Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Ann Med ; 54(1): 1488-1499, 2022 12.
Article in English | MEDLINE | ID: covidwho-1860599

ABSTRACT

BACKGROUND: Accumulating data suggest antiviral effects of povidone-iodine against the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. This narrative review aims to examine the antiviral mechanisms of povidone-iodine, efficacy of povidone-iodine against the SARS-CoV-2 virus, and safety of povidone-iodine to human epithelial cells and thyroid function. METHODS: We searched the electronic databases PubMed, Embase, Cochrane Library, ClinicalTrials.gov and World Health Organization's International Clinical Trials Registry Platform for articles containing the keywords "povidone-iodine", "SARS-CoV-2" and "COVID-19" from database inception till 3 June 2021. RESULTS: Despite in vitro data supporting the anti-SARS-CoV-2 effects of povidone-iodine, findings from clinical studies revealed differences in treatment response depending on study settings (healthy vs. hospitalized individuals), treatment target (nasal vs. oral vs. pharynx), method of administration (oral rinse vs. gargle vs. throat spray) and choice of samples used to measure study endpoints (nasopharyngeal vs. saliva). One large-scale clinical trial demonstrated reduction in the incidence of SARS-CoV-2 infection among participants who administered povidone-iodine 3 times daily during an active outbreak. Povidone-iodine is also used to disinfect the oro-pharyngeal space prior to dental or otolaryngology procedures. Although existing data suggest minimal impact of povidone-iodine on thyroid function, high-quality safety data are presently lacking. CONCLUSIONS: Povidone-iodine application to the oropharyngeal space could complement existing non-pharmacological interventions to reduce SARS-CoV-2 infection especially in high exposure settings.Key messagesAccumulating data suggest antiviral effects of povidone-iodine against the SARS-CoV-2 virus.Findings from clinical studies reveal differences in treatment response depending on study settings, treatment target, method of administration and choice of samples used to measure study endpoints. One large-scale clinical trial observed reduction in the incidence of SARS-CoV-2 infection among participants who administered povidone-iodine 3 times daily during an active outbreak.Povidone-iodine application to the oropharyngeal space could complement existing non-pharmacological interventions to reduce SARS-CoV-2 infection especially in high exposure settings.


Subject(s)
COVID-19 , Povidone-Iodine , Antiviral Agents/therapeutic use , Humans , Mouthwashes/pharmacology , Mouthwashes/therapeutic use , Povidone-Iodine/pharmacology , Povidone-Iodine/therapeutic use , SARS-CoV-2
2.
J Am Dent Assoc ; 153(7): 635-648.e16, 2022 07.
Article in English | MEDLINE | ID: covidwho-1739486

ABSTRACT

BACKGROUND: Considering that the oral cavity is a major entryway and reservoir for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the aim of the authors was to perform a systematic review of in vivo and in vitro studies to assess the effectiveness of mouthrinses on SARS-CoV-2 viral load. TYPES OF STUDIES REVIEWED: The authors searched PubMed, Web of Science, Scopus, MedRxiv, and bioRxiv databases, including in vitro and in vivo studies assessing the virucidal effect of mouthrinses on SARS-CoV-2 or surrogates. From a total of 1,622 articles retrieved, the authors included 39 in this systematic review. RESULTS: Povidone-iodine was the most studied mouthrinse (14 in vitro and 9 in vivo studies), frequently showing significant reductions in viral load in in vitro assays. Similarly, cetylpyridinium chloride also showed good results, although it was evaluated in fewer studies. Chlorhexidine gluconate and hydrogen peroxide showed conflicting results on SARS-CoV-2 load reduction in both in vitro and in vivo studies. PRACTICAL IMPLICATIONS: Povidone-iodine-based mouthrinses appear to be the best option as an oral prerinse in the dental context for SARS-CoV-2 viral load reduction. Although the results of primary studies are relevant, there is a need for more in vivo studies on mouthrinses, in particular, randomized controlled clinical trials, to better understand their effect on SARS-CoV-2 viral load and infection prevention.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mouthwashes/pharmacology , Mouthwashes/therapeutic use , Povidone-Iodine/pharmacology , Povidone-Iodine/therapeutic use , Viral Load
3.
BMC Oral Health ; 22(1): 47, 2022 02 25.
Article in English | MEDLINE | ID: covidwho-1701128

ABSTRACT

BACKGROUND: Healthcare professionals, especially dentists and dental hygienists, are at increased risk for contracting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through air-borne particles and splatter. This study assessed the in vitro virucidal activity of 0.5% (w/v) povidone-iodine (PVP-I) oral rinse against SARS-CoV-2 to demonstrate its utility as a professional oral rinse. METHODS: A 0.5% (w/v) PVP-I oral rinse formulation, placebo oral rinse, and positive (70% [v/v] ethanol and water) and negative (water) controls were assessed using the time-kill method. SARS-CoV-2 was propagated in Vero 76 host cells. Following neutralization validation, triplicate tests were performed for each test formulation and virucidal activity measured at 15, 30, and 60 s and 5 min. RESULTS: The 0.5% (w/v) PVP-I oral rinse demonstrated effective in vitro virucidal activity against SARS-CoV-2 as early as 15 s after exposure; viral titer was reduced to < 0.67 log10 50% cell culture infectious dose (CCID50)/0.1 mL (log10 reduction of > 4.0) at 30 s, whereas the placebo oral rinse reduced the SARS-CoV-2 viral titer to 4.67 and 4.5 log10 CCID50/0.1 mL at the 15- and 30-s time points, with a log10 reduction of 0.63 and 0.17, respectively. No toxicity or cytotoxic effects against Vero 76 host cells were observed with the 0.5% (w/v) PVP-I oral rinse; positive and negative controls performed as expected. CONCLUSIONS: In vitro virucidal activity of 0.5% (w/v) PVP-I oral rinse against SARS-CoV-2 was demonstrated. Rapid inactivation of SARS-CoV-2 was observed with 0.5% (w/v) formulation with a contact duration of 15 s. Clinical investigations are needed to assess the effectiveness of PVP-I oral rinse against SARS-CoV-2 in dental practice.


Subject(s)
COVID-19 , Povidone-Iodine , Humans , Mouthwashes/pharmacology , Povidone-Iodine/pharmacology , SARS-CoV-2
5.
J Int Med Res ; 49(12): 3000605211063695, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1575873

ABSTRACT

OBJECTIVE: To evaluate the antiviral activity of the oral disinfectant povidone-iodine (PVP-I) against severe acute respiratory syndrome-coronavirus-2 (SARS-CoV2) in vitro. METHODS: The cytotoxic effects of PVP-I were determined in Vero and Calu-3 cell lines using that by Cell Counting Kit-8 assay. Viral load in the cell culture medium above infected cells was quantitated using real-time polymerase chain reaction. The cytopathic effect (CPE) and viral infective rate were observed by immunofluorescence microscopy. RESULTS: PVP-I at a concentration >0.5 mg/ml in contact with SARS-CoV-2 for 30 s, 1 min, 2 min and 5 min showed up to 99% viral inhibition. For in vitro testing, upon exposure for 1 min, PVP-I showed a virucidal effect. PVP-I had no cytotoxic effects at the range of concentrations tested (0.125-1 mg/ml; CC50 > 2.75 mM) in Vero and Calu-3 cells. CONCLUSION: These results demonstrate that the ideal contact time was 1 min and the optimal concentration was 1 mg/ml, which provides an experimental basis for the use of oral disinfectants in dental hospitals.


Subject(s)
COVID-19 , SARS-CoV-2 , Cell Line , Humans , Povidone-Iodine/pharmacology , RNA, Viral
6.
ScientificWorldJournal ; 2021: 9342748, 2021.
Article in English | MEDLINE | ID: covidwho-1495720

ABSTRACT

BACKGROUND: Recently, an outbreak of a novel human coronavirus SARS-CoV-2 has become a world health concern leading to severe respiratory tract infections in humans. Virus transmission occurs through person-to-person contact, respiratory droplets, and contaminated hands or surfaces. Accordingly, we aim at reviewing the literature on all information available about the persistence of coronaviruses, including human and animal coronaviruses, on inanimate surfaces and inactivation strategies with biocides employed for chemical and physical disinfection. METHOD: A comprehensive search was systematically conducted in main databases from 1998 to 2020 to identify various viral disinfectants associated with HCoV and methods for control and prevention of this newly emerged virus. RESULTS: The analysis of 62 studies shows that human coronaviruses such as severe acute respiratory syndrome (SARS) coronavirus, Middle East respiratory syndrome (MERS) coronavirus or endemic human coronaviruses (HCoV), canine coronavirus (CCV), transmissible gastroenteritis virus (TGEV), and mouse hepatitis virus (MHV) can be efficiently inactivated by physical and chemical disinfectants at different concentrations (70, 80, 85, and 95%) of 2-propanol (70 and 80%) in less than or equal to 60 s and 0.5% hydrogen peroxide or 0.1% sodium hypochlorite within 1 minute. Additionally, glutaraldehyde (0.5-2%), formaldehyde (0.7-1%), and povidone-iodine (0.1-0.75%) could readily inactivate coronaviruses. Moreover, dry heat at 56°C, ultraviolet light dose of 0.2 to 140 J/cm2, and gamma irradiation could effectively inactivate coronavirus. The WHO recommends the use of 0.1% sodium hypochlorite solution or an ethanol-based disinfectant with an ethanol concentration between 62% and 71%. CONCLUSION: The results of the present study can help researchers, policymakers, health decision makers, and people perceive and take the correct measures to control and prevent further transmission of COVID-19. Prevention and decontamination will be the main ways to stop the ongoing outbreak of COVID-19.


Subject(s)
COVID-19/prevention & control , Disinfectants/pharmacology , Disinfection/instrumentation , SARS-CoV-2 , Virus Inactivation/drug effects , 2-Propanol/pharmacology , Animals , COVID-19/virology , Coronavirus, Canine/drug effects , Disinfection/methods , Ethanol/pharmacology , Formaldehyde/pharmacology , Gamma Rays , Glutaral/pharmacology , Hot Temperature , Humans , Hydrogen Peroxide/pharmacology , Mice , Middle East Respiratory Syndrome Coronavirus/drug effects , Murine hepatitis virus/drug effects , Povidone-Iodine/pharmacology , SARS Virus/drug effects , Sodium Hypochlorite/pharmacology , Transmissible gastroenteritis virus/drug effects , Ultraviolet Rays
7.
Int Orthod ; 19(4): 685-688, 2021 12.
Article in English | MEDLINE | ID: covidwho-1472124

ABSTRACT

OBJECTIVE: In orthodontic patients using any chemical substances in oral environment could change the elastomeric properties of their appliances. Since the beginning of the SARS-CoV-2 pandemic, efforts have been devoted to explore methods of prevention including the use of antiviral mouthwashes. This study aimed to investigate the effects of Povidone Iodine (PVP-I) and two other disinfecting solutions on the mechanical properties of orthodontic elastomeric ligatures. MATERIALS AND METHODS: In this study, 130 elastomeric ligatures in five groups (three test groups and two control groups) were examined in laboratory conditions for a period of 28 days. In the control group, specimens were kept dry in a dark environment while all other ligatures were stored in artificial saliva. Elastomeric ligatures were immersed into PVP-I solution (1%) Chlorhexidine (0.02%), and hydrogen peroxide (5%) for one minute each day in three time intervals of one day, 7 days and 28 days. Next, the maximum tensile strength of elastomeric ligatures was tested by a universal testing machine (CN 1174, Germany). RESULTS: The results showed that the tensile strength of elastomeric ligatures was significantly decreased in all three test groups after 28 days (p-value<0.05). However, the difference between groups was not statistically significant. Between-subject ANOVA test showed that there were significant correlations between the time of exposure and type of disinfecting solutions. CONCLUSIONS: PVP-I has comparable effects on elastomeric ligatures as artificial saliva, chlorhexidine, and hydrogen peroxide.


Subject(s)
Chlorhexidine/pharmacology , Hydrogen Peroxide/pharmacology , Orthodontic Appliances , Povidone-Iodine/pharmacology , Tensile Strength/drug effects , COVID-19 , Elastomers , Humans , Materials Testing , SARS-CoV-2 , Saliva, Artificial
8.
J Formos Med Assoc ; 121(5): 879-885, 2022 May.
Article in English | MEDLINE | ID: covidwho-1458570

ABSTRACT

The COVID-19 pandemic, caused by the spread of SARS-CoV-2 infection that is mainly through the airborne transmission, is a worldwide health concern. This review seeks to assess the potential effectiveness of mouthwash in reducing the oropharyngeal load of SARS-CoV-2 based on the available evidence. Articles related to mouthwash and COVID-19 in PubMed were electronically searched in July, 2021. After manually excluding articles lacking sufficient scientific evidence or validation processes, those with inaccessible online full text, those that did not test the effectiveness of mouthwash against SARS-CoV-2, and those not written in English, 17 original and 13 review articles were chosen for this review. The eligible articles revealed that the main virucidal mechanism of mouthwash was via interactions with the viral envelope. Povidone-iodine (PVP-I), cetylpyridinium chloride (CPC), and essential oils with ethanol showed virucidal effects on SARS-CoV-2 in vitro, potentially by interfering with the viral envelope. A few clinical studies demonstrated that PVP-I, CPC, hydrogen peroxide, and chlorhexidine reduced the oropharyngeal load of SARS-CoV-2. Although the available evidence is limited, mouthwash containing PVP-I or CPC shows potential for reducing the oropharyngeal load of SARS-CoV-2 and thus may present a risk-mitigation strategy for COVID-19 patients.


Subject(s)
COVID-19 , Humans , Mouthwashes/pharmacology , Pandemics/prevention & control , Povidone-Iodine/pharmacology , Povidone-Iodine/therapeutic use , SARS-CoV-2
9.
Rev Assoc Med Bras (1992) ; 66(Suppl 2): 124-129, 2020. tab, graf
Article in English | WHO COVID, LILACS (Americas) | ID: covidwho-1390138

ABSTRACT

SUMMARY An alarming fact was revealed by recent publications concerning disinfectants: chlorhexidine digluconate is ineffective for disinfecting surfaces contaminated by the new coronavirus. This is a finding that requires immediate disclosure since this substance is widely used for the disinfection of hands and forearms of surgeons and auxiliaries and in the antisepsis of patients in minimally invasive procedures commonly performed in hospital environments. The objective of this study is to compare the different disinfectants used for disinfection on several surfaces, in a review of worldwide works. Scientific studies were researched in the BVS (Virtual Health Library), PubMed, Medline, and ANVISA (National Health Surveillance Agency) databases. The following agents were studied: alcohol 62-71%, hydrogen peroxide 0.5%, sodium hypochlorite 0.1%, benzalkonium chloride 0.05-0.2%, povidone-iodine 10%, and chlorhexidine digluconate 0.02%, on metal, aluminum, wood, paper, glass, plastic, PVC, silicone, latex (gloves), disposable gowns, ceramic, and Teflon surfaces. Studies have shown that chlorhexidine digluconate is ineffective for inactivating some coronavirus subtypes, suggesting that it is also ineffective to the new coronavirus.


RESUMO Um dado alarmante revelado por publicações a respeito dos agentes desinfetantes: o digluconato de clorexidina é ineficaz para desinfecção de superfícies contaminadas por coronavírus. Trata-se de uma constatação que reclama imediata divulgação, uma vez que essa substância é amplamente usada para degermação de mãos e antebraços dos cirurgiões e auxiliares e na antissepsia dos pacientes, em procedimentos minimamente invasivos, comumente em ambientes hospitalares. O objetivo deste trabalho foi comparar os diferentes desinfetantes usados para desinfecção em diversas superfícies em revisão de trabalhos mundiais. Foram pesquisados trabalhos científicos na BVS (Biblioteca Virtual de Saúde), PubMed, Medline e Anvisa (Agência Nacional de Vigilância Sanitária). Foram estudados os seguintes agentes: álcool 62-71%, peróxido de hidrogênio 0,5%, hipoclorito de sódio 0,1%, cloreto de benzancônio 0,05-0,2%, iodo povidina 10% e digluconato de clorexidina 0,02%, em superfícies de metal, alumínio, madeira, papel, vidro, plástico, PVC, silicone, látex (luvas), avental descartável, cerâmica e teflon. Os estudos demonstraram que o digluconato de clorexidina é ineficaz para a inativação de alguns subtipos de coronavírus, sugerindo que também seja ineficaz contra o novo coronavírus.


Subject(s)
Humans , Povidone-Iodine/pharmacology , Chlorhexidine/pharmacology , Coronavirus/drug effects , Disinfectants/pharmacology , Anti-Infective Agents, Local/pharmacology , Pneumonia, Viral/epidemiology , Disinfection , Coronavirus Infections/epidemiology , Pandemics
10.
Biomolecules ; 11(5)2021 05 18.
Article in English | MEDLINE | ID: covidwho-1389275

ABSTRACT

Several RNA viruses, including SARS-CoV-2, can infect or use the eye as an entry portal to cause ocular or systemic diseases. Povidone-Iodine (PVP-I) is routinely used during ocular surgeries and eye banking as a cost-effective disinfectant due to its broad-spectrum antimicrobial activity, including against viruses. However, whether PVP-I can exert antiviral activities in virus-infected cells remains elusive. In this study, using Zika (ZIKV) and Chikungunya (CHIKV) virus infection of human corneal and retinal pigment epithelial cells, we report antiviral mechanisms of PVP-I. Our data showed that PVP-I, even at the lowest concentration (0.01%), drastically reduced viral replication in corneal and retinal cells without causing cellular toxicity. Antiviral effects of PVP-I against ZIKV and CHIKV were mediated by direct viral inactivation, thus attenuating the ability of the virus to infect host cells. Moreover, one-minute PVP-I exposure of infected ocular cells drastically reduced viral replication and the production of infectious progeny virions. Furthermore, viral-induced (CHIKV) expression of inflammatory genes (TNF-α, IL-6, IL-8, and IL1ß) were markedly reduced in PVP-I treated corneal epithelial cells. Together, our results demonstrate potent antiviral effects of PVP-I against ZIKV and CHIKV infection of ocular cells. Thus, a low dose of PVP-I can be used during tissue harvesting for corneal transplants to prevent potential transmission of RNA viruses via infected cells.


Subject(s)
Antiviral Agents/pharmacology , Povidone-Iodine/pharmacology , RNA Viruses/physiology , Virus Replication/drug effects , Animals , Cell Line , Chikungunya virus/physiology , Chlorocebus aethiops , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/virology , SARS-CoV-2/physiology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Vero Cells , Zika Virus/physiology
11.
J Evid Based Dent Pract ; 21(3): 101584, 2021 09.
Article in English | MEDLINE | ID: covidwho-1316531

ABSTRACT

OBJECTIVES: The oral cavity is potentially high-risk transmitter of COVID-19. Antimicrobial mouthrinses are used in many clinical preprocedural situations for decreasing the risk of cross-contamination in the dental setting. It is important to investigate the efficacy of mouthwash solutions against salivary SARS-CoV-2 in order to reduce the exposure of the dental team during dental procedures. AIMS: The aim of this in vivo study was to evaluate the efficacy of 2 preprocedural mouthrinses in the reduction of salivary SARS-CoV-2 viral load and to compare the results of the mouthwashes to a control group. MATERIALS AND METHODS: In this randomized-controlled clinical trial, studied group comprised laboratory-confirmed COVID-19 positive patients through nasopharyngeal swabs. Participants were divided into 3 groups. For 30 s, the control group mouthrinsed with distilled water, the Chlorhexidine group mouthrinsed with 0.2% Chlorhexidine and the Povidone-iodine group gargled with 1% Povidone-iodine. Saliva samples were collected before and 5 min after mouthwash. SARS-CoV-2 rRT-PCR was then performed for each sample. Evaluation of the efficacy was based on difference in cycle threshold (Ct) value. The analysis of data was carried out using GraphPad Prism version 5 for Windows. Kristal wullis and Paired t-test were used. A probability value of less than 0.05 was regarded as statistically significant. RESULTS: Sixty-one compliant participants (36 female and 25 male) with a mean age 45.3 ± 16.7 years-old were enrolled. A significant difference was noted between the delta Ct of distilled water wash and each of the 2 solutions Chlorhexidine 0.2% (P = .0024) and 1% Povidone-iodine (P = .012). No significant difference was found between the delta Ct of patients using Chlorhexidine 0.2% and 1% Povidone-iodine solutions (P = .24). A significant mean Ct value difference (P < .0001) between the paired samples in Chlorhexidine group (n = 27) and also in Povidone-iodine group (n = 25) (P < .0001) was found. In contrast, no significant difference (P = .566) existed before and after the experiment in the control group (n = 9). CONCLUSION: Chlorhexidine 0.2% and 1% Povidone-iodine oral solutions are effective preprocedural mouthwashes against salivary SARS-CoV-2 in dental treatments. Their use as a preventive strategy to reduce the spread of COVID-19 during dental practice should be considered.


Subject(s)
Anti-Infective Agents, Local , COVID-19 , Adult , Anti-Infective Agents, Local/pharmacology , Chlorhexidine/pharmacology , Female , Humans , Male , Middle Aged , Mouthwashes/pharmacology , Povidone-Iodine/pharmacology , SARS-CoV-2
12.
Int J Infect Dis ; 106: 314-322, 2021 May.
Article in English | MEDLINE | ID: covidwho-1279607

ABSTRACT

BACKGROUND: We examined whether existing licensed pharmacotherapies could reduce the spread of coronavirus disease 2019 (COVID-19). METHODS: An open-label parallel randomized controlled trial was performed among healthy migrant workers quarantined in a large multi-storey dormitory in Singapore. Forty clusters (each defined as individual floors of the dormitory) were randomly assigned to receive a 42-day prophylaxis regimen of either oral hydroxychloroquine (400 mg once, followed by 200 mg/day), oral ivermectin (12 mg once), povidone-iodine throat spray (3 times/day, 270 µg/day), oral zinc (80 mg/day)/vitamin C (500 mg/day) combination, or oral vitamin C, 500 mg/day. The primary outcome was laboratory evidence of SARS-CoV-2 infection as shown by either: (1) a positive serologic test for SARS-CoV-2 antibody on day 42, or (2) a positive PCR test for SARS-CoV-2 at any time between baseline and day 42. RESULTS: A total of 3037 asymptomatic participants (mean age, 33.0 years; all men) who were seronegative to SARS-CoV-2 at baseline were included in the primary analysis. Follow-up was nearly complete (99.6%). Compared with vitamin C, significant absolute risk reductions (%, 98.75% confidence interval) were observed for oral hydroxychloroquine (21%, 2-42%) and povidone-iodine throat spray (24%, 7-39%). No statistically significant differences were observed with oral zinc/vitamin C combination (23%, -5 to +41%) and ivermectin (5%, -10 to +22%). Interruptions due to side effects were highest among participants who received zinc/vitamin C combination (6.9%), followed by vitamin C (4.7%), povidone-iodine (2.0%), and hydroxychloroquine (0.7%). CONCLUSIONS: Chemoprophylaxis with either oral hydroxychloroquine or povidone-iodine throat spray was superior to oral vitamin C in reducing SARS-CoV-2 infection in young and healthy men.


Subject(s)
COVID-19/prevention & control , Hydroxychloroquine/pharmacology , Pharynx , Povidone-Iodine/pharmacology , Adult , Humans , Male , Middle Aged , Time Factors , Treatment Outcome , Young Adult
13.
J Hosp Infect ; 113: 30-43, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1185067

ABSTRACT

Angiotensin converting enzyme 2 (ACE2) is the cellular receptor for SARS-CoV-2, so ACE2-expressing cells can act as target cells and are susceptible to infection. ACE2 receptors are highly expressed in the oral cavity, so this may be a potential high-risk route for SARS-CoV-2 infection. Furthermore, the virus can be detected in saliva, even before COVID-19 symptoms appear, with the consequent high risk of virus transmission in asymptomatic/presymptomatic patients. Reducing oral viral load could lead to a lower risk of transmission via salivary droplets or aerosols and therefore contribute to the control of the pandemic. Our aim was to evaluate the available evidence testing the in-vitro and in-vivo effects of oral antiseptics to inactivate or eradicate coronaviruses. The criteria used were those described in the PRISMA declaration for performing systematic reviews. An electronic search was conducted in Medline (via PubMed) and in Web of Sciences, using the MeSH terms: 'mouthwash' OR 'oral rinse' OR 'mouth rinse' OR 'povidone iodine' OR 'hydrogen peroxide' OR 'cetylpyridinium chloride' AND 'COVID-19' OR 'SARS-CoV-2' OR 'coronavirus' OR 'SARS' OR 'MERS'. The initial search strategy identified 619 articles on two electronic databases. Seventeen articles were included assessing the virucidal efficacy of oral antiseptics against coronaviruses. In conclusion, there is sufficient in-vitro evidence to support the use of antiseptics to potentially reduce the viral load of SARS-CoV-2 and other coronaviruses. However, in-vivo evidence for most oral antiseptics is limited. Randomized clinical trials with a control group are needed to demonstrate its clinical efficacy.


Subject(s)
Anti-Infective Agents, Local/pharmacology , COVID-19/drug therapy , Mouthwashes/pharmacology , Viral Load/drug effects , Cetylpyridinium/pharmacology , Humans , Hydrogen Peroxide/pharmacology , Mouth , Pandemics , Povidone-Iodine/pharmacology , SARS-CoV-2/drug effects , Saliva/virology
14.
Ear Nose Throat J ; 100(2_suppl): 192S-196S, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-788410

ABSTRACT

INTRODUCTION: Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the global pandemic of coronavirus disease 2019 (COVID-19). From the first reported cases in December 2019, the virus has spread to over 4 million people worldwide. Human-to-human transmission occurs mainly through the aerosolization of respiratory droplets. Transmission also occurs through contact with contaminated surfaces and other fomites. Improved antisepsis of human and nonhuman surfaces has been identified as a key feature of transmission reduction. There are no previous studies of povidone iodine (PVP-I) against SARS-CoV-2. This study evaluated nasal and oral antiseptic formulations of PVP-I for virucidal activity against SARS-CoV-2. This is the first report on the efficacy of PVP-I against the virus that causes COVID-19. METHODS: Povidone iodine nasal antiseptic formulations and PVP-I oral rinse antiseptic formulations from 1% to 5% concentrations as well as controls were studied for virucidal efficacy against the SARS-CoV-2. Test compounds were evaluated for ability to inactivate SARS-CoV-2 as measured in a virucidal assay. SARS-CoV-2 was exposed directly to the test compound for 60 seconds, compounds were then neutralized, and surviving virus was quantified. RESULTS: All concentrations of nasal antiseptics and oral rinse antiseptics evaluated completely inactivated the SARS-CoV-2. CONCLUSIONS: Nasal and oral PVP-I antiseptic solutions are effective at inactivating the SARS-CoV-2 at a variety of concentrations after 60-second exposure times. The formulations tested may help to reduce the transmission of SARS-CoV-2 if used for nasal decontamination, oral decontamination, or surface decontamination in known or suspected cases of COVID-19.


Subject(s)
Anti-Infective Agents, Local/pharmacology , COVID-19/prevention & control , Microbial Viability/drug effects , Povidone-Iodine/pharmacology , SARS-CoV-2/drug effects , Administration, Topical , COVID-19/transmission , Humans , In Vitro Techniques , Mouth Mucosa , Mouthwashes , Nasal Lavage , Nasal Mucosa
16.
J Prosthodont ; 29(7): 599-603, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-629624

ABSTRACT

PURPOSE: To evaluate the in vitro inactivation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with hydrogen peroxide (H2 O2 ) and povidone-iodine (PVP-I) oral antiseptic rinses at clinically recommended concentrations and contact times. MATERIALS AND METHODS: SARS-CoV-2, USA-WA1/2020 strain virus stock was prepared prior to testing by growing in Vero 76 cells. The culture media for prepared virus stock was minimum essential medium (MEM) with 2% fetal bovine serum (FBS) and 50 µg/mL gentamicin. Test compounds consisting of PVP-I oral rinse solutions and H2 O2 aqueous solutions were mixed directly with the virus solution so that the final concentration was 50% of the test compound and 50% of the virus solution. Thus PVP-I was tested at concentrations of 0.5%, 1.25%, and 1.5%, and H2 O2 was tested at 3% and 1.5% concentrations to represent clinically recommended concentrations. Ethanol and water were evaluated in parallel as standard positive and negative controls. All samples were tested at contact periods of 15 seconds and 30 seconds. Surviving virus from each sample was then quantified by standard end-point dilution assay and the log reduction value of each compound compared to the negative control was calculated. RESULTS: After the 15-second and 30-second contact times, PVP-I oral antiseptic rinse at all 3 concentrations of 0.5%, 1.25%, and 1.5% completely inactivated SARS-CoV-2. The H2 O2 solutions at concentrations of 1.5% and 3.0% showed minimal viricidal activity after 15 seconds and 30 seconds of contact time. CONCLUSIONS: SARS-CoV-2 virus was completely inactivated by PVP-I oral antiseptic rinse in vitro, at the lowest concentration of 0.5 % and at the lowest contact time of 15 seconds. Hydrogen peroxide at the recommended oral rinse concentrations of 1.5% and 3.0% was minimally effective as a viricidal agent after contact times as long as 30 seconds. Therefore, preprocedural rinsing with diluted PVP-I in the range of 0.5% to 1.5% may be preferred over hydrogen peroxide during the COVID-19 pandemic.


Subject(s)
Anti-Infective Agents, Local , Betacoronavirus , COVID-19 , Coronavirus Infections , Pneumonia, Viral , SARS Virus , Anti-Infective Agents, Local/pharmacology , Coronavirus Infections/epidemiology , Humans , Hydrogen Peroxide/pharmacology , Pandemics , Pneumonia, Viral/epidemiology , Povidone-Iodine/pharmacology , SARS-CoV-2
17.
Ear Nose Throat J ; 99(9): 586-593, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-592139

ABSTRACT

OBJECTIVES: Approaches to nasal and oral decontamination with povidone-iodine (PVP-I) have been published to reduce nosocomial spread of Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2). The safety of PVP-I topically applied to the nasal and oral cavity is addressed by a literature review. The specific efficacy of PVP-I against coronaviruses and its potential efficacy against SARS-CoV-2 is discussed. METHODS: A review was performed utilizing PubMed and Cochrane Databases. All citations in protocols for nasal and oral PVP-I use regarding COVID-19 were independently reviewed. RESULTS: Povidone-iodine has been safely administered for up to 5 months in the nasal cavity and 6 months in the oral cavity. Concentrations less than 2.5% in vitro do not reduce ciliary beat frequency or cause pathological changes in ciliated nasal epithelium, upper respiratory, or mucosal cells. Adverse events with oral use have not been reported in conscious adults or children. Allergy and contact sensitivity is rare. Chronic mucosal use up to 5% has not been shown to result in clinical thyroid disease. PVP-I is rapidly virucidal and inactivates coronaviruses, including SARS-CoV and Middle East Respiratory Syndrome (MERS). CONCLUSIONS: Povidone-iodine can safely be used in the nose at concentrations up to 1.25% and in the mouth at concentrations up to 2.5% for up to 5 months. Povidone-iodine rapidly inactivates coronaviruses, including SARS and MERS, when applied for as little as 15 seconds. There is optimism that PVP-I can inactivate SARS-CoV-2, but in vitro efficacy has not yet been demonstrated.


Subject(s)
Anti-Infective Agents, Local/adverse effects , Coronavirus Infections/prevention & control , Disinfection/methods , Mouth , Nasal Cavity , Pandemics/prevention & control , Paranasal Sinuses , Pneumonia, Viral/prevention & control , Povidone-Iodine/adverse effects , Administration, Topical , Anti-Infective Agents, Local/pharmacology , Anti-Infective Agents, Local/therapeutic use , Betacoronavirus , COVID-19 , Coronavirus/drug effects , Coronavirus Infections/transmission , Humans , Pneumonia, Viral/transmission , Povidone-Iodine/pharmacology , Povidone-Iodine/therapeutic use , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL