Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Clin Nucl Med ; 47(12): 1026-1029, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2078007

ABSTRACT

PATIENTS AND METHODS: Six post COVID-19 patients suspected for pulmonary fibrosis were scheduled for dual-tracer PET/CT with 18 F-FDG and 68 Ga-fibroblast activation protein inhibitor (FAPI)-46. The uptake of 68 Ga-FAPI-46 in the involved lung was compared with a control group of 9 non-COVID-19 patients. Clinical data and PET/CT imaging were collected and analyzed. RESULTS: PET/CT revealed in all 6 pulmonary impaired patients the reduced glucose avidity on 18 F-FDG and clear positivity on 68 Ga-FAPI-46 PET/CT in comparison to the control group. CONCLUSIONS: Enhancing fibrotic repair mechanisms, 68 Ga-FAPI PET/CT may improve noninvasive clinical diagnostic performance in patients with long-term CT abnormalities after severe COVID-19. Although this study shows promising results, additional studies in larger populations are required to establish a general diagnostic guideline.


Subject(s)
COVID-19 , Positron Emission Tomography Computed Tomography , Humans , Positron Emission Tomography Computed Tomography/methods , Fluorodeoxyglucose F18 , Membrane Proteins/metabolism , COVID-19/complications , COVID-19/diagnostic imaging , Gallium Radioisotopes
2.
Br J Radiol ; 95(1133): 20211234, 2022 May 01.
Article in English | MEDLINE | ID: covidwho-2065080

ABSTRACT

OBJECTIVES: Modern radiotherapy (RT) techniques require careful delineation of the target. There is no particular RT contouring guideline for patients receiving neoadjuvant chemotherapy (NACT). In this study, we examined the distribution of pre-chemotherapy clinically positive nodal metastases. METHODS: We explored the coverage rate of the RTOG breast contouring guideline by deformable fusion of 18-fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT) scan. We retrospectively evaluated neoadjuvant chemotherapy patients. All PET-CT images were imported into the planning software. We combined the planning CT and the CT images of PET-CT with rigid and then a deformable registration. We manually contoured positive lymph nodes on the CT component of the PET-CT data set and transferred them to planning CT after fusion. We evaluated whether previously contoured lymphatic CTVs, according to the RTOG breast atlas, include GTV-LNs. RESULTS: All breast cancer patients between October 2018 and February 2021 were evaluated from the electronic database. There were 142 radiologically defined positive lymph nodes in 31 patients who were irradiated after NACT. Most LNs (70%) were in the level I axilla. Only 71.1% (n:101) of the whole lymph nodes in 10 patients were totally covered, 22.5% (n:32) partially covered and 6.4% %(n:9) totally undercovered. CONCLUSIONS: The extent of regional nodal areas in the RTOG atlas may be insufficient to cover positive lymph nodes adequately. For patients with nodal involvement undergoing neoadjuvant chemotherapy, PET-CT image fusions can be helpful to be sure that positive lymph nodes are in the treatment volume. ADVANCES IN KNOWLEDGE: RTOG contouring atlas may be insufficient to cover all involved lymph nodes after NACT. For patients with nodal involvement undergoing neoadjuvant chemotherapy, PET-CT image fusions may help to be sure that positive lymph nodes are in the treatment volume.


Subject(s)
Breast Neoplasms , Positron Emission Tomography Computed Tomography , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Breast Neoplasms/radiotherapy , Female , Fluorodeoxyglucose F18 , Humans , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Lymphatic Metastasis/diagnostic imaging , Lymphatic Metastasis/pathology , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography , Radiopharmaceuticals , Retrospective Studies
3.
Int J Med Sci ; 19(10): 1539-1547, 2022.
Article in English | MEDLINE | ID: covidwho-2040346

ABSTRACT

Purpose: To early identify abnormal lesions by applying the 18F-FDG PET dynamic modeling approach for discharged patients recovering from COVID-19. Methods: Seven discharged COVID-19 patients (COVID-19 group), twelve healthy volunteers (control group 1), and eight cancer patients with normal pulmonary function (control group 2) were prospectively enrolled. Control group 1 completed static 18F-FDG PET/CT only; COVID-19 group and control group 2 completed 60-min dynamic 18F-FDG PET/CT. Among COVID-19 group and control group 2, the uptake of FDG on the last frame (at 55-60 min) of dynamic scans was used for static analysis. Prior to performing scans, COVID-19 patients provided negative real-time Reverse Transcription-Polymerase Chain Reaction (rRT-PCR) of SARS-CoV-2, normal lung functions test, and normal laboratory test. Organ-to-liver standard uptake ratio (OLR, i.e. SUVmax evaluated organ/ SUVmax liver) from conventional static data and Patlak analysis based on the dynamic modeling to calculate the 18F-FDG net uptake rate constant (Ki) were performed. Results: Compared to the control groups, COVID-19 patients at two to three months after discharge still maintained significantly higher Ki values in multiple organs (including lung, bone marrow, lymph nodes, myocardium and liver), although results for regular OLR measurements were normal for all discharged COVID-19 patients. Taking the image of lung as an example, the differences of SUVmax images between COVID-19 group and control group were hard to distinguish. In contrast, a high 18F-FDG signal of the lung among the COVID-19 group was observed for Ki images. Conclusion: The Ki from 18F-FDG PET/CT dynamic imaging quantification might contribute to identifying residual lesions for COVID-19 survivors. Trial registration: The trial is registered with ClinicalTrials.gov, number NCT04519255 (IRB-approved number, K52-1).


Subject(s)
COVID-19 , Fluorodeoxyglucose F18 , COVID-19/diagnostic imaging , Humans , Patient Discharge , Pilot Projects , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography , Prospective Studies , SARS-CoV-2
4.
Clin Nucl Med ; 47(12): 1019-1025, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2018388

ABSTRACT

PURPOSE: We quantified lung glycolytic metabolic activity, clinical symptoms and inflammation, coagulation, and endothelial activation biomarkers in 2019 coronavirus disease (COVID-19) pneumonia survivors. METHODS: Adults previously hospitalized with moderate to severe COVID-19 pneumonia were prospectively included. Subjects filled out a questionnaire on clinical consequences, underwent chest CT and 18 F-FDG PET/CT, and provided blood samples on the same day. Forty-five volunteers served as control subjects. Analysis of CT images and quantitative voxel-based analysis of PET/CT images were performed for both groups. 18 F-FDG uptake in the whole-lung volume and in high- and low-attenuation areas was calculated and normalized to liver values. Quantification of plasma markers of inflammation (interleukin 6), d -dimer, and endothelial cell activation (angiopoietins 1 and 2, vascular cell adhesion molecule 1, and intercellular adhesion molecule 1) was also performed. RESULTS: We enrolled 53 COVID-19 survivors (62.3% were male; median age, 50 years). All survivors reported at least 1 persistent symptom, and 41.5% reported more than 6 symptoms. The mean lung density was greater in survivors than in control subjects, and more metabolic activity was observed in normal and dense lung areas, even months after symptom onset. Plasma proinflammatory, coagulation, and endothelial activation biomarker concentrations were also significantly higher in survivors. CONCLUSION: We observed more metabolic activity in areas of high and normal lung attenuation several months after moderate to severe COVID-19 pneumonia. In addition, plasma markers of thromboinflammation and endothelial activation persisted. These findings may have implications for our understanding of the in vivo pathogenesis and long-lasting effects of COVID-19 pneumonia.


Subject(s)
COVID-19 , Pneumonia , Thrombosis , Adult , Male , Humans , Middle Aged , Female , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography/methods , COVID-19/diagnostic imaging , Inflammation/diagnostic imaging , Lung/diagnostic imaging , Biomarkers , Survivors
5.
Clin Nucl Med ; 47(10): e656-e657, 2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-2018384

ABSTRACT

ABSTRACT: A 57-year-old man with newly diagnosed with prostate cancer was admitted to our department for 68 Ga-prostate-specific membrane antigen PET/CT imaging. The patient, who was asymptomatic at the time of imaging, had increased diffuse 68 Ga-prostate-specific membrane antigen uptake in the trachea on PET/CT. No ground-glass density suggestive of pneumonia in both lungs was observed. The patient, whose symptoms developed 2 days after PET/CT imaging, was diagnosed with coronavirus disease 2019 by real-time polymerase chain reaction.


Subject(s)
COVID-19 , Prostatic Neoplasms , Tracheitis , COVID-19/complications , COVID-19/diagnostic imaging , Gallium Radioisotopes , Humans , Male , Middle Aged , Positron Emission Tomography Computed Tomography/methods , Prostate-Specific Antigen , Prostatic Neoplasms/complications , Prostatic Neoplasms/diagnostic imaging
6.
Curr Radiopharm ; 15(3): 228-235, 2022.
Article in English | MEDLINE | ID: covidwho-1987309

ABSTRACT

BACKGROUND: This work aims to present a nuclear medicine imaging service's data regarding applying positron emission-computing tomography (PET/CT) scans with the radiopharmaceutical 68Ga-PSMA-HBED-CC (68Ga-PSMA-11) to diagnose prostate cancer clinical relapse. METHODS: Eighty patients with a mean age of 68.26 years and an average prostatic-specific antigen blood level of 7.49 ng/ml (lower concentration = 0.17 ng/ml) received 68Ga-PSMA-11 intravenously, and full-body images of PET-CT scan were obtained. Of the total of patients admitted to the imaging service, 87.5% were examined for disease's biochemical recurrence and clinical relapse, and 70.0% had a previous radical prostatectomy (RP). RESULTS: Of the patients without RP, 95.8% were detected with intra-glandular disease. The 68Ga- PSMA-11 PET/CT imaging results revealed small lesions, even in patients with low blood levels of prostatic-specific antigen, mainly in metastatic cancer cases in lymph nodes and bones. CONCLUSION: The 68Ga-PSMA-11 PET/CT imaging was essential in detecting prostate cancer, with significantly high sensitivity in detecting recurrent cases. Due to its inherent reliability and sensitivity, PET/CT scanning with 68Ga-PSMA-11 received an increasing number of medical requests throughout the present follow-up study, confirming the augmented demand for this clinical imaging procedure in the regional medical community.


Subject(s)
Gallium Radioisotopes , Prostatic Neoplasms , Aged , Follow-Up Studies , Gallium Isotopes , Humans , Male , Neoplasm Recurrence, Local/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Prostatic Neoplasms/pathology , Radiopharmaceuticals , Reproducibility of Results
7.
Nucl Med Biol ; 112-113: 1-8, 2022.
Article in English | MEDLINE | ID: covidwho-1867632

ABSTRACT

RATIONALE: The aim of this study was to investigate the application of [18F]DPA714 to visualize the inflammation process in the lungs of SARS-CoV-2-infected rhesus monkeys, focusing on the presence of pulmonary lesions, activation of mediastinal lymph nodes and surrounded lung tissue. METHODS: Four experimentally SARS-CoV-2 infected rhesus monkeys were followed for seven weeks post infection (pi) with a weekly PET-CT using [18F]DPA714. Two PET images, 10 min each, of a single field-of-view covering the chest area, were obtained 10 and 30 min after injection. To determine the infection process swabs, blood and bronchoalveolar lavages (BALs) were obtained. RESULTS: All animals were positive for SARS-CoV-2 in both the swabs and BALs on multiple timepoints pi. The initial development of pulmonary lesions was already detected at the first scan, performed 2-days pi. PET revealed an increased tracer uptake in the pulmonary lesions and mediastinal lymph nodes of all animals from the first scan obtained after infection and onwards. However, also an increased uptake was detected in the lung tissue surrounding the lesions, which persisted until day 30 and then subsided by day 37-44 pi. In parallel, a similar pattern of increased expression of activation markers was observed on dendritic cells in blood. PRINCIPAL CONCLUSIONS: This study illustrates that [18F]DPA714 is a valuable radiotracer to visualize SARS-CoV-2-associated pulmonary inflammation, which coincided with activation of dendritic cells in blood. [18F]DPA714 thus has the potential to be of added value as diagnostic tracer for other viral respiratory infections.


Subject(s)
COVID-19 , Pneumonia , Animals , COVID-19/diagnostic imaging , Lung/diagnostic imaging , Lung/pathology , Macaca mulatta , Pneumonia/diagnostic imaging , Pneumonia/pathology , Positron Emission Tomography Computed Tomography/methods , Pyrazoles , Pyrimidines , SARS-CoV-2
8.
Q J Nucl Med Mol Imaging ; 66(3): 218-228, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1865697

ABSTRACT

Autoimmune thyroid diseases (AITD) are a heterogeneous group of disorders. They include, in particular, Graves' disease and Hashimoto's thyroiditis with a wide range of different functional status ranging from subclinical biochemical abnormalities to severe hyperthyroidism or severe hypothyroidism respectively. Furthermore, other conditions more frequently infectious or drug related can cause an immune reaction in the thyroid tissue. In AITDs, positron emission tomography/computed tomography (PET/CT) does not play a primary role for disease diagnosis or management, but accidental findings can occur in both symptomatic and asymptomatic patients, and they should be recognized and well interpreted. A comprehensive literature search of the PubMed databases was conducted to identify papers (systematic review, prospective and retrospective study, case report) evaluating the role of PET/CT in thyroid autoimmune diseases. Thyroid diffuse uptake of 18F-fluoro-2-deoxy-2-d-glucose ([18F]FDG) has been shown to be frequently associated with AITDs, but also with immune-induced thyroid disorders related to SARS-CoV-2 or immunotherapy, while malignant lesions more often have a focal aspect. Other radiopharmaceuticals as [68Ga]-DOTA-peptides, [68Ga]-fibroblast activation protein inhibitors (FAPIs) and [68Ga]-prostate specific membrane antigen ([68Ga]-PSMA) showed similar findings. In conclusion, PET/CT scan in AITDs does not play a primary role in the diagnosis, but the occasional finding of a thyroid uptake must always be described in the report and possibly investigated for a better patient's management.


Subject(s)
Autoimmune Diseases , COVID-19 , Graves Disease , Autoimmune Diseases/complications , Autoimmune Diseases/diagnostic imaging , COVID-19/diagnostic imaging , Fluorodeoxyglucose F18 , Graves Disease/diagnostic imaging , Humans , Male , Positron Emission Tomography Computed Tomography/methods , Prospective Studies , Radiopharmaceuticals , Retrospective Studies , SARS-CoV-2
9.
J Med Imaging Radiat Sci ; 53(2): 219-225, 2022 06.
Article in English | MEDLINE | ID: covidwho-1851589

ABSTRACT

PURPOSE: First discovered in Wuhan, China in December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) is a highly contagious and deadly novel virus that quickly wreaked havoc throughout the world. As mass vaccination are now underway worldwide, clinicians have started to encounter a new clinical entity, COVID-19 vaccine-associated axillary lymphadenopathy. This presents a unique challenge to medical imagers, particularly in oncologic patients. METHODS: In this retrospective study, we assessed metabolic activity, size, and timeline of COVID-19 vaccine-associated axillary hypermetabolic lymph nodes in 202 oncologic patients post vaccination with 18-fluorodeoxyglucose positron emission tomography (18-FDG PET). RESULTS: When present, COVID-19 vaccine-associated hypermetabolic lymph nodes demonstrate a mean maximum standard uptake value (SUVmax) of 2.5 ± 0.3, and more common in younger patients. The metabolic activity is the most intense in the first two weeks post vaccination and diminishes over time. By approximately 5-6 weeks, only about half of the patients demonstrated appreciable, low grade uptake compared to background. CONCLUSION: Based on our preliminary results, we would recommend correlation with a history and time of vaccination and routine use of a pre-study patient questionnaire to guide interpretation to prevent over-diagnosis of axillary nodal metastases and/or unnecessary work-up in oncologic patients.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , Humans , Lymph Nodes/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Retrospective Studies , SARS-CoV-2 , Vaccination
10.
Curr Med Imaging ; 18(14): 1532-1535, 2022.
Article in English | MEDLINE | ID: covidwho-1834112

ABSTRACT

BACKGROUND: A series of pneumonia cases with clinical presentations of viral pneumonia secondary to new coronavirus and subsequent global transmission arose in Wuhan, Hubei, China, in December 2019. Several cases of coronavirus disease 2019 (COVID-19) have been described incidentally in positron emission tomography-computed tomography (PET/CT) with 18F-fluorodeoxyglucose (FDG) as a result of the pandemic. Herein, we describe the findings of a patient with unknown COVID-19 in PET/CT with the other radiopharmaceutical, 68Ga-labeled prostatespecific membrane antigen (68Ga-PSMA). CASE REPORT: A 69-year-old man had previously undergone radical prostatectomy for adenocarcinoma. 68Ga-PSMA PET/CT imaging was performed due to biochemical recurrence. 68Ga-PSMA uptake in the prostate bed suggestive of local recurrence was detected in PET/CT images. Also, bilateral groundglass opacities with slightly increased 68Ga-PSMA uptake were seen in the lungs, suspected of COVID-19. A reverse transcription-polymerase chain reaction test has confirmed the infection. CONCLUSION: Even in asymptomatic patients, nuclear medicine departments must be aware of the possibility of COVID-19, take appropriate post-exposure procedures, and protect employees and other patients.


Subject(s)
COVID-19 , Prostatic Neoplasms , Male , Humans , Aged , Gallium Radioisotopes , Positron Emission Tomography Computed Tomography/methods , COVID-19/diagnostic imaging , Neoplasm Recurrence, Local/diagnostic imaging , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology
11.
J Med Virol ; 94(5): 1833-1845, 2022 05.
Article in English | MEDLINE | ID: covidwho-1777585

ABSTRACT

Coronavirus disease 2019 (COVID-19) has caused a global pandemic that continues to cause numerous deaths to date. Four vaccines have been approved by the Food and Drug Administration as of July 2021 to prevent the transmission of COVID-19: Pfizer, Moderna, AstraZeneca, and Janssen. These vaccines have shown great efficacy and safety profile. One side effect that has been widely reported is post-COVID-19 vaccination lymphadenopathy. Due to the mimicry of the lymphadenopathy for metastases in some oncologic patients, there have been reports of patients who underwent biopsies that showed pathologic confirmation of benign reactive lymphadenopathy secondary to the COVID-19 vaccine. Therefore, understanding the incidence of lymphadenopathy post-COVID-19 vaccinations will help guide radiologists and oncologists in their management of patients, both present oncologic patients, and patients with concerns over their newly presenting lymphadenopathy. A systematic literature search was performed using several databases to identify relevant studies that reported lymphadenopathy post-COVID-19 vaccination. Our results revealed that several cases have been detected in patients undergoing follow-up fluorodeoxyglucose (FDG)-positron emission tomography-computerized tomography scans where lymph nodes ipsilateral to the vaccine injection site show increased uptake of FDG. Thus, knowledge of the incidence of lymphadenopathy may help avoid unnecessary biopsies, interventions, and changes in management for patients, especially oncologic patients who are at risk for malignancies.


Subject(s)
COVID-19 , Lymphadenopathy , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Fluorodeoxyglucose F18 , Humans , Lymphadenopathy/diagnostic imaging , Lymphadenopathy/etiology , Positron Emission Tomography Computed Tomography/adverse effects , Positron Emission Tomography Computed Tomography/methods , SARS-CoV-2 , United States , Vaccination/adverse effects
12.
J Nucl Med ; 63(2): 270-273, 2022 02.
Article in English | MEDLINE | ID: covidwho-1753320

ABSTRACT

The aim of this study was to assess the temporal evolution of pulmonary 18F-FDG uptake in patients with coronavirus disease 2019 (COVID-19) and post-COVID-19 lung disease (PCLD). Methods: Using our hospital's clinical electronic records, we retrospectively identified 23 acute COVID-19, 18 PCLD, and 9 completely recovered 18F-FDG PET/CT patients during the 2 peaks of the U.K. pandemic. Pulmonary 18F-FDG uptake was measured as a lung target-to-background ratio (TBRlung = SUVmax/SUVmin) and compared with temporal stage. Results: In acute COVID-19, less than 3 wk after infection, TBRlung was strongly correlated with time after infection (r s = 0.81, P < 0.001) and was significantly higher in the late stage than in the early stage (P = 0.001). In PCLD, TBRlung was lower in patients treated with high-dose steroids (P = 0.003) and in asymptomatic patients (P < 0.001). Conclusion: Pulmonary 18F-FDG uptake in COVID-19 increases with time after infection. In PCLD, pulmonary 18F-FDG uptake rises despite viral clearance, suggesting ongoing inflammation. There was lower pulmonary 18F-FDG uptake in PCLD patients treated with steroids.


Subject(s)
COVID-19/diagnostic imaging , Fluorodeoxyglucose F18/pharmacokinetics , Lung/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Radiopharmaceuticals/pharmacokinetics , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Retrospective Studies , Young Adult
13.
PET Clin ; 17(2): 213-222, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1719570

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) imaging is nearly synonymous with positron emission tomography (PET) scans. Many of the nearly 60,000 newly diagnosed patients with HNSCC in the US-and 900,000 worldwide-will undergo a PET scan, if not multiple, throughout the course of their care. In this review, we describe the clinical utility of PET scans in HNSCC, emphasizing whereby their input is most impactful in improving patient outcomes as well as scenarios whereby PET/CT scans should be avoided. We also describe important considerations for capturing and processing PET scans with a special focus on the important role of tumor volume segmentation, scan timing relative to therapy, and concurrent conditions (eg, COVID-19). In addition, we will illustrate the latest innovations in the management of HNSCC. This article also will delve to exhibit novel potential biomarkers in the management of HNSCC. Finally, we describe future directions for PET imaging, including the advent of novel PET radiotracers as an alternative to 18F-fluorodeoxyglucose (18F-FDG).


Subject(s)
COVID-19 , Carcinoma, Squamous Cell , Head and Neck Neoplasms , COVID-19/diagnostic imaging , Carcinoma, Squamous Cell/diagnostic imaging , Fluorodeoxyglucose F18 , Head and Neck Neoplasms/diagnostic imaging , Humans , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods , Radiopharmaceuticals , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging
15.
J Nucl Med ; 63(2): 274-279, 2022 02.
Article in English | MEDLINE | ID: covidwho-1674255

ABSTRACT

Although the novel coronavirus disease 2019 (COVID-19) can present as nonspecific clinical forms, subclinical cases represent an important route of transmission and a significant source of mortality, mainly in high-risk subpopulations such as cancer patients. A deeper knowledge of the metabolic shift in cells infected with severe acute respiratory syndrome coronavirus 2 could provide new insights about its pathogenic and host response and help to diagnose pulmonary involvement. We explored the potential added diagnostic value of 18F-FDG PET/CT scans in asymptomatic cancer patients with suspected COVID-19 pneumonia by investigating the association between metabolic and structural changes in the lung parenchyma. Methods: 18F-FDG PET/CT studies acquired between February 19 and May 29, 2020, were reviewed to identify those cancer patients with incidental findings suggestive of COVID-19 pneumonia. PET studies were interpreted through qualitative (visual) and semiquantitative (measurement of SUVmax) analysis evaluating lung findings. Several characteristic signs of COVID-19 pneumonia on CT were described as COVID-19 Reporting and Data System (CO-RADS) categories (1-6). After comparing the SUVmax of pulmonary infiltrates among different CO-RADS categories, we explored the best potential cutoffs for pulmonary SUVmax against CO-RADS categories as the gold standard result to eliminate the possibility that the diagnosis of COVID-19 pneumonia exists. Results: On multimodal PET/CT imaging, CT signs classified as CO-RADS category 5 or 6 were found in 16 of 41 (39%) oncologic patients. SUVmax was higher in patients with categories 5 and 6 than in patients with category 4 (6.17 ± 0.82 vs. 3.78 ± 0.50, P = 0.04) or categories 2 and 3 (3.59 ± 0.41, P = 0.01). A specificity of 93.8% (95% CI, 71.7%-99.7%) and an accuracy of 92.9% were obtained when combining a CO-RADS score of 5 or 6 with an SUVmax of 2.45 in pulmonary infiltrates. Conclusion: In asymptomatic cancer patients, the metabolic activity in lung infiltrates is closely associated with several combined tomographic changes characteristic of COVID-19 pneumonia. Multimodal 18F-FDG PET/CT imaging could provide additional information during early diagnosis in selected predisposed patients during the pandemic. The prognostic implications of simultaneous radiologic and molecular findings in cancer patients and other subpopulations at high risk for COVID-19 pneumonia deserve further evaluation in prospective research.


Subject(s)
COVID-19/diagnostic imaging , Fluorodeoxyglucose F18 , Lung/diagnostic imaging , Neoplasms/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Radiopharmaceuticals , SARS-CoV-2 , Aged , Aged, 80 and over , Female , Humans , Lung/metabolism , Lung/pathology , Male , Middle Aged , Neoplasms/metabolism , Neoplasms/pathology
16.
Nucl Med Biol ; 106-107: 62-71, 2022.
Article in English | MEDLINE | ID: covidwho-1641554

ABSTRACT

INTRODUCTION: Neutrophils are part of the innate immune system and function as a first line of defense against invading microorganisms. Overactivity of the immune system may result in a devastating immuno-inflammation with extensive damage to tissue leading to organ damage and/or failure. The literature suggests several human diseases in which neutrophil elastase (NE) is postulated to be important in the pathophysiology including inflammatory bowel disease (IBD), chronic obstructive pulmonary disorder (COPD), abdominal aortic aneurysms (AAA), breast and lung cancer, and recently also in Sars-cov-2 virus infection (Covid-19). In particular, the lungs are affected by the destructive power of the protease neutrophil elastase (NE). In this paper, we report the pre-clinical development of a selective and specific positron emission tomography (PET) tracer, [11C]GW457427, as an in vivo biomarker for the study of NE, now available for human studies. METHODS: [11C]GW457427 was produced by methylation of GW447631 using [11C]methyl triflate and GMP validated production and quality control methods were developed. Chemical purity was high with no traces of the precursor GW611437 or other uv-absorbing compounds. A method for the determination of intact [11C]GW457427 in plasma was developed and the binding characteristics were evaluated in vitro and in vivo. An animal model for lung inflammation was used to investigate the specificity and sensitivity of the [11C]GW457427 tracer for neutrophil elastase (NE) in pulmonary inflammation, verified by blockade using two structurally different elastase inhibitors. RESULTS: [11C]GW457427 was obtained in approximately 45% radiochemical yield and with a radiochemical purity higher than 98%. Molar activity was in the range 130-360 GBq/µmol. Binding to NE was shown to be highly specific both in vitro and in vivo and a significantly higher uptake of tracer was found in a lipopolysaccharide mouse model of pulmonary inflammation compared with control animals. The uptake in lung tissue measured as standardized uptake value (SUV) strongly correlated with tissue NE content as measured by ELISA. In vitro studies also showed specific tracer binding in aortic tissue of patients with abdominal aorta aneurysm (AAA). The rate of metabolism in rats was appropriate considering the critical balance between available tracer for binding and requirement for blood clearance with about 40% and 20% intact [11C]GW457427 in plasma at 5 and 40 min, respectively. Radioactivity was cleared from blood and organs in control animals with mainly hepatobiliary excretion with distribution in the intestines and the urinary bladder; but without retention of the tracer in healthy organs of interests such as the lung, liver, kidneys or in the cardiovascular system. A dosimetry study in rat indicated that the whole-body effective dose was 2.2 µSv/MBq with bone marrow as the limiting organ. It is estimated that up to five PET-CT investigations could be performed in humans without exceeding a total dose of 10 mSv. CONCLUSION: [11C]GW457427 is a promising in vivo PET-biomarker for NE with high specific binding demonstrated both in vitro and in vivo. A GMP validated production method including quality control has been developed and a microdosing toxicity study performed with no adverse signs. [11C]GW457427 is currently being evaluated in a First-In-Man PET study.


Subject(s)
COVID-19 , Positron Emission Tomography Computed Tomography , Animals , Humans , Leukocyte Elastase , Mice , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods , Rats , SARS-CoV-2
17.
Br J Radiol ; 95(1130): 20211079, 2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1598426

ABSTRACT

OBJECTIVES: To describe the findings of incidental asymptomatic COVID-19 infection on FDG PET-CT using a case-control design. METHODS: Incidental pulmonary findings suspicious of asymptomatic COVID-19 infection on FDG PET-CT were classified as a confirmed (positive RT-PCR test) or suspected case (no/negative RT-PCR test). Control cases were identified using a 4:1 control:case ratio. Pulmonary findings were re-categorised by two reporters using the BSTI classification. SUV metrics in ground glass opacification (GGO)/consolidation (where present), background lung, intrathoracic nodes, liver, spleen and bone marrow were measured. RESULTS: 7/9 confirmed and 11/15 suspected cases (COVID-19 group) were re-categorised as BSTI 1 (classic/probable COVID-19) or BSTI 2 (indeterminate COVID-19); 0/96 control cases were categorised as BSTI 1. Agreement between two reporters using the BSTI classification was almost perfect (weighted κ = 0.94). SUVmax GGO/consolidation (5.1 vs 2.2; p < 0.0001) and target-to-background ratio, normalised to liver SUVmean (2.4 vs 1.0; p < 0.0001) were higher in the BSTI 1 & 2 group vs BSTI 3 (non-COVID-19) cases. SUVmax GGO/consolidation discriminated between the BSTI 1 & 2 group vs BSTI 3 (non-COVID-19) cases with high accuracy (AUC = 0.93). SUV metrics were higher (p < 0.05) in the COVID-19 group vs control cases in the lungs, intrathoracic nodes and spleen. CONCLUSION: Asymptomatic COVID-19 infection on FDG PET-CT is characterised by bilateral areas of FDG avid (intensity > x2 liver SUVmean) GGO/consolidation and can be identified with high interobserver agreement using the BSTI classification. There is generalised background inflammation within the lungs, intrathoracic nodes and spleen. ADVANCES IN KNOWLEDGE: Incidental asymptomatic COVID-19 infection on FDG PET-CT, characterised by bilateral areas of ground glass opacification and consolidation, can be identified with high reproducibility using the BSTI classification. The intensity of associated FDG uptake (>x2 liver SUVmean) provides high discriminative ability in differentiating such cases from pulmonary findings in a non-COVID-19 pattern. Asymptomatic COVID-19 infection causes a generalised background inflammation within the mid-lower zones of the lungs, hilar and central mediastinal nodal stations, and spleen on FDG PET-CT.


Subject(s)
COVID-19/diagnostic imaging , Fluorodeoxyglucose F18 , Incidental Findings , Lung/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Radiopharmaceuticals , Adult , Aged , Aged, 80 and over , Case-Control Studies , Female , Humans , Male , Middle Aged , Reproducibility of Results , SARS-CoV-2
18.
J Nucl Med ; 63(8): 1231-1238, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1551435

ABSTRACT

We aimed to predict the presence of vaccine-induced hypermetabolic lymph nodes (v-HLNs) on 18F-FDG PET/CT after coronavirus disease 2019 (COVID-19) vaccination and determine their association with lymphocyte counts. Methods: In this retrospective single-center study, we included consecutive patients who underwent 18F-FDG PET/CT imaging after messenger RNA- or viral vector-based COVID-19 vaccination between early March and late April 2021. Demographics, clinical parameters, and absolute lymphocyte count (ALC) were collected, and their association with the presence of v-HLNs in the draining territory was studied by logistic regression. Results: In total, 260 patients were eligible, including 209 (80%) women and 145 (56%) with breast cancer. The median age was 50 y (range, 23-96 y). The messenger RNA vaccine had been given to 233 (90%). Ninety (35%) patients had v-HLNs, with a median SUVmax of 3.7 (range, 2.0-26.3), and 74 (44%) displayed lymphopenia, with a median ALC of 1.4 × 109/L (range, 0.3-18.3 × 109/L). An age of no more than 50 y (odds ratio [OR], 2.2; 95% CI, 1.0-4.5), the absence of lymphopenia (OR, 2.2; 95% CI, 1.1-4.3), and less than a 30-d interval from the last vaccine injection to the 18F-FDG PET/CT (OR, 2.6; 95% CI, 1.3-5.6) were independent factors for v-HLNs on multivariate analysis. In breast cancer patients, the absence of lymphopenia was the only independent factor significantly associated with v-HLNs (OR, 2.9; 95% CI, 1.2-7.4). Conclusion: Patients with a normal ALC after COVID-19 vaccination were more likely to have v-HLNs on 18F-FDG PET/CT, both of which might be associated with a stronger immune response to vaccination.


Subject(s)
Breast Neoplasms , COVID-19 Vaccines , COVID-19 , Lymph Nodes , Lymphopenia , Adult , Aged , Aged, 80 and over , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Breast Neoplasms/therapy , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Female , Fluorodeoxyglucose F18 , Humans , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Lymphocyte Count , Male , Middle Aged , Positron Emission Tomography Computed Tomography/methods , Retrospective Studies , Vaccination/adverse effects , Young Adult , mRNA Vaccines/adverse effects
19.
IEEE Rev Biomed Eng ; 14: 16-29, 2021.
Article in English | MEDLINE | ID: covidwho-1501334

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading rapidly around the world, resulting in a massive death toll. Lung infection or pneumonia is the common complication of COVID-19, and imaging techniques, especially computed tomography (CT), have played an important role in diagnosis and treatment assessment of the disease. Herein, we review the imaging characteristics and computing models that have been applied for the management of COVID-19. CT, positron emission tomography - CT (PET/CT), lung ultrasound, and magnetic resonance imaging (MRI) have been used for detection, treatment, and follow-up. The quantitative analysis of imaging data using artificial intelligence (AI) is also explored. Our findings indicate that typical imaging characteristics and their changes can play crucial roles in the detection and management of COVID-19. In addition, AI or other quantitative image analysis methods are urgently needed to maximize the value of imaging in the management of COVID-19.


Subject(s)
COVID-19/diagnosis , Artificial Intelligence , COVID-19/diagnostic imaging , Humans , Lung/diagnostic imaging , Lung/virology , Positron Emission Tomography Computed Tomography/methods , SARS-CoV-2/pathogenicity , Tomography, X-Ray Computed/methods , Ultrasonography/methods
20.
Eur J Nucl Med Mol Imaging ; 49(4): 1338-1344, 2022 03.
Article in English | MEDLINE | ID: covidwho-1469685

ABSTRACT

PURPOSE: The incidence of COVID-19 vaccine-associated hypermetabolic lymphadenopathy (VAHL) is high following the administration of the first and second BNT162b2 vaccine doses. The impact of this finding on [18F]FDG PET-CT interpretation and its correlation with the induced humoral immunity have been reported. Assuming the amnestic immune response is different following the third vaccine dose, we aimed to explore the incidence of VAHL over time after the third BNT162b2 dose administration, and its relevance to [18F]FDG PET-CT interpretation in oncologic patients. METHODS: A total of 179 consecutive oncologic patients that underwent [18F]FDG PET-CT after a third BNT162b2 vaccine dose were included. The presence of VAHL was assessed. On VAHL-positive scans, the SUVmax, number, location, and size of the "hot" nodes were recorded. The median time interval between vaccination and imaging was 8 (IQR, 5-14) days. RESULTS: The incidences of all-grade VAHL and grade 3-4 VAHL were 47.5% and 8.9%, respectively. VAHL was identified on 82.5% of studies performed within the first 5 days from vaccination. Grade 3-4 VAHL was observed on 28.1% of studies performed within the first 5 days from vaccination, but was not detected on studies performed more than 5 days from vaccination. Separation between VAHL and malignant lymphadenopathy was not possible in only 2 of the 179 study patients. On a multivariable logistic regression, independent predictors of grade 3-4 VAHL were short time interval between vaccination and imaging (Pv < 0.01), younger age (Pv < 0.01), and lower BMI (Pv = 0.03). CONCLUSION: VAHL is commonly identified on [18F]FDG PET-CT performed within the first 5 days from the third BNT162b2 vaccine dose administration. High-grade VAHL is unlikely to be observed on a scan performed 6 days or longer from vaccination, and is even less likely in older and obese patients.


Subject(s)
COVID-19 , Lymphadenopathy , Aged , COVID-19 Vaccines/adverse effects , Fluorodeoxyglucose F18 , Humans , Lymphadenopathy/diagnostic imaging , Lymphadenopathy/etiology , Positron Emission Tomography Computed Tomography/methods , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL