Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Molecules ; 27(15)2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-1994111

ABSTRACT

Rising global populations and enhanced standards of living in so-called developing countries have led to an increased demand of food, in particular meat, worldwide. While increasing the production of broiler meat could be a potential solution to this problem, broiler meat is plagued by health concerns, such as the development of antimicrobial resistance and lower meat quality. For this reason, the supplementation of poultry feed with vitamins and antioxidant compounds, such as polyphenols, has become an attractive prospect for research in this sector. Such supplements could be obtained by extraction of agricultural byproducts (in particular, grape pomaces and artichoke leaves and bracts), thus contributing to reductions in the total amount of waste biomass produced by the agricultural industry. In this review, the effects of poultry feed supplementation with bioactive extracts from grape pomace (skins and/or seeds), as well as extracts from artichoke leaves and bracts, were explored. Moreover, the various methods that have been employed to obtain extracts from these and other agricultural byproducts were listed and described, with a particular focus on novel, eco-friendly extraction methods (using, for example, innovative and biocompatible solvents like Deep Eutectic Solvents (DESs)) that could reduce the costs and energy consumption of these procedures, with similar or higher yields compared to standard methods.


Subject(s)
Plant Extracts , Vitis , Animals , Antioxidants/pharmacology , Chickens , Food Industry , Poultry
2.
Transbound Emerg Dis ; 69(4): e605-e620, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1973742

ABSTRACT

From April 2018 to October 2019, we continued active surveillance for influenza viruses in Bangladeshi live poultry markets (LPMs) and in Tanguar Haor, a wetland region of Bangladesh where domestic ducks have frequent contact with migratory birds. The predominant virus subtypes circulating in the LPMs were low pathogenic avian influenza (LPAI) H9N2 and clade 2.3.2.1a highly pathogenic avian influenza (HPAI) H5N1 viruses of the H5N1-R1 genotype, like those found in previous years. Viruses of the H5N1-R2 genotype, which were previously reported as co-circulating with H5N1-R1 genotype viruses in LPM, were not detected. In addition to H9N2 viruses, which were primarily found in chicken and quail, H2N2, H3N8 and H11N3 LPAI viruses were detected in LPMs, exclusively in ducks. Viruses in domestic ducks and/or wild birds in Tanguar Haor were more diverse, with H1N1, H4N6, H7N1, H7N3, H7N4, H7N6, H8N4, H10N3, H10N4 and H11N3 detected. Phylogenetic analyses of these LPAI viruses suggested that some were new to Bangladesh (H2N2, H7N6, H8N4, H10N3 and H10N4), likely introduced by migratory birds of the Central Asian flyway. Our results show a complex dynamic of viral evolution and diversity in Bangladesh based on factors such as host populations and geography. The LPM environment was characterised by maintenance of viruses with demonstrated zoonotic potential and H5N1 genotype turnover. The wetland environment was characterised by greater viral gene pool diversity but a lower overall influenza virus detection rate. The genetic similarity of H11N3 viruses in both environments demonstrates that LPM and wetlands are connected despite their having distinct influenza ecologies.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N8 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H7N1 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Influenza, Human , Poultry Diseases , Animals , Bangladesh/epidemiology , Chickens , Ducks , Humans , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H7N3 Subtype , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/epidemiology , Influenza, Human/epidemiology , Phylogeny , Poultry , Poultry Diseases/epidemiology , Wetlands
4.
Viruses ; 14(6)2022 06 05.
Article in English | MEDLINE | ID: covidwho-1884381

ABSTRACT

Avian species often serve as transmission vectors and sources of recombination for viral infections due to their ability to travel vast distances and their gregarious behaviors. Recently a novel deltacoronavirus (DCoV) was identified in sparrows. Sparrow deltacoronavirus (SpDCoV), coupled with close contact between sparrows and swine carrying porcine deltacoronavirus (PDCoV) may facilitate recombination of DCoVs resulting in novel CoV variants. We hypothesized that the spike (S) protein or receptor-binding domain (RBD) from sparrow coronaviruses (SpCoVs) may enhance infection in poultry. We used recombinant chimeric viruses, which express S protein or the RBD of SpCoV (icPDCoV-SHKU17, and icPDCoV-RBDISU) on the genomic backbone of an infectious clone of PDCoV (icPDCoV). Chimeric viruses were utilized to infect chicken derived DF-1 cells, turkey poults, and embryonated chicken eggs (ECEs) to examine permissiveness, viral replication kinetics, pathogenesis and pathology. We demonstrated that DF-1 cells in addition to the positive control LLC-PK1 cells are susceptible to SpCoV spike- and RBD- recombinant chimeric virus infections. However, the replication of chimeric viruses in DF-1 cells, but not LLC-PK1 cells, was inefficient. Inoculated 8-day-old turkey poults appeared resistant to icPDCoV-, icPDCoV-SHKU17- and icPDCoV-RBDISU virus infections. In 5-day-old ECEs, significant mortality was observed in PDCoV inoculated eggs with less in the spike chimeras, while in 11-day-old ECEs there was no evidence of viral replication, suggesting that PDCoV is better adapted to cross species infection and differentiated ECE cells are not susceptible to PDCoV infection. Collectively, we demonstrate that the SpCoV chimeric viruses are not more infectious in turkeys, nor ECEs than wild type PDCoV. Therefore, understanding the cell and host factors that contribute to resistance to PDCoV and avian-swine chimeric virus infections may aid in the design of novel antiviral therapies against DCoVs.


Subject(s)
Coronavirus Infections , Sparrows , Swine Diseases , Animals , Chickens , Deltacoronavirus/genetics , Poultry , Spike Glycoprotein, Coronavirus/genetics , Swine , Turkeys
5.
J Virol ; 96(10): e0024122, 2022 05 25.
Article in English | MEDLINE | ID: covidwho-1868711

ABSTRACT

In this study, 232 class I Newcastle disease viruses (NDVs) were identified from multiple bird species at nationwide live bird markets (LBMs) from 2017 to 2019 in China. Phylogenetic analysis indicated that all 232 isolates were clustered into genotype 1.1.2 of class I on the basis of the fusion (F) gene sequences, which were distinct from the genotypes identified in other countries. Most of the isolates (212/232) were shown to have the typical F gene molecular characteristics of class I NDVs, while a few (20/232) contained mutations at the site of the conventional start codon of the F gene, which resulted in open reading frames (ORFs) altered in length. The isolates with ACG, CTA, and ATA mutations showed different levels of increased virulence and replication capacity, suggesting that these viruses may be transitional types during the evolution of class I NDVs from avirulent to virulent. Further evaluation of biological characteristics with recombinant viruses obtained by reverse genetics demonstrated that the ATG located at genomic positions 4523 to 4525 was the authentic start codon in the F gene of class I NDV, and the specific ATA mutations which contributed to the expression of F protein on the surface of infected cells were the key determinants of increased replication capacity and virulence. Interestingly, the mutation at the corresponding site of genotype II LaSota of class II had no effects on the virulence and replication capacity in chickens. Our results suggest that the alteration of virulence and replication capacity caused by specific mutations in the F gene could be a specific characteristic of class I NDVs and indicate the possibility of the emergence of virulent NDVs due to the persistent circulation of class I NDVs. IMPORTANCE The available information on the distribution, genetic diversity, evolution, and biological characteristics of class I Newcastle disease viruses (NDVs) in domestic poultry is currently very limited. Here, identification of class I NDVs at nationwide live bird markets (LBMs) in China was performed and representative isolates were characterized. A widespread distribution of genotype 1.1.2 of class I NDVs was found in multiple bird species at LBMs in China. Though most isolates demonstrated typical molecular characteristics of class I NDVs, a few that contained specific mutations at the site of the conventional start codon of the fusion gene with increased virulence and replication capacity were identified for the first time. Our findings indicate that the virulence of class I NDVs could have evolved, and the widespread transmission and circulation of class I NDVs may represent a potential threat for disease outbreaks in poultry.


Subject(s)
Newcastle Disease , Poultry Diseases , Animals , Chickens/virology , China/epidemiology , Codon, Initiator , Commerce , Epidemiological Monitoring/veterinary , Genotype , Newcastle Disease/epidemiology , Newcastle disease virus/genetics , Phylogeny , Poultry/virology , Poultry Diseases/epidemiology , Virulence/genetics
6.
BMC Infect Dis ; 22(1): 472, 2022 May 16.
Article in English | MEDLINE | ID: covidwho-1846803

ABSTRACT

BACKGROUND: Interactions between humans and animals are the key elements of zoonotic spillover leading to zoonotic disease emergence. Research to understand the high-risk behaviors associated with disease transmission at the human-animal interface is limited, and few consider regional and local contexts. OBJECTIVE: This study employed an integrated behavioral-biological surveillance approach for the early detection of novel and known zoonotic viruses in potentially high-risk populations, in an effort to identify risk factors for spillover and to determine potential foci for risk-mitigation measures. METHOD: Participants were enrolled at two community-based sites (n = 472) in eastern and western Thailand and two hospital (clinical) sites (n = 206) in northeastern and central Thailand. A behavioral questionnaire was administered to understand participants' demographics, living conditions, health history, and animal-contact behaviors and attitudes. Biological specimens were tested for coronaviruses, filoviruses, flaviviruses, influenza viruses, and paramyxoviruses using pan (consensus) RNA Virus assays. RESULTS: Overall 61/678 (9%) of participants tested positive for the viral families screened which included influenza viruses (75%), paramyxoviruses (15%), human coronaviruses (3%), flaviviruses (3%), and enteroviruses (3%). The most salient predictors of reporting unusual symptoms (i.e., any illness or sickness that is not known or recognized in the community or diagnosed by medical providers) in the past year were having other household members who had unusual symptoms and being scratched or bitten by animals in the same year. Many participants reported raising and handling poultry (10.3% and 24.2%), swine (2%, 14.6%), and cattle (4.9%, 7.8%) and several participants also reported eating raw or undercooked meat of these animals (2.2%, 5.5%, 10.3% respectively). Twenty four participants (3.5%) reported handling bats or having bats in the house roof. Gender, age, and livelihood activities were shown to be significantly associated with participants' interactions with animals. Participants' knowledge of risks influenced their health-seeking behavior. CONCLUSION: The results suggest that there is a high level of interaction between humans, livestock, and wild animals in communities at sites we investigated in Thailand. This study highlights important differences among demographic and occupational risk factors as they relate to animal contact and zoonotic disease risk, which can be used by policymakers and local public health programs to build more effective surveillance strategies and behavior-focused interventions.


Subject(s)
Communicable Diseases, Emerging , Animals , Animals, Wild , Cattle , Communicable Diseases, Emerging/epidemiology , Humans , Poultry , Swine , Thailand/epidemiology , Zoonoses/epidemiology
7.
Int J Environ Res Public Health ; 19(3)2022 01 31.
Article in English | MEDLINE | ID: covidwho-1686749

ABSTRACT

This paper uses the Heckprobit two-stage econometric model to explore the influence mechanism of poultry farmers' willingness and behavior regarding scale based on 269 household survey data in the hinterland of Jianghan Plain, China. The results show that (1) family endowments, social capital, economic capital, product market prediction, and major public emergencies are the main influencing factors for farmers to engage in poultry farming; (2) economic capital, policy guarantees, product market prediction, and major public emergencies are the main factors that influence the changes in farmers' poultry breeding scale; and (3) sampled poultry farmers are inconsistent between their breeding willingness and breeding behavior in poultry decision-making and the factors that affect the willingness and behavior are varied. Based on these findings, this paper suggests that the government should pay attention to inducing corresponding assistance and subsidy policies, formulating financial support countermeasures, organizing training and exchange meetings of the breeding industry, and promoting poultry market informatization to help the poultry industry prosper.


Subject(s)
Farmers , Poultry , Agriculture , Animals , Breeding , China , Humans
8.
Environ Sci Pollut Res Int ; 29(29): 44175-44185, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1669935

ABSTRACT

The spread of highly pathogenic avian influenza H5N1 has posed a major threat to global public health. Understanding the spatiotemporal outbreak characteristics and environmental factors of H5N1 outbreaks is of great significance for the establishment of effective prevention and control systems. The time and location of H5N1 outbreaks in poultry and wild birds officially confirmed by the World Organization for Animal Health from 2005 to 2019 were collected. Spatial autocorrelation analysis and multidistance spatial agglomeration analysis methods were used to analyze the global outbreak sites of H5N1. Combined with remote sensing data, the correlation between H5N1 outbreaks and environmental factors was analyzed using binary logistic regression methods. We analyzed the correlation between the H5N1 outbreak and environmental factors and finally made a risk prediction for the global H5N1 outbreaks. The results show that the peak of the H5N1 outbreaks occurs in winter and spring. H5N1 outbreaks exhibit aggregation, and a weak aggregation phenomenon is noted on the scale close to 5000 km. Water distance, road distance, railway distance, wind speed, leaf area index (LAI), and specific humidity were protective factors for the outbreak of H5N1, and the odds ratio (OR) were 0.985, 0.989, 0.995, 0.717, 0.832, and 0.935, respectively. Temperature was a risk factor with an OR of 1.073. The significance of these ORs was greater than 95%. The global risk prediction map was obtained. Given that the novel coronavirus (COVID-19) is spreading globally, the methods and results of this study can provide a reference for studying the spread of COVID-19.


Subject(s)
COVID-19 , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Animals , Disease Outbreaks/veterinary , Influenza in Birds/epidemiology , Poultry
9.
Sci Rep ; 11(1): 23223, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1553757

ABSTRACT

Low pathogenic avian influenza viruses (LPAIVs) have been widespread in poultry and wild birds throughout the world for many decades. LPAIV infections are usually asymptomatic or cause subclinical symptoms. However, the genetic reassortment of LPAIVs may generate novel viruses with increased virulence and cross-species transmission, posing potential risks to public health. To evaluate the epidemic potential and infection landscape of LPAIVs in Guangxi Province, China, we collected and analyzed throat and cloacal swab samples from chickens, ducks and geese from the live poultry markets on a regular basis from 2016 to 2019. Among the 7,567 samples, 974 (12.87%) were LPAIVs-positive, with 890 single and 84 mixed infections. Higher yearly isolation rates were observed in 2017 and 2018. Additionally, geese had the highest isolation rate, followed by ducks and chickens. Seasonally, spring had the highest isolation rate. Subtype H3, H4, H6 and H9 viruses were detected over prolonged periods, while H1 and H11 viruses were detected transiently. The predominant subtypes in chickens, ducks and geese were H9, H3, and H6, respectively. The 84 mixed infection samples contained 22 combinations. Most mixed infections involved two subtypes, with H3 + H4 as the most common combination. Our study provides important epidemiological data regarding the isolation rates, distributions of prevalent subtypes and mixed infections of LPAIVs. These results will improve our knowledge and ability to control epidemics, guide disease management strategies and provide early awareness of newly emerged AIV reassortants with pandemic potential.


Subject(s)
Influenza A virus/isolation & purification , Influenza in Birds/epidemiology , Influenza in Birds/virology , Poultry/virology , Animals , Chickens/virology , China/epidemiology , Ducks/virology , Epidemiological Monitoring , Geese/virology , Influenza A virus/genetics
10.
Sci Rep ; 11(1): 22902, 2021 11 25.
Article in English | MEDLINE | ID: covidwho-1541249

ABSTRACT

Surveillance of notified Campylobacter enteritis in Germany revealed a recurrent annual increase of cases with disease onset several days after the Christmas and New Year holidays ("winter peak"). We suspected that handling and consumption of chicken meat during fondue and raclette grill meals on the holidays were associated with winter peak Campylobacter infections. The hypothesis was investigated in a case-control study with a case-case design where notified Campylobacter enteritis cases served as case-patients as well as control-patients, depending on their date of disease onset (case-patients: 25/12/2018 to 08/01/2019; control-patients: any other date between 30/11/2018 and 28/02/2019). The study was conducted as an online survey from 21/01/2019 to 18/03/2019. Adjusted odds ratios (aOR) were determined in single-variable logistic regression analyses adjusted for age group and sex. We analysed 182 data sets from case-patients and 260 from control-patients and found associations of Campylobacter infections after the holidays with meat fondue (aOR 2.2; 95% confidence interval (CI) 1.2-3.8) and raclette grill meals with meat (aOR 1.5; 95% CI 1.0-2.4) consumed on the holidays. The associations were stronger when chicken meat was served at these meals (fondue with chicken meat: aOR 2.7; 95% CI 1.4-5.5; raclette grill meal with chicken meat: aOR 2.3; 95% CI 1.3-4.1). The results confirmed our initial hypothesis. To prevent Campylobacter winter peak cases in the future, consumers should be made more aware of the risks of a Campylobacter infection when handling raw meat, in particular chicken, during fondue or raclette grill meals on the holidays.


Subject(s)
Campylobacter Infections/epidemiology , Enteritis/epidemiology , Food Microbiology , Foodborne Diseases/epidemiology , Meat/microbiology , Seasons , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Campylobacter Infections/diagnosis , Campylobacter Infections/microbiology , Case-Control Studies , Child , Child, Preschool , Cooking , Enteritis/diagnosis , Enteritis/microbiology , Female , Foodborne Diseases/diagnosis , Foodborne Diseases/microbiology , Germany/epidemiology , Holidays , Humans , Infant , Infant, Newborn , Male , Middle Aged , Poultry/microbiology , Risk Assessment , Risk Factors , Time Factors , Young Adult
11.
Viruses ; 13(11)2021 11 15.
Article in English | MEDLINE | ID: covidwho-1538547

ABSTRACT

2014 marked the first emergence of avian influenza A(H5N8) in Jeonbuk Province, South Korea, which then quickly spread worldwide. In the midst of the 2020-2021 H5N8 outbreak, it spread to domestic poultry and wild waterfowl shorebirds, leading to the first human infection in Astrakhan Oblast, Russia. Despite being clinically asymptomatic and without direct human-to-human transmission, the World Health Organization stressed the need for continued risk assessment given the nature of Influenza to reassort and generate novel strains. Given its promiscuity and easy cross to humans, the urgency to understand the mechanisms of possible species jumping to avert disastrous pandemics is increasing. Addressing the epidemiology of H5N8, its mechanisms of species jumping and its implications, mutational and reassortment libraries can potentially be built, allowing them to be tested on various models complemented with deep-sequencing and automation. With knowledge on mutational patterns, cellular pathways, drug resistance mechanisms and effects of host proteins, we can be better prepared against H5N8 and other influenza A viruses.


Subject(s)
Influenza A Virus, H5N8 Subtype/genetics , Influenza in Birds/virology , Poultry Diseases/virology , Animals , Birds/virology , Humans , Influenza in Birds/epidemiology , Pandemics/veterinary , Phylogeny , Poultry/virology , Poultry Diseases/epidemiology , Republic of Korea/epidemiology , Russia/epidemiology
12.
Transbound Emerg Dis ; 68(6): 3405-3414, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1532918

ABSTRACT

Since its first detection in 1998, avian influenza virus (AIV) subtype H9N2 has been enzootic in Iran. To better understand the evolutionary history of H9N2 viruses in Iran, we sequenced 15 currently circulating H9N2 viruses from domestic poultry during 2017-2019 and performed phylogenetic analysis of complete genome sequences. Phylogenetic analyses indicated that the Iranian H9N2 viruses formed multiple well-supported monophyletic groups within the G1-lineage of H9N2 virus. Our analysis of viral population dynamics revealed an increase in genetic diversity until 2007, corresponding to the multiple introductions and diversification of H9N2 viruses into multiple genetic groups (named Iran 1-4 subgroups), followed by a sudden decrease after 2008. Only the Iran 4 subgroup has survived, expanded, and currently circulates in Iran. The H9N2 viruses possessed many molecular markers associated with mammalian adaption in all gene segments, except neuraminidase gene. Considering the presence of mammalian host-specific markers, the public health threat of H9N2 viruses continues. Molecular analysis showed that Iranian H9N2 strains have continued to evolve and recent strains have multiple amino acid changes and addition of potential N-glycosylation on the antigenic sites of haemagglutinin. Continued antigenic and molecular surveillance of H9N2 viruses in poultry and mammals would be required to monitor further increments in viral evolution and their potential threat to public health.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Animals , Chickens , Evolution, Molecular , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/epidemiology , Iran/epidemiology , Phylogeny , Poultry
13.
Am J Trop Med Hyg ; 106(1): 127-131, 2021 10 29.
Article in English | MEDLINE | ID: covidwho-1497592

ABSTRACT

This article aims to understand the changes in the detection rates of H5, H7, and H9 subtypes of avian influenza viruses (AIVs) in the live poultry markets (LPMs) in Nanchang City, Jiangxi Province, before and after the outbreak of the COVID-19. From 2019 to 2020, we monitored the LPM and collected specimens, using real-time reverse transcription polymerase chain reaction technology to detect the nucleic acid of type A AIV in the samples. The H5, H7, and H9 subtypes of influenza viruses were further classified for positive results. We analyzed 1,959 samples before and after the outbreak and found that the positive rates of avian influenza A virus (39.69%) and H9 subtype (30.66%) after the outbreak were significantly higher than before the outbreak (26.84% and 20.90%, respectively; P < 0.001). In various LPMs, the positive rate of H9 subtypes has increased significantly (P ≤ 0.001). Positive rates of the H9 subtype in duck, fecal, daub, and sewage samples, but not chicken samples, have increased to varying degrees. This study shows that additional measures are needed to strengthen the control of AIVs now that LPMs have reopened after the relaxing of COVID-19-related restrictions.


Subject(s)
COVID-19/prevention & control , Disease Outbreaks/prevention & control , Influenza A virus/isolation & purification , Influenza in Birds/epidemiology , Animals , COVID-19/epidemiology , China/epidemiology , Ducks/virology , Environmental Microbiology , Feces/virology , Humans , Influenza A Virus, H9N2 Subtype/isolation & purification , Influenza A virus/classification , Poultry , Sewage/virology
14.
Epidemiol Infect ; 149: e234, 2021 10 27.
Article in English | MEDLINE | ID: covidwho-1492957

ABSTRACT

Poultry contact is a risk factor for zoonotic transmission of non-typhoidal Salmonella spp. Salmonella illness outbreaks in the United States are identified by PulseNet, the national laboratory network for enteric disease surveillance. During 2020, PulseNet observed a 25% decline in the number of Salmonella clinical isolates uploaded by state and local health departments. However, 1722 outbreak-associated Salmonella illnesses resulting from 12 Salmonella serotypes were linked to contact with privately owned poultry, an increase from all previous years. This report highlights the need for continued efforts to prevent backyard poultry-associated outbreaks of Salmonella as ownership increases in the United States.


Subject(s)
COVID-19/epidemiology , Disease Outbreaks/statistics & numerical data , Poultry/microbiology , Salmonella Infections/epidemiology , Zoonoses/epidemiology , Animals , Humans , SARS-CoV-2 , Salmonella/isolation & purification , Salmonella Infections/microbiology , Salmonella Infections/transmission , Serogroup , United States/epidemiology , Zoonoses/microbiology , Zoonoses/transmission
15.
J Med Virol ; 93(10): 5998-6007, 2021 10.
Article in English | MEDLINE | ID: covidwho-1432442

ABSTRACT

In the context of the coronavirus disease 2019 pandemic, we investigated the epidemiological and clinical characteristics of a young patient infected by avian influenza A (H5N6) virus in Anhui Province, East China, and analyzed genomic features of the pathogen in 2020. Through the cross-sectional investigation of external environment monitoring (December 29-31, 2020), 1909 samples were collected from Fuyang City. It was found that the positive rate of H5N6 was higher than other areas obviously in Tianma poultry market, where the case appeared. In addition, dual coinfections were detected with a 0.057% polymerase chain reaction positive rate the surveillance years. The virus was the clade 2.3.4.4, which was most likely formed by genetic reassortment between H5N6 and H9N2 viruses. This study found that the evolution rates of the hemagglutinin and neuraminidase genes of the virus were higher than those of common seasonal influenza viruses. The virus was still highly pathogenic to poultry and had a preference for avian receptor binding.


Subject(s)
COVID-19/epidemiology , Influenza A virus/isolation & purification , Influenza in Birds/virology , Influenza, Human/virology , Animals , Child, Preschool , China , Female , Genome, Viral/genetics , Humans , Influenza A virus/classification , Influenza A virus/genetics , Influenza, Human/diagnosis , Mutation , Phylogeny , Poultry/virology , Reassortant Viruses/classification , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , SARS-CoV-2 , Viral Proteins/genetics
16.
J Med Virol ; 93(10): 5676-5679, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1432416

ABSTRACT

Over the months of April and May 2021, South Africa has witnessed several outbreaks of highly infective avian influenza (H5N1) in different poultry farms. This came as a shock to a country that was already battling with the deadly COVID-19 pandemic. The emergence of the virus has spurred import bans and massive culls in the poultry business. Local experts have also called for a restriction on the movement of people and cars in and out of their chicken farms. Employees have also been encouraged to shower in the mornings when they arrive at the farms and wear fresh clothes, as the flu spreads very quickly. In a country that is already facing the economic implications of the COVID-19, this has the potential to cause a significant dent in the economy, as well as severely impact people's day-to-day life. Bird flu-also called avian influenza-is a viral infection that can infect not only birds but also humans and other animals. The threat of a new influenza pandemic has prompted countries to draft national strategic preparedness plans to prevent, contain and mitigate the next human influenza pandemic. This paper describes the South African burden, current efforts, and preparedness against the avian influenza virus.


Subject(s)
COVID-19/epidemiology , Disease Outbreaks/veterinary , Influenza in Birds/prevention & control , Animals , Chickens , Disease Outbreaks/prevention & control , Humans , Influenza A Virus, H5N1 Subtype , Influenza in Birds/epidemiology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Poultry/virology , SARS-CoV-2 , South Africa/epidemiology
17.
Front Cell Infect Microbiol ; 11: 688007, 2021.
Article in English | MEDLINE | ID: covidwho-1389153

ABSTRACT

Environmental transmission of viruses to humans has become an early warning for potential epidemic outbreaks, such as SARS-CoV-2 and influenza virus outbreaks. Recently, an H7N9 virus, A/environment/Hebei/621/2019 (H7N9), was isolated by environmental swabs from a live poultry market in Hebei, China. We found that this isolate could be transmitted by direct contact and aerosol in mammals. More importantly, after 5 passages in mice, the virus acquired two adaptive mutations, PB1-H115Q and B2-E627K, exhibiting increased virulence and aerosol transmissibility. These results suggest that this H7N9 virus might potentially be transmitted between humans through environmental or airborne routes.


Subject(s)
Environmental Exposure , Influenza A Virus, H7N9 Subtype , Influenza in Birds , Influenza, Human , Animals , China/epidemiology , Humans , Influenza in Birds/epidemiology , Influenza, Human/epidemiology , Mice , Poultry/virology
18.
Transbound Emerg Dis ; 69(4): e344-e355, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1379605

ABSTRACT

The current COVID-19 pandemic highlights the need for zoonotic infectious disease surveillance. Avian influenza virus (AIV) poses a significant threat to animal and public health due to its pandemic potential. Virus-contaminated water has been suggested as an important AIV spread mechanism among multiple species. Nevertheless, few studies have characterized the global AIV subtype diversity and distribution in environmental water. Therefore, this study aims to provide an updated descriptive and phylogenetic analysis of AIVs isolated in water samples from high risk-sites for influenza outbreaks (i.e. live bird markets, poultry farms, and wild bird habitats) on a global scale. The descriptive analysis evidenced that 21 subtypes were reported from nine countries between 2003 and 2020. Fourteen AIV subtypes were solely reported from Asian countries. Most of the viral sequences were obtained in China and Bangladesh with 47.44% and 23.93%, respectively. Likewise, the greatest global AIV subtype diversity was observed in China with 12 subtypes. Live bird markets represented the main sampling site for AIV detection in water samples (64.1%), mostly from poultry cage water. Nevertheless, the highest subtype diversity was observed in water samples from wild bird habitats, especially from the Izumi plain and the Dongting Lake located in Japan and China, respectively. Water from drinking poultry troughs evidenced the greatest subtype diversity in live bird markets; meanwhile, environmental water used by ducks had the highest number of different subtypes in poultry farms. Maximum-likelihood phylogenetic trees of hemagglutinin (HA) and neuraminidase (NA) genes showed that some sequences were closely related among different poultry/wild bird-related environments from different geographic origins. Therefore, the results suggest that even though the availability of gene sequences in public-access databases varies greatly among countries, environmental AIV surveillance represents a useful tool to elucidate potential viral diversity in wild and domestic bird populations.


Subject(s)
COVID-19 , Influenza A virus , Influenza in Birds , Animals , Animals, Wild , COVID-19/veterinary , Influenza in Birds/epidemiology , Pandemics , Phylogeny , Poultry , Water
19.
PLoS One ; 16(8): e0254605, 2021.
Article in English | MEDLINE | ID: covidwho-1367703

ABSTRACT

The re-emergence of virulent strains of the Infectious Bursal Disease Virus (IBDV) leads to significant economic losses of poultry industry in Pakistan during last few years. This disease causes the infection of bursa, which leads to major immune losses. A total number of 30 samples from five IBD outbreaks during the period of 2019-20 were collected from different areas of Faisalabad district, Pakistan and assayed by targeting the IBD virus VP2 region through RT-PCR. Among all the outbreaks, almost 80% of poultry birds were found positive for the IBDV. The bursa tissues were collected from the infected birds and histopathological examination of samples revealed severe lymphocytic depletion, infiltration of inflammatory cells, and necrosis of the bursa of Fabricius (BF). Positive samples were subjected to re-isolation and molecular characterization of IBDV. The Pakistan IBDV genes were subjected to DNA sequencing to determine the virus nucleotide sequences. The sequences of 100 Serotype-I IBDVs showing nearest homology were compared and identified with the study sequence. The construction of the phylogenetic tree for nucleotide sequences was accomplished by the neighbor-joining method in MEGA-6 with reference strains. The VP2 segment reassortment of IBDVs carrying segment A were identified as one important type of circulating strains in Pakistan. The findings indicated the molecular features of the Pakistan IBDV strains playing a role in the evolution of new strains of the virus, which will contribute to the vaccine selection and effective prevention of the disease.


Subject(s)
Birnaviridae Infections/epidemiology , Infectious bursal disease virus/pathogenicity , Poultry/virology , Vaccines/pharmacology , Animals , Birnaviridae Infections/veterinary , Birnaviridae Infections/virology , Bursa of Fabricius/pathology , Bursa of Fabricius/virology , Chickens/virology , Disease Outbreaks/veterinary , Humans , Infectious bursal disease virus/genetics , Pakistan/epidemiology , Phylogeny , Poultry Diseases/virology , Viral Structural Proteins/genetics , Viral Structural Proteins/immunology
20.
Science ; 373(6557): 918-922, 2021 08 20.
Article in English | MEDLINE | ID: covidwho-1367378

ABSTRACT

Zoonotic avian influenza A virus (IAV) infections are rare. Sustained transmission of these IAVs between humans has not been observed, suggesting a role for host genes. We used whole-genome sequencing to compare avian IAV H7N9 patients with healthy controls and observed a strong association between H7N9 infection and rare, heterozygous single-nucleotide variants in the MX1 gene. MX1 codes for myxovirus resistance protein A (MxA), an interferon-induced antiviral guanosine triphosphatase known to control IAV infections in transgenic mice. Most of the MxA variants identified lost the ability to inhibit avian IAVs, including H7N9, in transfected human cell lines. Nearly all of the inactive MxA variants exerted a dominant-negative effect on the antiviral function of wild-type MxA, suggesting an MxA null phenotype in heterozygous carriers. Our study provides genetic evidence for a crucial role of the MX1-based antiviral defense in controlling zoonotic IAV infections in humans.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza, Human/genetics , Influenza, Human/virology , Myxovirus Resistance Proteins/genetics , Agricultural Workers' Diseases/genetics , Agricultural Workers' Diseases/virology , Animals , Cell Line , Genetic Predisposition to Disease , Genetic Variation , Heterozygote , Humans , Influenza A Virus, H7N9 Subtype/physiology , Influenza A virus/physiology , Mutation, Missense , Myxovirus Resistance Proteins/chemistry , Myxovirus Resistance Proteins/metabolism , Poultry , Viral Zoonoses , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL