressure Respiration/methods , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Adult , Aged , Airway Obstruction/prevention & control , Critical Care , Female , France/epidemiology , Humans , Male , Middle Aged , Respiratory Mechanics
15.
Anesth Analg ; 132(5): 1191-1198, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1190137

ABSTRACT

BACKGROUND: Use of anesthesia machines as improvised intensive care unit (ICU) ventilators may occur in locations where waste anesthesia gas suction (WAGS) is unavailable. Anecdotal reports suggest as much as 18 cm H2O positive end-expiratory pressure (PEEP) being inadvertently applied under these circumstances, accompanied by inaccurate pressure readings by the anesthesia machine. We hypothesized that resistance within closed anesthesia gas scavenging systems (AGSS) disconnected from WAGS may inadvertently increase circuit pressures. METHODS: An anesthesia machine was connected to an anesthesia breathing circuit, a reference manometer, and a standard bag reservoir to simulate a lung. Ventilation was initiated as follows: volume control, tidal volume (TV) 500 mL, respiratory rate 12, ratio of inspiration to expiration times (I:E) 1:1.9, fraction of inspired oxygen (Fio2) 1.0, fresh gas flow (FGF) rate 2.0 liters per minute (LPM), and PEEP 0 cm H2O. After engaging the ventilator, PEEP and peak inspiratory pressure (PIP) were measured by the reference manometer and the anesthesia machine display simultaneously. The process was repeated using prescribed PEEP levels of 5, 10, 15, and 20 cm H2O. Measurements were repeated with the WAGS disconnected and then were performed again at FGF of 4, 6, 8, 10, and 15 LPM. This process was completed on 3 anesthesia machines: Dräger Perseus A500, Dräger Apollo, and the GE Avance CS2. Simple linear regression was used to assess differences. RESULTS: Utilizing nonparametric Bland-Altman analysis, the reference and machine manometer measurements of PIP demonstrated median differences of -0.40 cm H2O (95% limits of agreement [LOA], -1.00 to 0.55) for the Dräger Apollo, -0.40 cm H2O (95% LOA, -1.10 to 0.41) for the Dräger Perseus, and 1.70 cm H2O (95% LOA, 0.80-3.00) for the GE Avance CS2. At FGF 2 LPM and PEEP 0 cm H2O with the WAGS disconnected, the Dräger Apollo had a difference in PEEP of 0.02 cm H2O (95% confidence interval [CI], -0.04 to 0.08; P = .53); the Dräger Perseus A500, <0.0001 cm H2O (95% CI, -0.11 to 0.11; P = 1.00); and the GE Avance CS2, 8.62 cm H2O (95% CI, 8.55-8.69; P < .0001). After removing the hose connected to the AGSS and the visual indicator bag on the GE Avance CS2, the PEEP difference was 0.12 cm H2O (95% CI, 0.059-0.181; P = .0002). CONCLUSIONS: Displayed airway pressure measurements are clinically accurate in the setting of disconnected WAGS. The Dräger Perseus A500 and Apollo with open scavenging systems do not deliver inadvertent continuous positive airway pressure (CPAP) with WAGS disconnected, but the GE Avance CS2 with a closed AGSS does. This increase in airway pressure can be mitigated by the manufacturer's recommended alterations. Anesthesiologists should be aware of the potential clinically important increases in pressure that may be inadvertently delivered on some anesthesia machines, should the WAGS not be properly connected.


Subject(s)
Anesthesiology/instrumentation , COVID-19/therapy , Intensive Care Units , Positive-Pressure Respiration/instrumentation , Ventilators, Mechanical , Anesthesia/methods , Anesthesiology/methods , COVID-19/diagnosis , COVID-19/epidemiology , Critical Care/methods , Humans , Positive-Pressure Respiration/methods , Respiration, Artificial/instrumentation , Respiration, Artificial/methods
16.
Pediatr Pulmonol ; 56(7): 2057-2066, 2021 07.
Article in English | MEDLINE | ID: covidwho-1171244

ABSTRACT

BACKGROUND: Aerosol generating medical procedures (AGMPs) are common during newborn resuscitation. Neonates with respiratory viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may pose a risk to healthcare workers. International guidelines differ on methods to minimize the risk due to limited data. OBJECTIVE: We examined the expiratory airflow dispersion during common neonatal resuscitation AGMPs using infant simulators. METHODS: Expiratory airflow dispersion in term and preterm manikins was simulated (n = 288) using fine particle smoke at tidal volumes of 5 ml/kg. Using ImageJ, we quantified dispersion during common airway procedures including endotracheal tube (ETT) and T-piece ventilation. RESULTS: Maximal expiratory dispersion distances for the unsupported airway and disconnected uncuffed ETT scenarios were 30.2 and 22.7 cm (term); 22.1 and 17.2 cm (preterm), respectively. Applying T-piece positive end expiratory pressure (PEEP) via an ETT (ETTPEEP ) generated no expiratory dispersion but increased tube leak during term simulation, while ventilation breaths (ETTVENT ) caused significant expiratory dispersion and leak. There was no measurable dispersion during face mask ventilation. For term uncuffed ETT ventilation, the particle filter eliminated expiratory dispersion but increased leak. No expiratory dispersion and negligible leak were observed when combining a cuffed ETT and filter. Angulated T-pieces generated the greatest median dispersion distances of 35.8 cm (ETTPEEP ) and 23.3 cm (ETTVENT ). CONCLUSIONS: Airflow dispersion during neonatal AGMPs is greater than previously postulated and potentially could contaminate healthcare providers during resuscitation of infants infected with contagious viruses such as SARS-CoV-2. It is possible to mitigate this risk using particle filters and cuffed ETTs. Applicability in the clinical setting requires further evaluation.


Subject(s)
Air Microbiology , Exhalation , Respiratory Syncytial Viruses/isolation & purification , Resuscitation/methods , SARS-CoV-2/isolation & purification , Computer Simulation , Humans , Infant, Newborn , Intubation, Intratracheal , Manikins , Positive-Pressure Respiration/methods , Pressure , Tidal Volume
17.
J Med Internet Res ; 23(4): e23446, 2021 04 28.
Article in English | MEDLINE | ID: covidwho-1170046

ABSTRACT

BACKGROUND: With the growing stress on hospitals caused by the COVID-19 pandemic, the need for home-based solutions has become a necessity to support these overwhelmed hospitals. OBJECTIVE: The goal of this study was to compare two nonpharmacological respiratory treatment methods for home-isolated COVID-19 patients using a newly developed telemanagement health care system. METHODS: In this single-blinded randomized clinical trial, 60 patients with stage 1 pneumonia caused by SARS-CoV-2 infection were treated. Group A (n=30) received oxygen therapy with bilevel positive airway pressure (BiPAP) ventilation, and Group B (n=30) received osteopathic manipulative respiratory and physical therapy techniques. Arterial blood gases of PaO2 and PaCO2, pH, vital signs (ie, temperature, respiratory rate, oxygen saturation, heart rate, and blood pressure), and chest computed tomography scans were used for follow-up and for assessment of the course and duration of recovery. RESULTS: Analysis of the results showed a significant difference between the two groups (P<.05), with Group A showing shorter recovery periods than Group B (mean 14.9, SD 1.7 days, and mean 23.9, SD 2.3 days, respectively). Significant differences were also observed between baseline and final readings in all of the outcome measures in both groups (P<.05). Regarding posttreatment satisfaction with our proposed telemanagement health care system, positive responses were given by most of the patients in both groups. CONCLUSIONS: It was found that home-based oxygen therapy with BiPAP can be a more effective prophylactic treatment approach than osteopathic manipulative respiratory and physical therapy techniques, as it can impede exacerbation of early-stage COVID-19 pneumonia. Telemanagement health care systems are promising methods to help in the pandemic-related shortage of hospital beds, as they showed reasonable effectiveness and reliability in the monitoring and management of patients with early-stage COVID-19 pneumonia. TRIAL REGISTRATION: ClinicalTrials.gov NCT04368923; https://clinicaltrials.gov/ct2/show/NCT04368923.


Subject(s)
COVID-19/therapy , Oxygen Inhalation Therapy/methods , Physical Therapy Modalities , Positive-Pressure Respiration/methods , Telemedicine/methods , Adult , COVID-19/epidemiology , Female , Humans , Male , Pandemics , SARS-CoV-2/isolation & purification , Treatment Outcome , Young Adult
18.
J Crit Care ; 63: 106-112, 2021 06.
Article in English | MEDLINE | ID: covidwho-1101349

ABSTRACT

PURPOSE: Acute Respiratory Distress Syndrome (ARDS) secondary to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has demonstrated variable oxygenation and respiratory-system mechanics without investigation of transpulmonary and chest-wall mechanics. This study describes lung, chest wall and respiratory-system mechanics in patients with SARS-CoV-2 and ARDS. METHODS: Data was collected from forty patients with confirmed SARS-CoV-2 and ARDS at Beth Israel Deaconess Medical Center in Boston, Massachusetts. Esophageal balloons were placed to estimate pleural and transpulmonary pressures. Clinical characteristics, respiratory-system, transpulmonary, and chest-wall mechanics were measured over the first week. RESULTS: Patients had moderate-severe ARDS (PaO2/FiO2 123[98-149]) and were critically ill (APACHE IV 108 [94-128] and SOFA 12 [11-13]). PaO2/FiO2 improved over the first week (150 mmHg [122.9-182] to 185 mmHg [138-228] (p = 0.035)). Respiratory system (30-35 ml/cm H2O), lung (40-50 ml/cm H2O) and chest wall (120-150 ml/cm H2O) compliance remained similar over the first week. Elevated basal pleural pressures correlated with BMI. Patients required prolonged mechanical ventilation (14.5 days [9.5-19.0]), with a mortality of 32.5%. CONCLUSIONS: Patients displayed normal chest-wall mechanics, with increased basal pleural pressure. Respiratory system and lung mechanics were similar to known existing ARDS cohorts. The wide range of respiratory system mechanics illustrates the inherent heterogeneity that is consistent with typical ARDS.


Subject(s)
COVID-19/complications , Lung/physiopathology , Respiratory Distress Syndrome/etiology , Respiratory Mechanics , SARS-CoV-2/genetics , APACHE , Aged , Boston/epidemiology , COVID-19/epidemiology , COVID-19/therapy , COVID-19/virology , Cohort Studies , Critical Illness , Female , Humans , Male , Middle Aged , Organ Dysfunction Scores , Positive-Pressure Respiration/methods , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology
19.
Pediatr Radiol ; 51(1): 140-143, 2021 01.
Article in English | MEDLINE | ID: covidwho-1064454

ABSTRACT

Coronavirus disease 2019 (COVID-19) can present with abdominal pain in children and adults. Most imaging findings have been limited to characteristic lung findings, as well as one report of bowel-ischemia-related findings in adults. We report a case of COVID-19 in a healthy teenager who initially presented with isolated mesenteric adenopathy, typically a self-limited illness, which progressed to severe illness requiring intensive care before complete recovery. The boy tested negative for COVID-19 twice by polymerase chain reaction (PCR) from upper respiratory swabs before sputum PCR resulted positive. A high index of suspicion should be maintained for COVID-19 given the continued emergence of new manifestations of the disease.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/therapy , Lymphadenopathy , Peritoneal Diseases , Abdominal Pain/etiology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adolescent , Alanine/analogs & derivatives , Alanine/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/complications , Diagnosis, Differential , Humans , Male , Polymerase Chain Reaction/methods , Positive-Pressure Respiration/methods , Tomography, X-Ray Computed/methods , Treatment Outcome
20.
Am J Emerg Med ; 43: 103-108, 2021 May.
Article in English | MEDLINE | ID: covidwho-1053161

ABSTRACT

IMPORTANCE: Initial guidelines recommended prompt endotracheal intubation rather than non-invasive ventilation (NIV) for COVID-19 patients requiring ventilator support. There is insufficient data comparing the impact of intubation versus NIV on patient-centered outcomes of these patients. OBJECTIVE: To compare all-cause 30-day mortality for hospitalized COVID-19 patients with respiratory failure who underwent intubation first, intubation after NIV, or NIV only. DESIGN: Retrospective study of patients admitted in March and April of 2020. SETTING: A teaching hospital in Brooklyn, New York City. PARTICIPANTS: Adult COVID-19 confirmed patients who required ventilator support (non-invasive ventilation and/or endotracheal intubation) at discretion of treating physician, were included. EXPOSURES: Patients were categorized into three exposure groups: intubation-first, intubation after NIV, or NIV-only. PRIMARY OUTCOME: 30-day all-cause mortality, a predetermined outcome measured by multivariable logistic regression. Data are presented with medians and interquartile ranges, or percentages with 95% confidence intervals, for continuous and categorical variables, respectively. Covariates for the model were age, sex, qSOFA score ≥ 2, presenting oxygen saturation, vasopressor use, and greater than three comorbidities. A secondary multivariable model compared mortality of all patients that received NIV (intubation after NIV and NIV-only) with the intubation-first group. RESULTS: A total of 222 were enrolled. Overall mortality was 77.5% (95%CI, 72-83%). Mortality for intubation-first group was 82% (95%CI, 73-89%; 75/91), for Intubation after NIV was 84% (95%CI, 70-92%; 37/44), and for NIV-only was 69% (95%CI, 59-78%; 60/87). In multivariable analysis, NIV-only was associated with decreased all-cause mortality (odds ratio [OR]: 0.30, 95%CI, 0.13-0.69). No difference in mortality was observed between intubation-first and intubation after NIV. Secondary analysis found all patients who received NIV to have lower mortality than patients who were intubated only (OR: 0.44, 95%CI, 0.21-0.95). CONCLUSIONS & RELEVANCE: Utilization of NIV as the initial intervention in COVID-19 patients requiring ventilatory support is associated with significant survival benefit. For patients intubated after NIV, the mortality rate is not worse than those who undergo intubation as their initial intervention.


Subject(s)
COVID-19/therapy , Intensive Care Units , Intubation, Intratracheal/methods , Positive-Pressure Respiration/methods , Respiratory Insufficiency/therapy , Aged , COVID-19/complications , COVID-19/epidemiology , Cause of Death/trends , Female , Humans , Male , Middle Aged , New York City/epidemiology , Pandemics , Respiratory Insufficiency/etiology , Respiratory Insufficiency/mortality , Retrospective Studies , SARS-CoV-2 , Survival Rate/trends
SELECTION OF CITATIONS
SEARCH DETAIL
...